
1

CSCE 313-505
Introduction to Computer Systems
Spring 2018

CSCE CSCE 313313--505505
Introduction to Computer SystemsIntroduction to Computer Systems
Spring 2018Spring 2018

SynchronizationSynchronization
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

February 6, 2018February 6, 2018

2

Chapter 5: RoadmapChapter Chapter 5:5: RoadmapRoadmap

5.1 Concurrency
Appendix A.1

5.2 Hardware mutex
5.3 Semaphores
5.4 Monitors
5.5 Messages
5.6 Reader-Writer

Part II

Chapter 3: ProcessesChapter 3: Processes

Chapter 4: ThreadsChapter 4: Threads

Chapter 5: ConcurrencyChapter 5: Concurrency

Chapter 6: DeadlocksChapter 6: Deadlocks

3

Inter-Process Communication (IPC)InterInter--Process Communication (IPC)Process Communication (IPC)

• Shared memory
━

Primary method to pass data
between threads

━

Much faster than messages
━

However, requires protection
against concurrent
modification to shared data

• Messages
━

Data copied through a
kernel buffer

━

OS provides exclusion
━

Can be used between
hosts in distributed
applications (e.g., pipes,
network sockets)

• Pipes already covered,
now deal with shared-
memory IPC

• IPC enables exchange of information between
threads/processes

• Two main approaches
━

Shared memory
━

Messages

4

MotivationMotivationMotivation

• Most examples will be in
C++ style pseudocode
━

See MSDN for detailed
usage of functions

• Start with an example
━

Shared class passed to
each thread

━

Thread1 computes a+b
and saves into a

━

Thread2 does the same,
but saves into b

• What is the outcome?

Shared::Thread1 ()
a += b

Shared::Thread1 ()
a += b

class Shared {
int a;
int b;

};

class Shared {
int a;
int b;

};

main ()
Shared st;

st.a = 1
st.b = 2
CreateThread (st.Thread1)
CreateThread (st.Thread2)
print (st.a, st.b)

main ()
Shared st;

st.a = 1
st.b = 2
CreateThread (st.Thread1)
CreateThread (st.Thread2)
print (st.a, st.b)

Shared::Thread2 ()
b += a

Shared::Thread2 ()
b += a

• Prints (1,2) and quits
━

Need to wait for threads
━

Assuming this problem is
fixed, what is the result?

5

MotivationMotivationMotivation

• Analyze the various execution paths
━

Two threads concurrently execute this:

• CPU trace:

Shared::Thread1 ()
1) a += b
Shared::Thread1 ()
1) a += b

Shared::Thread2 ()
2) b += a
Shared::Thread2 ()
2) b += a

thread 1 thread 2

1) a = 3, b = 2
2) a = 3, b = 5
main prints (3,5)

1) a = 3, b = 2
2) a = 3, b = 5
main prints (3,5)

ver 1
2) a = 1, b = 3
1) a = 4, b = 3
main prints (4,3)

2) a = 1, b = 3
1) a = 4, b = 3
main prints (4,3)

ver 2
1) reads a,b into registers
2) reads a,b into registers
1) computes sum, saves a = 3
2) computes sum, saves b = 3
main prints (3,3)

1) reads a,b into registers
2) reads a,b into registers
1) computes sum, saves a = 3
2) computes sum, saves b = 3
main prints (3,3)

ver 3

non-deterministic result that depends on
who gets there first (race condition) unintended result

(depends on compiler)

// initial state
st.a = 1
st.b = 2

// initial state
st.a = 1
st.b = 2

6

MotivationMotivationMotivation

• How about the next example
━

Now both variables are modifed, threads print their values

• CPU trace:

Shared::Thread1 ()
1) a += b
2) b += a
3) print (a, b)

Shared::Thread1 ()
1) a += b
2) b += a
3) print (a, b)

Shared::Thread2 ()
4) a = 2*a + b
5) b = a + 2*b
6) print (a, b)

Shared::Thread2 ()
4) a = 2*a + b
5) b = a + 2*b
6) print (a, b)

thread 1 thread 2

1) a = 3, b = 2
2) a = 3, b = 5
3) prints (3,5)
4) a = 11, b = 5
5) a = 11, b = 21
6) prints (11,21)

1) a = 3, b = 2
2) a = 3, b = 5
3) prints (3,5)
4) a = 11, b = 5
5) a = 11, b = 21
6) prints (11,21)

ver 1 ver 3 ver 4
1) a = 3, b = 2
2) a = 3, b = 5
4) a = 11, b = 5
5) a = 11, b = 21
3) prints (11,21)
6) prints (11,21)

1) a = 3, b = 2
2) a = 3, b = 5
4) a = 11, b = 5
5) a = 11, b = 21
3) prints (11,21)
6) prints (11,21)

1) a = 3, b = 2
4) a = 8, b = 2
2) a = 8, b = 10
3) prints (8,10)
5) a = 8, b = 28
6) prints (8,28)

1) a = 3, b = 2
4) a = 8, b = 2
2) a = 8, b = 10
3) prints (8,10)
5) a = 8, b = 28
6) prints (8,28)

1) a = 3, b = 2
4) a = 8, b = 2
2) a = 8, b = 10
5) a = 8, b = 28
3) prints (8,28)
6) prints (8,28)

1) a = 3, b = 2
4) a = 8, b = 2
2) a = 8, b = 10
5) a = 8, b = 28
3) prints (8,28)
6) prints (8,28)

ver 2

7

MotivationMotivationMotivation

• Example (cont’d)
━

How many possible execution traces?
━

Build an execution tree:

11 44

StartStart

22 44

33

44

55

44

33 55

66

55

66

33 66

66 33

22 55

6622

22

33

33 66

66 33

33 55

55

66

33 66

66 33

ver1 ver2ver3 ver4

symmetric
subtree omitted

Generalization: for two threads
with m and n instructions
respectively, the number of
possible ways to interleave them:

For m = n = 100,
this is 1059

8

MotivationMotivationMotivation

• Actual tree is deeper since we have to consider each
assembler-level instruction
━

Even most basic c = a + b may be implemented as 4 CPU
instructions: load (reg1, a), load(reg2, b), add(reg1, reg2),
store (c, reg1)

━

Also could be load(reg, a), add(reg, b), store (c,reg)
• Because of this, synchronization bugs may be

compiler-specific
━

Some may only appear in debug or release mode
• Conclusion: proper synchronization is mandatory for

access to shared memory
• However, not all access needs protection

━

Required only if data is modified by at least one thread

9

TerminologyTerminologyTerminology

• Critical section
━

Piece of code that is
sensitive to concurrent
events in other threads

• Critical sections require
synchronization to
exclude other threads
from damaging data

• Atomic operation
━

Set of instructions that
cannot be interrupted by
another thread

Shared::Thread ()
a++

Shared::Thread ()
a++

• Single CPU instruction is
always atomic
━

Is the code above safe?
• Nope, L2/L3 cache

coherency problems on
multi-core platforms
━

Result unpredictable
• Also, compiler may split this

into multiple instructions
━

Possible in debug mode
• Deadlock

━

Infinite wait for events
or some conditions

10

Deadlock IllustratedDeadlock IllustratedDeadlock Illustrated

11

TerminologyTerminologyTerminology

• Livelock
━

Non-stop activity that typically
changes shared state, but
makes no progress

━

Unlike deadlock, which makes
no change to shared variables

• Elevator example:
━

Every time a button is pressed,
elevator responds by moving
towards the floor where it was
pressed

━

New button commands
preempt old ones

━

Selfish customers
floor 1

floor 10

floor 5

12

TerminologyTerminologyTerminology

• Mutual exclusion (mutex)
━

Condition under which only
one thread can be in its
critical section at one time

• Multiple critical sections
within a thread possible

• Race condition
━

Situation where the outcome
depends on the order of
thread execution

━

Hw1-part3: robots race to
find the exit; found solution
is non-deterministic

━

Sometimes acceptable

• Busy-spinning
━

A while loop that tests
variable(s) until some
condition is reached

━

Must be used very
carefully to avoid locking
up the CPU

• Work starvation
━

Certain threads are
indefinitely prevented
from performing work

Shared::Thread ()
MutexA.Lock() // enter
a++
MutexA.Unlock() // leave
// do some work here
MutexB.Lock() // enter
b++
c += b
MutexB.Unlock() // leave

Shared::Thread ()
MutexA.Lock() // enter
a++
MutexA.Unlock() // leave
// do some work here
MutexB.Lock() // enter
b++
c += b
MutexB.Unlock() // leave

13

TerminologyTerminologyTerminology

• Work starvation (cont’d)
━

Caused by other threads
stealing all the work or OS
scheduler never allowing
certain threads to run

• Assuming the OS is well-
designed, only the former
issue is of concern

• Example
━

Hw1-part3: one thread
deposits new rooms in the
queue, then immediately
grabs them all back

• What does this code do
if pipe is closed by CC:

━

Misses rooms
• Are concurrent threads

safe running this loop:

━

No, need a mutex

while (exit not found)
DWORD read = 0;
ReadFile (pipe, buf,

allocatedSize, &read);
// deal with overflow, read rooms

while (exit not found)
DWORD read = 0;
ReadFile (pipe, buf,

allocatedSize, &read);
// deal with overflow, read rooms

while (exit not found)
x = U.pop();
Expore(x);

while (exit not found)
x = U.pop();
Expore(x);

	CSCE 313-505�Introduction to Computer Systems�Spring 2018
	Chapter 5: Roadmap
	Inter-Process Communication (IPC)
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Terminology
	Deadlock Illustrated
	Terminology
	Terminology
	Terminology

