CSCE 313-200

Introduction to Computer Systems
Spring 2024

Synchronization VII

Dmitri Loguinov
Texas A&M University

February 28, 2024

Back to Semaphores

* Version 3.0 with auto events / binary semaphores

- PC 3.1
// all events are AUTO (binary semaphore) // all events are AUTO (binary semaphore)
pcQueue: zpush (1tem x) { Item pcQueue::pop O {
mutex.Lock(); mutex.Lock();
while (Q.isrFull(Q) while (Q.isEmpty(Q))
mutex.Unlock(); mutex.Unlock();
eventNotFull _Wait(); eventNotEmpty.Wait();
mutex.Lock(); mutex.Lock();
Q.add (x); X = Q.remove();
it (1Q.isFull(Q)) it (1Q.1sEmpty())
eventNotFull _Signal(); eventNotEmpty.Signal();
eventNotEmpty.Signal(); eventNotFull _Signal();
mutex.Unlock(); mutex.Unlock(); return Xx;
¥ ¥

* |ncrements past max, stolen wake-ups are possible

« What if events were manual in the above?

- Major performance hit: all threads wake up and
busy spin on their while loops

Back to Semaphores

 |f WaitAll is available, work “theft’” can be avoided

- PC3.2

// all events are AUTO (binary semaphore)
pcQueue: zpush (ltem x) {
WaitAll (eventNotFull, mutex);
Q.add (xX);
it C 1Q.isFull O)
eventNotFull _Signal();
eventNotEmpty.Signal();
mutex.Unlock();

// both events are AUTO (binary semaphore)
Item pcQueue::pop O {
WaitAll (eventNotEmpty, mutex);
X = Q.remove ();
it (1Q0.1sEmpty())
eventNotEmpty.Signal();
eventNotFull _Signal();
mutex.Unlock(); return Xx;

by

« Now the same with manua

- PC3.3

-reset events

// all events are MANUAL

pcQueue: zpush (Item x) {
WaitAll (eventNotFull, mutex);
Q.add (xX);
it (Q.iskFull O)

eventNotFull _.Reset();

eventNotEmpty.Signal();
mutex.Unlock();

// both events are MANUAL

Item pcQueue::pop O {
WaitAll (eventNotEmpty, mutex);
X = Q.remove ();
it (Q.isEmpty())

eventNotEmpty.Reset();

eventNotFull _Signal();
mutex.Unlock(); return Xx;

Back to Semaphores

* One more version to consider:

Item Queue::pop O {
mutex.Lock();
pcQueue::push (Item x) { while (Q_ggEmpty())
muFex-Lockg), mutex.Unlock();
while (Q-isFull()) Sleep(DELAY);
mutex.Unlock(); mutex.Lock();
Sleep(DELAY); - ’
mutex.Lock(); x = Q.pop O;
Q.add (X); mutex.Unlock();
return Xx;

mutex.Unlock(); }

* Probably the simplest approach
- Arguably inefficient due to sleep-looping
- May cause starvation for certain threads

Summary

All methods need at least a mutex, but additionally:

« PC 2.0 requires a counting semaphore
- |deal textbook solution since it's elegant and simple
- Does not handle bursty push/pop

 PC 2.1 similar to 2.0, but further requires WaitAll

- Even more elegant, but same drawbacks as 2.0
- Does not work with eventQuit

 PC 3.0 requires monitors and condition variables
- Possible in C++, but not optimal speed

 PC 3.1 requires just a binary semaphore
- Allows stolen wake-ups, but can handle bursty data easily

Summary (Cont

PC 3.2 requires binary semaphore and WaitAll

- Handles bursty data well, but more elegant than 3.1 and
prevents stolen wake-ups

- Signals unnecessarily if queue is rarely full or empty

PC 3.3 requires manual events and WaitAll
- Similar to 3.2, but less signaling when there is work to do

PC 3.4 requires nothing beyond a mutex

- Most flexible as threads can perform useful checks (e.g., the
quit flag) while being awake, supports batch push/pop

- Sleep-spinning is seemingly bad, or ... is it?
Ultimately, performance is what really matters
- We’'ll consider a few benchmarks next time

. DWORD __ stdcall HeapThread (...) {
anate Hea s HANDLE heap = HeapCreate
Q (HEAP_NO_SERIALIZE,
4 * 1024 * sizeof(DWORD), 0);

DWORD **arr = new (DWORD *) [ITER];
for (int 1 = 0; 1 < ITER; i++)

) arr[i] = (DWORD*) HeapAlloc
Memory heapS (heap, HEAP_NO_SERIALIZE,
— Normal new/delete ops go Heapbestroy (heapys | (CHORD):
to the process heap ¥
- Internal mutex, slow delete 36M/s
* Private heap doesn’t need [owro _stacatt Heapthread (... ¢
HANDLE heap = HeapCreate
tO muteX (HEAP_NO_SERIALIZE,
_ 4 * 1024 * sizeof(DWORD), 0);
- Benchmark with 12 threads DHORD **arr = new (OHORD *y [ITER]-
on a 6-core system for (int i=0; i < ITER; i++)
arr[i] = (DWORD*) HeapAlloc
#define ITER 1le7 (heap, HEAP_NO_SERIALIZE,
DWORD _ stdcall HeapThread (...) { sizeof(DWORD)) ;
DWORD **arr = new (DWORD *) [ITER];
for (int i=0; i < ITER; i++) for (int i=0; i < ITER; i++)
arr[i] = new DWORD [1]; HeapFree (heap,
HEAP_NO_SERIALIZE, arr[i]);
for (int i=0; i < ITER; i++) }
delete arr[i];
3 3.3M/s 12M/s

Chapter 5: Roadmap

5.1 Concurrency
5.2 Hardware mutex
5.3 Semaphores

5.4 Monitors

5.5 Messages

5.6 Reader-Writer

header

Messages vayload

message |
 Messages are discrete
chunks of information \
exchanged between * In general form, message
processes consists of fixed header
— This form of IPC is often and some payload

used between different « Header may specify

Aesits - Version and protocol #
* Where used - Message length, type,
- Pipes (one-to-one) various attributes
- Malilslots (one_-to-many - Status and error conditions
among nosts in the + Already studied enough in

active directory domain)

Chapter 5: Roadmap

5.1 Concurrency
5.2 Hardware mutex
5.3 Semaphores

5.4 Monitors

5.5 Messages

5.6 Reader-Writer

10

Reader-Writer (RW)

« RW is another famous synchronization problem

 Assume a shared object that is accessed by M readers
and K writers in parallel

 Example: suppose hw#1 restricted robot MOVE
commands to only adjacent rooms

- This requires construction of a global graph G as new edges
are being discovered from the threads (writer portion)

- To make a move, each thread has to plot a route to the new
location along the shortest path in G (reader portion)
* Any number of readers may read concurrently

- However, writers need exclusive access to the object (i.e.,
must mutex against all readers and other writers)

11

Reader-Writer

« Q: based on your intuition, do readers or writers
usually access the object more frequently?

* First stab at the problem:
- RW1.0 Writer::GoWrite O {

semaW.Wait();
Reader::GoRead () { // write object
mutexRcount.Lock(); semaW.Release();
// Tirst reader blocks writers 3
iIT (readerCount == 0)
semaW.wWait();
readerCount ++;
mutexRcount.Unlock(); ° Ir]fir]itea EStFEBEirT1 c)f
// read object readers?
mutexRcount.Lock(); .
readerCount--; - Writers never get access
// last reader unblocks writers
if (readerCount == 0) I
e oty « RW 1.0 gives readers
R .Unlock(); 2 -
, mutexfeount-fnfockO priority and starves

writers 12

Reader-Writer

increasing writer thread priority
may help against being starved

* Another policy is to let the OS load-balance the order
In which readers and writers enter the critical section

- RW 1.1

Writer::GoWrite () {

Reader::GoRead () { semaWriterPending.Wait();

semaWriterPending.Wait(); semaW.Wait();
semaWriterPending.Release(); // write object
mutexRcount.Lock(); semaW.Release();
// Tirst reader blocks writers semaWriterPending.Release();
if (readerCount == 0) }

semaW.Wait();
readerCount ++;
mutexRcount.Unlock();

« Serves readers/writers
texRcount. Lok in FIFQ ord_er If kernel
readerCount--; rT1lJtEB)(|E; fEilr

// last reader unblocks writers
iIT (readerCount == 0)

semaW.Release(); « What if 100x more

mutexRcount.Unlock();

} readers than writers? ;

// read object

Reader-Writer

* Final policy: writers have absolute priority
- Given a pending writer, no reader may enter

= RW 12 Writer::GoWrite O {
mutexWcount.Lock();
Reader::GoRead () { if (writerCount++ == 0)
semaWriterPending.Wait(); semaWriterPending.Wait();
semaWriterPending.Release(); ¢— mutexWcount.Unlock();
mutexRcount.Lock();
// first reader blocks writers semaW.Wait();

if (readerCount++ == 0) // write object
semaW.Wait(); semaW.Release();

mutexRcount.Unlock();
mutexWcount.Lock();

// read object ifT (--writerCount == 0)
semaWriterPending.Release();

mutexRcount.Lock(); mutexWcount.Unlock();

// last reader unblocks writers }

if (--readerCount == 0)
semaW.Release();

) mutexRcount.Unlock(); o WorkS flne except f”‘St
OS chooses between one erter Stl” mUSt Compete

writer and M readers 14

Reader-Writer

« To ensure priority for the first writer, need to prevent
readers from competing for semaWriterPending

- RW1.3

Reader::GoRead () {
mutexDontCompete.Lock();
semaWriterPending.Wait();
mutexRcount.Lock();

// fTirst reader blocks writers
if (readerCount++ == 0)

semaW.Wait();
mutexRcount.Unlock();
semaWriterPending.Release();
// pending writer gets unblocked here
mutexDontCompete.Unlock();

// read object

mutexRcount.Lock();

// last reader unblocks writers

if (--readerCount == 0)
semaW.Release();

mutexRcount.Unlock();

Writer::GoWrite O {
mutexWcount.Lock();
ifT (writerCount++ == 0)
semaWriterPending.Wait();
mutexWcount.Unlock();

semaW.Wait();
// write object
semaW.Release();

mutexWcount.Lock();

if (--writerCount == 0)
semaWriterPending.Release();

mutexWcount.Unlock();

 Textbook solution

- Works even if semaphore
is unfair 15

Reader-Writer

 What about the next solution that eliminates one lock
and rearranges some of the lines

- RW1.4

Reader::GoRead () {

Writer::GoWrite () {
mutexWcount.Lock();
if (writerCount++ == 0)

mutexRcount.Lock();
semaWriterPending.Wait();
if (readerCount++ == 0)
// Tirst reader blocks writers
semaW.Wait();
semaWriterPending.Release();
// pending writer gets unblocked here
mutexRcount.Unlock();

// read object

mutexRcount.Lock();

// last reader unblocks writers

if (--readerCount == 0)
semaW.Release();

mutexRcount.Unlock();

semaWriterPending.Wait();
mutexWcount.Unlock();

semaW.Wait();
// write object
semaW.Release();

mutexWcount.Lock();

if (--writerCount == 0)
semaWriterPending.Release();

mutexWcount.Unlock();

 Find a problem at home

16

	CSCE 313-200�Introduction to Computer Systems�Spring 2024
	Back to Semaphores
	Back to Semaphores
	Back to Semaphores
	Summary
	Summary (Cont)
	Private Heaps
	Chapter 5: Roadmap
	Messages
	Chapter 5: Roadmap
	Reader-Writer (RW)
	Reader-Writer
	Reader-Writer
	Reader-Writer
	Reader-Writer
	Reader-Writer

