CSCE 313-200

Introduction to Computer Systems
Spring 2024

Synchronization VIII

Dmitri Loguinov
Texas A&M University

March 1, 2024

Homework #2

Request buffer allocated once per thread:

#define MAX_BATCH 10000

// set up initial buffer to hold header + MAX_BATCH rooms
char *request = new char [...];

CommandRobotHeader *crh = (...) request;

DWORD *roomArray = (--..) (crh + 1);

Then, batch-mode pop works as following:

int nPopped = Q[cur].pop (roomArray, MAX BATCH);
// compute msg size based on nPopped
pipe.SendMsg (request, requestSize);

BFS queue class — needs to be written from scratch
- Encapsulates a buffer with two offsets: head & tail

« Use a private heap inside the queue class

- HeapCreate(), HeapAlloc(), HeapFree() instead of new/delete
2

// double queue size
Homework #2 |
N buf = HeapReAlloc (heap, HEAP _NO SERIALIZE,
buf, size);

« Simplified queue without concurrent push/pop
- Push moves tail by batch size
- Pop moves head similarly

* When buffer overflows, what operations are needed
to double the queue size?

- | old buffer

new buffer
NI

« Simplest is to use HeapReAlloc()
- |f realloc is not in place, the function copies your data

Homework #2

 Hash tables
- 4B bits in a 512-MB buffer represent all possible nodes
- InterlockedBitTestAndSet to access the bits
— LONG array of 23%/32 = 227 words (each word is 4 bytes)
- Make sure to memset to zero during initialization

* Given room ID x, what is the offset and bit # in array?
- Offset = x >> 5 (equivalent to x / 32) bit ops
- Bit = x & 0x1F (equivalent to x % 32) are faster

« Extra credit: devise a method to interlock less
frequently when the number of unique rooms drops
close to 0%
- One line of code

Homework #2

« General structure, gets you ~260 sec runtime on ts

char *request = new char
[sizeof(CommandRobotHeader) +
MAX_BATCH * sizeof(DWORD)];

CommandRobotHeader *crh =

(CommandRobotHeader*)request;

crh->command = MOVE;

DWORD *rooms = (DWORD *) (cr + 1);

while (true) {

if (quit) // flag set?
break;

int batch = 0;

CS.lock(); // PC 3.4

iT (Qcur].sizeQ > 0) {

batch = Q[cur].pop (rooms, MAX BATCH);

activeThreads ++;
// other stats go here
by
CS.unlock(Q);
it (batch == 0) {
Sleep (100);
continue;
by
pipe.SendMsg (--.);
pipe.RecvMsg (...);

// got nothing from Q?

}

while (rooms left iIn response) {
DWORD ID = ... // get next room
DWORD offset = ...
DWORD bit = ...
it (InterlockedBitTestAndSet

(hashTable + offset, bit) == 0)
localQ.push (ID);
by

CS.lock(Q);
// batch-pop all elements from
// localQ into Q[cur™l]
activeThreads --;
it (this BFS level is over)
if (next level empty)
quit = true;
else
cur "= 1;
CS.unlock(Q);

// send request[]
// read response

Extra-credit runtime:
<130 sec on P30 5

Chapter 5: Roadmap

5.1 Concurrency
5.2 Hardware mutex
5.3 Semaphores

5.4 Monitors

5.5 Messages

5.6 Reader-Writer
Performance

Windows APls

« GetCurrentProcess() and GetCurrentProcessid()
- Return a handle and PID, respectively

» EnumProcesses(), OpenProcess()
- Enumerates PIDs in the system, opens access to them

« TerminateProcess() kills another process by its handle
- ExitProcess() voluntarily quits (similar to C-style exit())

* GetProcessTimes()
- Time spent on the CPU (both in kernel-mode and user-mode)

« Available resources
- GlobalMemoryStatus(): physical RAM, virtual memory
- GetActiveProcessorCount(): how many CPUs

« CPU utilization: see cpu.cpp in sample project :

CRITICAL_SECTION cs;

W' d APl InitializeCriticalSection (&cs);
ln OWS s // mutex.Lock()

// mutex.Unlock()
LeaveCriticalSection (&cs);

« WaitForSingleObject

- Always makes a kernel-mode transition and is pretty slow
- Mutexes, semaphores, events all rely on this API

« A faster mutex is CRITICAL_SECTION (CS)

- Busy-spins in user mode on interlocked exchange for a fixed
number of CPU cycles

- If unsuccessful, gives up and locks a kernel mutex

* While kernel objects (i.e., mutexes, semaphores,
events) can be used between processes, CS works
only between threads within a process

Windows APIs

CONDITION_VARIABLE cv;
InitializeConditionVariable (&cv);

Condition variables in Windows
- |n performance, similar to CS (i.e., spins in user mode)
- Secret (monitor) mutex is explicit pointer to some CS

« PC 3.0 that actually works in Windows

pcQueue: zpush (ltem x) {
EnterCriticalSection (&cs);
while (Q.isFull O)

SleepConditionVariable (&cvNotFull, &cs, ...);

Q.add (x);
LeaveCriticalSection (&cs);
WakeConditionVariable (&cvNotEmpty);

pop() is
similar

Slim RW locks

- AcquireSRWLockShared (reader)
- AcquireSRWLockExclusive (writer)

Performance

« Example 1. compute = in a Monte Carlo simulation

- Generate N random points in 1x1 square and compute the
fraction of them that falls into unit circle at the origin

- Probability to hit the red circle?
* This probabillity is the visible
area of the circle divided by
the area of the square (i.e., 1)
- Quarter of a circle gives us n/4

DWORD WINAPI ThreadPi (LONG *hitCircle) {
for (int i=0; i < ITER; i++) { main O {
// uniform in [0,1] _ // run N ThreadPi() threads
x = rand.UniformQ); y = rand.UniformQ; // wait to finish
if C"x +yy<1) double pi =
IncrementSync (hitCircle); 4*hitCircle/I1TER/nThreads;
} }
}

10

Pe rfo rma n Ce SetThreadAffinityMask (GetCurrentThread(),

1 << (threadlD % nCPUS));

Six-core AMD Phenom Il X6, 2.8 GHz

Two modes of operation
- No affinity set (threads run on the next available core)
- Each thread is permanently bound to one of the 6 cores

TOtal k threads IncrementSync (LONG *hitCircle) {

WaitForSingleObject (mutex, INFINITE);

: (*hitCircle) ++;
* The basic kernel Mutex Releasellutex (mitex):
}
-t~ 3.13
k = 60 k = 20K
- CPU =~ 16% — — B B
No affinity Affinity No affinity Affinity
- Requires 2 kernel-mode 384K/s | 447KIs | 278Kis | 220KIs

switches per increment
- Runs almost twice as slow with 20K threads

Performance

« AtomicSwap
- nt~ 3.1405

- CPU = 100% (locks up
the computer)

- Unable to start more than

LONG taken = O; // shared flag
IncrementSync (LONG *hitCircle) {
while (InterlockedExchange (&taken, 1)
== 1)
C*hitCircle) ++:
taken = 0;
by
k =60 k = 20K
No affinity Affinity No affinity Affinity
448K/s 485K/s — —

/K threads since the CPU is constantly busy

« AtomicSwap and yield

- When cannot obtain mutex,
yield to other threads if
they are ready to run

- n~ 3.1412

- CPU = 100%, but computer
much more responsive

LONG taken = O; // shared flag
IncrementSync (LONG *hitCircle) {

while (InterlockedExchange (&taken, 1)

== 1)
SwitchToThread();

(*hitCircle) ++;

taken = 0;
by

k=60 k = 20K
No affinity Affinity No affinity Affinity
6.8M/s 6.8M/s 12M/s 11.9M/s

12

Performance

« CRITICAL _SECTION
-t~ 3.1417
- CPU = 36%
* |nterlocked increment
- 1~ 3.1416
- CPU =100%
- Fastest method so far
* No sync (naive)
- CPU =100%
- Concurrent updates lost

due to being held in
registers and cache

CRITICAL_SECTION cs;

IncrementSync (LONG *hitCircle) {
EnterCriticalSection (&cs);
(hitCircle) ++;
LeaveCriticalSection(&cs);

ks
k =60 k =20K
No affinity Affinity No affinity Affinity
6.9M/s 15.9M/s 7.3M/s 12.8M/s

IncrementSync (LONG *hitCircle) {
InterLockedIncrement (hitCircle);

ks
k =60 k = 20K
No affinity Affinity No affinity Affinity
19.4M/s 19.2M/s 19.1M/s 19.0M/s

IncrementSync (LONG *hitCircle) {

ChitCircle)++;
¥
k =60 k =20K
No affinity Affinity No affinity Affinity
25.5M/s 19.9M/s 20.6M/s 20.2M/s
n~ 1.21 n~ 1.03 n~ 0.96 n~ 1.33

13

Performance

* No sync (correct
approach)
- T~ 3.1415

DWORD WINAPI ThreadPi (LONG *hitCircle) {
LONG counter = O;
for (int 1=0; 1 < ITER; i++) {
// uniform in [0,1]
X = rand.Uniform(); y = rand.Uniform();
iIf OFx + y*y < 1)
counter ++;

by
InterlockedAdd (hitCircle, counter);

}

- 202M/s, 100% CPU, bottlenecked by rand.Uniform()

« Lessons

- Kernel mutex is slow, should be avoided

- CRITICAL_SECTION is the best general mutex

- Interlocked operations are best for 1-line critical sections
- Affinity mask makes a big difference in some cases

 |If you can write code only using local variables and
synchronize rarely, it can be 1000x faster than kernel
mutex and 10x faster than Interlocked

	CSCE 313-200�Introduction to Computer Systems�Spring 2024
	Homework #2
	Homework #2
	Homework #2
	Homework #2
	Chapter 5: Roadmap
	Windows APIs
	Windows APIs
	Windows APIs
	Performance
	Performance
	Performance
	Performance
	Performance

