CSCE 313-505

Introduction to Computer Systems
Spring 2018

Synchronization

Dmitri Loguinov
Texas A&M University

February 6, 2018

Chapter 5: Roadmap

5.1 Concurrency Part ||
Appendix A.1

5.2 Hardware mutex

5.3 Semaphores Chapter 5: Concurrency

5.4 Monitors

5.5 Messages
5.6 Reader-Writer

Inter-Process Communication (IPC)

 |PC enables exchange of information between
threads/processes

. « Messages
« Two main approaches

- Data copied through a

- Shared memory kernel buffer
- Messages — OS provides exclusion
« Shared memory - Can be used between

hosts in distributed
applications (e.g., pipes,

- Much faster than messages NS (&)

- However, requires protection * P IP€S already covered,
against concurrent now deal with shared-

modification to shared data memory |IPC

- Primary method to pass data
between threads

. . class Sha_red {
Motivation it 2
¥
» Most examples will be in | Srgd:zToreadt O
C++ Style pseUdOCOde Shared: :Thread2 ()
— See MSDN for detailed b += a
usage of functions :
_ main
o Start with an example Shared st;
- Shared class passed to st.a =1
st.b = 2
each thread CreateThread (st.Threadl)
- Threadl computes a+b rint (ora Sy read®)

and saves into a

— Thread2 does the same, * Prints (1,2) and quits
but saves into b - Need to wait for threads

e What is the outcome? - Assuming this problem is

fixed, what Is the result?
4

// initial state
3 H st.a =1
Maotivation Stb - 2
* Analyze the various execution paths
- Two threads concurrently execute this:
thread 1 thread 2
Shared: :Threadl Shared: :Thread2 ()
1) a+=Db 2) b += a
« CPU trace:
ver 1 ver 2 ver 3
1) a=3, b=2 2) a=1, b =3 1) reads a,b into registers
2) a=3, b=5 1) a=4, b =3 2) reads a,b 1Into registers
main prints (3,5) main prints (4,3) 1) computes sum, saves a = 3
| | 2) computes sum, saves b = 3
| main prints (3,3)
non-deterministic result that depends on _ —
who gets there first (race condition) unintended result

(depends on compiler) 5

Motivation

« How about the next example
- Now both variables are modifed, threads print their values

thread 1 thread 2
Shared: :Threadl () Shared: :Thread2 ()
1) a+=»>b 4) a=2% + b
2) b += a 5) b =a+ 2*b
3) print (a, b) 6) print (a, b)
 CPU trace:
ver 1 ver 2 ver 3 ver 4
1) a=3, b=2 1) a=3, b=2 1) a=3, b=2 1) a=3, b=2
2) a=3,b=5 4) a=8, b =2 2) a=3,b=5 4) a=8, b =2
3) prints (3,5) 2) a=8, b=10 |4) a=11, b =5 2) a=8, b =10
4) a =11, b =5 5 a=8, b=28 |5 a=11, b =21 |3) prints (8,10)
5 a=11, b = 21 3) prints (8,28) |3) prints (11,21) 5) a=8, b =28
6) prints (11,21) 6) prints (8,28) |6) prints (11,21) 6) prints (8,28)

Generalization: for two threads

MOtivatiOrl with m and n instructions (m + ”)

respectively, the number of m
possible ways to interleave them: ’J

« Example (cont’d)
- How many possible execution traces? For m = n = 100,

:) this is 10°°
- Build an execution tree:
E symmetric
— “ subtree omitted

FETE

verl ver3 verd ver2 7

Start
|

Motivation

Actual tree Is deeper since we have to consider each
assembler-level instruction

- Even most basic ¢ = a + b may be implemented as 4 CPU
Instructions: load (regl, a), load(reg2, b), add(regl, reg2),
store (c, regl)

- Also could be load(reg, a), add(reg, b), store (c,req)
Because of this, synchronization bugs may be
compiler-specific

- Some may only appear in debug or release mode

Conclusion: proper synchronization is mandatory for
access to shared memory

However, not all access needs protection
- Required only if data is modified byat least one thread

8

Terminoloqy

e Critical section

- Pilece of code that is
sensitive to concurrent
events in other threads

 Critical sections require
synchronization to
exclude other threads
from damaging data

e Atomic operation

- Set of instructions that
cannot be interrupted by
another thread

Shared::Thread ()
a++

Single CPU instruction is
always atomic
- |s the code above safe?

Nope, L2/L3 cache
coherency problems on
multi-core platforms

- Result unpredictable

Also, compiler may split this
Into multiple instructions

- Possible in debug mode

Deadlock

- Infinite wait for events
or some conditions 9

D
©
b
7
=
X
3}
O
S
@©
O
o

Terminology

e Livelock

- Non-stop activity that typically
changes shared state, but
makes no progress

- Unlike deadlock, which makes
no change to shared variables
o Elevator example:

- Every time a button is pressed,
elevator responds by moving
towards the floor where it was
pressed

- New button commands
preempt old ones

- Selfish customers

floor 1

11

Shared::Thread ()

Terminology Mutexh.Lock() // enter

MutexA.Unlock() // leave
// do some work here
MutexB.Lock() // enter

e Mutual exclusion (mutex) e
C +=
- Condition under which only MutexB.Unlock() // leave

one thread can be In its
critical section at one time

_ - _ e Busy-spinning
e Multiple critical sections

- A while loop that tests

within a thread possible variable(s) until some
e Race condition condition Is reached

- Situation where the outcome - Must be used very
depends on the order of carefully to avoid locking
thread execution up the CPU

- Hw1-part3: robots race to Work starvation
find the exit; found solution - Certain threads are
Is non-deterministic indefinitely prevented

12

- Sometimes acceptable from performing work

Terminoloqy

e Work starvation (cont’d) What does this code do

— Caused by other threads If pipe is closed by CC:
stealing all the work or OS [1ite (exit not found)
scheduler never allowing DWORD read = 0;
: ReadFile (pipe, buf,
certain threads to run allocatedSize, &read);
. . // deal with overflow, read rooms
e Assuming the OS is well-
designed, only the former - Misses rooms
ISsue Is of concern e Are concurrent threads
« Example safe running this loop:
- Hwl-part3: one thread while (exit not found)
deposits new rooms in the ¥ ooroens)’

gueue, then immediately

grabs them all back = No, need a mutex
13

	CSCE 313-505�Introduction to Computer Systems�Spring 2018
	Chapter 5: Roadmap
	Inter-Process Communication (IPC)
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Terminology
	Deadlock Illustrated
	Terminology
	Terminology
	Terminology

