
1

CSCE 313-200
 Introduction to Computer Systems

 Spring 2024

CSCE CSCE 313313--200200
 Introduction to Computer SystemsIntroduction to Computer Systems

 Spring 2024Spring 2024

Preliminaries IIPreliminaries II
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

January 19, 2024January 19, 2024

2

AgendaAgendaAgenda

•

Pointers
•

Homework setup

•

Cave lights
•

Cave search

•

Pipes

3

PointersPointersPointers

•

What is a C/C++ pointer?
━

4-byte number in Win32/x86,
 8-byte in x64

•

What is a static array?
━

Immutable pointer
hidden in compiler space

━

&str

same as str

(compiler hack)

0x680x68

0x650x65

0x6C0x6C

// example assumes Win32
char str [] = "hello";
short *p = (short*) str;
printf (“%X %X %X\n”, p, &p, *p);
printf (“%X %X %X\n”, str, &str, *str);
char **p2 = (char**) &p;
printf (“%X %X %X %X\n”, p2, &p2,

*p2, **p2);

0x6C0x6C

0x6F0x6F

0x00x0

0xD80xD8

RAM address
0x051766D8

RAM address
0x051766CC

string in
memory

0x660x66

0x170x17

0x050x05

variable p

0xCC0xCC

0x660x66

0x170x17

0x050x05

RAM address
0x051766C0 variable p2

4

AgendaAgendaAgenda

•

Pointers
•

Homework setup

•

Cave lights
•

Cave search

•

Pipes

5

Homework

SetupHomeworkHomework

SetupSetup

•

Implement four parallel search algorithms on a
weighted graph under random edge-traversal delay

•

Now the details
━

Assume you have a space rover

stuck in some cave on a
remote planet with many interconnected rooms

━

The cave is dark and its topology is unknown
━

As the rover is slow, it cannot directly search for the exit

Exit

6

Homework

SetupHomeworkHomework

SetupSetup

•

However, it has a number of flybots
━

These can travel all over the cave much quicker and search
for the exit

•

Main problem is flybots are somewhat dumb
━

Cannot remember which rooms they have been to
━

Cannot decide which next room to explore
━

Cannot talk to each other
•

But they can

 figure out
 a path to a given

 room from its ID
━

No need to construct
the graph yourself Exit

7

Preliminaries: Homework SetupPreliminaries: Preliminaries: Homework SetupHomework Setup

•

Your job is to write software that can control the flybots
from the rover to find the exit in the shortest time

•

Communication from your process goes through the
Command Center (CC) block on the rover
━

Commands: MOVE to a given room R
━

Responses: list of R’s neighboring rooms

Your
process

Your
process

CCCC

commands

responses

8

Homework

SetupHomeworkHomework

SetupSetup

•

Response delays are random
━

Based on distance traveled and
power state of flybot

antenna

━

Report will determine the average delay
•

Target cave size 10M rooms
━

Single robot requires over 2 months
━

Obviously there is a need to massively parallelize the search

Your
process

Your
process

CCCC
commands

responses

9

AgendaAgendaAgenda

•

Pointers
•

Homework setup

•

Cave lights
•

Cave search

•

Pipes

10

Cave

LightsCaveCave

LightsLights

•

So far, the problem is solvable by the most basic
parallel BFS
━

Final element is to make the graph weighted
•

Assume the cave is pitch black, except certain rooms
where light penetrates from the outside
━

Presence of light could indicate there is an exit
━

Or there might be a ceiling hole through which the rover
cannot escape

•

Light propagation
━

Given a light source of intensity L ≥

1, all neighboring rooms
get their light boosted by L/2, which repeats recursively

━

Exponential decay of light until it drops below 1 unit

11

AgendaAgendaAgenda

•

Pointers
•

Homework setup

•

Cave lights
•

Cave search

•

Pipes

12

Cave

SearchCaveCave

SearchSearch

•

What would be a good search technique for this
problem?
━

Key observation: the exit and surrounding rooms are likely
to have non-zero light intensity

•

Assume we maintain two structures:
━

Set of unexplored nodes U
━

Set of discovered nodes D
•

Note: each room in D has been inserted into U, but
not necessarily visited by a robot yet

•

The main difference between the four studied
algorithms is how to select the next node from U

13

Cave

SearchCaveCave

SearchSearch

•

BFS and DFS are classic, already covered in 221
•

Best First Search

(bFS)

━

Largest intensity of light among U
━

May find sub-optimal paths when distracted by a bright, but
lengthy path

•

A*

tries to overcome this
━

Heuristically weighs both distance and amount of light
━

For each candidate

node i, compute its quality
Qi

= Li

+ w / (di

+ 1)
where Li

is amount of light in the room, di

is its distance from
the rover, and w is some weight

━

Next explore room with the largest Qi

•

What do we get with w = 0 and w = ?
•

How to implement bFS

and A* efficiently?

14

AgendaAgendaAgenda

•

Pointers
•

Homework setup

•

Cave lights
•

Cave search

•

Pipes

1515

PipesPipesPipes

•

Pipes are communication
channels between processes
━

Lossless
━

Implemented as FIFO queues
through the kernel

•

Anonymous pipes
━

Can communicate only with
child processes

━

One-way, byte-based queue
━

Requires 2 pipes for duplex
communication

━

Often used to redirect
stdin/stdout of the child

•

Named pipes
━

Globally unique names
━

Duplex (bi-directional)
━

Can be both byte-based
and message-based

•

Homework uses the
latter type

process Aprocess A process Bprocess B

kernelkernel

cat a.txt | grep hello | morecat a.txt | grep hello | more

16

PipesPipesPipes

•

Robot responses consist of
a header, followed by an array
of tuples

(node, intensity)

━

Node is an 8-byte hash of a neighboring room
━

Intensity is a float value (amount of light)

bufferbuffer

CC.exe

bufferbuffer

your
program

ResponseRobot

NodeTuple64
NodeTuple64

…

class ResponseRobot {
public:

DWORD status;
char msg [64];

};

class ResponseRobot {
public:

DWORD status;
char msg [64];

};

class NodeTuple64 {
public:

uint64 node;
float intensity;

};

class NodeTuple64 {
public:

uint64 node;
float intensity;

};

1717

PipesPipesPipes

•

By default, CC pipes are blocking and synchronous
━

Only one message at a time can be in the pipe
━

However, its size is unknown a-priori
•

Idea: receive as much of the message as buffer
allows, then peek at the pipe, receive the rest
━

Here is pseudo-code (needs more work to be functional)
#define BUF_SIZE 128 // small initial size to prevent over-allocation
char *buf = malloc (BUF_SIZE);
ReadFile (pipe, buf, ..., &read, ...);
if (read == BUF_SIZE) { // buffer filled to the max?

PeekNamedPipe (pipe, ..., &remainder, ...);
if (remainder > 0) {

// realloc buffer to full size
ReadFile (pipe, ...); // receive remainder

}
}

#define BUF_SIZE 128 // small initial size to prevent over-allocation
char *buf = malloc (BUF_SIZE);
ReadFile (pipe, buf, ..., &read, ...);
if (read == BUF_SIZE) { // buffer filled to the max?

PeekNamedPipe (pipe, ..., &remainder, ...);
if (remainder > 0) {

// realloc buffer to full size
ReadFile (pipe, ...); // receive remainder

}
}

BUF_SIZEBUF_SIZE remainderremainderpipe

buf

newbuf

1818

PipesPipesPipes

•

Optimization
━

Per-message allocation/deletion of buf should be avoided
━

Retain newbuf until some future message overflows it
━

For monster caves, keep the buffer only if smaller than 5 KB

•

Pipe names
━

Case insensitive:
━

Dot . represents the same host
•

Pipe names must be globally unique
━

If users run multiple copies of CC.exe on the same host, the
pipe name must specify which of them to use

━

This homework uses \\.\pipe\CC-X, where X is the process ID
of the CC in hex

\\server\pipe\pipename

fixed user-created

19

Wrap-upWrapWrap--upup

•

Reminder: hw1-part1 is due in a week
━

Error checking for all function calls, proper disconnect
━

Wait for CC.exe

to quit, common mistake to exit before CC
━

Print initial room and all CC/robot text responses
•

See the grade sheet at the end of the handout

•

Task:

allocate a buffer with 100 bytes and fill in three
NodeTuple64 classes starting from byte 37
━

The i-th

node has ID i and intensity 1 / (i+1)

char buf [100];
NodeTuple64 *nt = (NodeTuple64 *) (buf + 37);
for (int i = 0; i < 3; i++) {

nt[i].node = i;
nt[i].intensity = 1.0 / (i+1);

}

char buf [100];
NodeTuple64 *nt = (NodeTuple64 *) (buf + 37);
for (int i = 0; i < 3; i++) {

nt[i].node = i;
nt[i].intensity = 1.0 / (i+1);

}

	CSCE 313-200�Introduction to Computer Systems�Spring 2024
	Agenda
	Pointers
	Agenda
	Homework Setup
	Homework Setup
	Preliminaries: Homework Setup
	Homework Setup
	Agenda
	Cave Lights
	Agenda
	Cave Search
	Cave Search
	Agenda
	Pipes
	Pipes
	Pipes
	Pipes
	Wrap-up

