CSCE 313-200

Introduction to Computer Systems
Spring 2024

Synchronization |l

Dmitri Loguinov
Texas A&M University

February 7, 2024




Chapter 5: Roadmap

5.1 Concurrency
Appendix A.1

5.2 Hardware mutex
5.3 Semaphores

5.4 Monitors

5.5 Messages

5.6 Reader-Writer




Mutex

* Where to get mutex
functionality?

 Two options
- Make the kernel do it
- Implement in user space

e Techniques are similar
with a few exceptions
- Some may require
privileged instructions
* Next, we'll review
classical algorithms and
hardware support

 For now, assume
- Each C line is atomic
- No caching

« Use global variables for
simplicity of explanation

e Mutex v1.0: naive

bool taken = false
Mutex.Lock O {
while (taken == true)

taken = true // we own mutex
}
// -
Mutex.Unlock (O){

taken = false

}

* Any problems?



Mutex

Main issue: » Mutex v2.0: Strict
 Read followed by write is alternation

not an atomic operation! - Do not enter until
» Two threads arrive access Is granted by

simultaneously to mutex other threads

- Both check and see that |7/ N = number of threads

int turn = 0

taken is false Mutex.Lock (i){
_ _ while (turn ! = 1)
- Both proceed inside : /7 do nothing
// someone gave us the turn
 Result |
- Failed mutual exclusion Mutex.-Unfock OA

turn = (turn + 1) % N

« Can we do better? ¥

* Problems?




Mutex

Drawbacks of Mutex 2.0 + Mutex 2.0: only person
 Threads forced to own holding a token can
mutex even if not needed ask question
- Wait time can be - When question asked,
arbitrarily high token is passed to

next person

« Correct mutex: raise
your hand if you have
a question
- |nstructor finishes
sentence, selects the

order in which raised
hands are polled 5

Classroom analogy

 No mutex: ask question
as soon as ready

- Keep talking concurrently
with instructor and other
students asking their
guestions




Mutex

Mutex v3.0
- Consider just two threads

Mutex v3.1
- Need to break ties

- Dekker's algorithm (1965)
for two threads

bool want [2] = {false,false}
Mutex.Lock (i1){

J = 1-1 // other threadlD

want [1] = true

while (want [j] == true)

; // do nothing

by
// -
Mutex.Unlock (1){

want [1] = false
by

* Only one thread can enter

- But deadlock possible if
both want it at same time

bool want [2] = {false,false}
int turn = 0 // break ties
Mutex.Lock (i1){
J = 1-1 // other threadlD
want [1] = true
whille (want [j] == true)

{
1T (turn == j)
{
want [1] = false
while (turn == j)
; // do nothing
want [1] = true
by
by
by
// -

Mutex.Unlock (1){
turn = 1-1
want [1] = false

}




M e Mutex v3.2

- Petersen’s algorithm

* Mutex 3.1 guarantees that (1981) for two threads
only one thread enters
L . bool want [2] = {false,false}
- Deterministically avoids int turn /7 break ties
deadlock and inconsistency | "} L0t Ciner threadin

. t 1] =t
¢ Only Competlng threads are ﬁi?n EI} rﬁ? give away turn

while (want [j] == true

given access to mutex 8& turn == §)
. . ; // do nothing
- Efficient }/
Drawbacks Mutex.Unlock (i){

want [1] = false

* Pretty complex ¥

« Lack of fairness: one thread - Fair, efficient, consistent
may enter multiple times
while the other is waiting




Mutex

Mutex v3.2 without contention

bool want [2] = {false,false}
int turn // break ties
Mutex.Lock(0) {
@ want [0] = true
@ turn = 1 // give away turn
@ while (want [1] == true
&& turn == 1)

@ // owns mutex
}
// -
Mutex.Unlock (0){

@ want [0] = false

bool want [2] = {false,false}
int turn // break ties
Mutex.Lock(1l) {
@ want [1] = true
@turn = 0 // give away turn
@ while (want [0] == true
&& turn == 0)

@ // owns mutex
by
// -
Mutex.Unlock (1){
want [1] = false

}

}

want[0]

turn

true

want[1]




Mutex

« Mutex v3.2 with contention

bool want [2] = {false,false}
int turn // break ties
Mutex.Lock(0) {
@ want [0] = true
@ turn = 1
@ while (want [1] == true
&& turn == 1)

@ // owns mutex
}
// -
Mutex.Unlock (0){
want [O] = false
}

bool want [2] = {false,false}
int turn // break ties
Mutex.Lock(1l) {
@ want [1] = true
@turn = 0
@ while (want [0] == true
&& turn == 0)

@ // owns mutex
by
// -
Mutex.Unlock (1){

@ want [1] = false
}

true
want[0]

turn want[1]



Mutex

* Mutex v3.2 avoiding starvation

bool want [2] = {false,false}
int turn // break ties
Mutex.Lock(0) {
@ want [0] = true
@ turn = 1
@ while (want [1] == true
&& turn == 1)

@ // owns mutex
}
// -
Mutex.Unlock (0){
want [O] = false
}

bool want [2] = {false,false}
int turn // break ties
Mutex.Lock(1l) {
@ want [1] = true
@turn = 0
@ while (want [0] == true
&& turn == 0)

@ // owns mutex
by
// -
Mutex.Unlock (1){

@ want [1] = false

}

true
want[0]

o

turn want[1]

10



Mutex

« Mutex v3.2 with reversed order of want and turn
- Allows both threads to enter

bool want [2] = {false,false}

int turn // break ties
Mutex.Lock(0) {
@ turn = 1

@ want [0] = true
@ while (want [1] == true
&& turn == 1)

@ // owns mutex
}
// -
Mutex.Unlock (0){
want [O] = false

}

bool want [2] = {false,false}

int turn // break ties
Mutex.Lock(1l) {
@turn =0 @

@want [1] = true
@ while (want [0] == true
&& turn == 0)

@ // owns mutex
¥
// -
Mutex.Unlock (1){
want [1] = false
by

true
want[0]

true

turn want[1]

11




Mutex Summary

Mutex v3.2 on modern e CPU cache coherency
computers

- - Shared variables stored
 Compiler optimization A in L1/L2 caches of

- Compiler sees that the different cores
loop does not change
any variables

 CPU memory fetch

| - Hardware may reorder
- Removes it from code read/write operations
« Compiler optimization B — Major problem for all

- Variables may be kept algorithms:

In reQISterS fOr IOOp // intended sequence // actual

duration or order of |write want[i]

. read want[j]
operations changed | read turn

sequence
read want[j]
read turn

write want[i]

12



	CSCE 313-200�Introduction to Computer Systems�Spring 2024
	Chapter 5: Roadmap
	Mutex
	Mutex
	Mutex
	Mutex
	Mutex
	Mutex
	Mutex
	Mutex
	Mutex
	Mutex Summary

