
1

CSCE 313-200
 Introduction to Computer Systems

 Spring 2024

CSCE CSCE 313313--200200
 Introduction to Computer SystemsIntroduction to Computer Systems

 Spring 2024Spring 2024

Deadlocks IIDeadlocks II
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

March 18, 2024March 18, 2024

2

Chapter 6: RoadmapChapter 6: RoadmapChapter 6: Roadmap

6.1 Principles
6.6 Dining philosophers
6.2 Prevention
6.3 Avoidance
6.4 Detection
6.5 Integrated strategies
6.7 Unix
6.8 Linux
6.9 Solaris
6.10 Windows

3

•

Yet another famous synchronization problem
━

Proposed by Dijkstra in 1965
•

N

philosophers are sitting at a round table with N

forks between them
━

Usually N = 5 and the food is
spaghetti, but this is not essential

•

Each thinks for a random
period of time until becoming
hungry, then attempts to eat
━

Food requires usage
of both

adjacent forks

Dining PhilosophersDining PhilosophersDining Philosophers

4

•

Operation of a philosopher (each
is a separate thread 0 ·

i ·

N-1)

•

Forks are labeled 0 to N-1 as well

•

Basic approach DPH v1.0:

•

When all are hungry, deadlock is possible

Dining PhilosophersDining PhilosophersDining Philosophers
Philosopher (int i) {

while (true) {
Think ();
GrabForks (i);
Eat ();
DropForks(i);

}
}

Philosopher (int i) {
while (true) {

Think ();
GrabForks (i);
Eat ();
DropForks(i);

}
}

Mutex mutexFork[N]; // one for each fork

DropForks (int i) {
mutexFork[i].Unlock();
mutexFork[(i+1)%N].Unlock();

}

Mutex mutexFork[N]; // one for each fork

DropForks (int i) {
mutexFork[i].Unlock();
mutexFork[(i+1)%N].Unlock();

}

Mutex mutexFork[N]; // one for each fork

GrabForks (int i) {
mutexFork[i].Lock(); // right fork
mutexFork[(i+1)%N].Lock(); // left fork

}

Mutex mutexFork[N]; // one for each fork

GrabForks (int i) {
mutexFork[i].Lock(); // right fork
mutexFork[(i+1)%N].Lock(); // left fork

}

00 11
22

44
33

00 11

22

33

44

5

Chapter 6: RoadmapChapter 6: RoadmapChapter 6: Roadmap

6.1 Principles
6.6 Dining philosophers
6.2 Prevention
6.3 Avoidance
6.4 Detection
6.5 Integrated strategies
6.7 Unix
6.8 Linux
6.9 Solaris
6.10 Windows

6

•

In deadlock prevention, the algorithm is modified by
programmer to

make one of the 4 conditions leading

to deadlock impossible
•

Condition #1: mutual exclusion
━

Typically cannot be safely eliminated (e.g., cars cannot drive
on top of each other thru intersection)

•

Condition #2: hold and wait
━

Can be overcome with WaitAll, DPH v1.1

━

Besides speed, main drawback is that all needed mutexes
must be known ahead of time and acquired in bulk

PreventionPreventionPrevention

Mutex mutexFork[N]; // one mutex for each fork

GrabForks (int i) {
WaitAll (mutexFork[i], mutexFork[(i+1)%N]); // both forks

}

Mutex mutexFork[N]; // one mutex for each fork

GrabForks (int i) {
WaitAll (mutexFork[i], mutexFork[(i+1)%N]); // both forks

}

WaitAll

is either super slow

(Windows) or absent (Unix)

7

•

Condition #4: circular wait
━

Design algorithm such that a circular deadlock cannot occur
•

Notice that presence of 3 or fewer cars (4 or fewer
philosophers) cannot cause a cyclic wait graph
━

Use a semaphore to control how many at the table
•

Q: how many can eat concurrently?
━

If only bN/2c, why allow all N to grab forks?

•

How many should be allowed to use forks?
━

To achieve max concurrency, N-1, but …
━

Algorithm

is prone

to persistent chains of waits:

PreventionPreventionPrevention

Pi

(eat)Pi

(eat) Pi-1

(wait)Pi-1

(wait) Pi-2

(wait)Pi-2

(wait) Pi-k

(wait)Pi-k

(wait)…

8

•

Suppose T > 0 is the eat+think

delay in seconds
━

Max theoretical rate of algorithm is N / 2 * 1 / T
━

If T = 0, then mutex locking/unlocking is the bottleneck

•

Elegant semaphore solution, but slow
━

T=0: kernel-mode semaphore kills performance
━

T=100ms: prone to sequential chains of waits, in which case
performance may deteriorate to 1/T = 10 per

second

━

Improves if think delays are random (1700/sec), or max
semaphore = N/2 (1900/sec)

PreventionPreventionPrevention

CRITICAL_SECTION cs[N]; // one mutex for each fork
HANDLE sema = CreateSemaphore (..., N-1, N-1, ...);

GrabForks (int i) {
WaitForSingleObject (sema, INFINITE);
EnterCriticalSection (&cs[i]);
EnterCriticalSection (&cs[(i+1)%N]);

}

CRITICAL_SECTION cs[N]; // one mutex for each fork
HANDLE sema = CreateSemaphore (..., N-1, N-1, ...);

GrabForks (int i) {
WaitForSingleObject (sema, INFINITE);
EnterCriticalSection (&cs[i]);
EnterCriticalSection (&cs[(i+1)%N]);

}

T=0

450K/sec N = 5

T=100ms

10/sec N = 500

DPH v1.2

9

•

Another way to prevent circular wait is to request
resources in the same order

from all threads

•

If thread holds resource i

and wants j, then j > i
━

If all other threads comply with this rule, a loop back to i

in
the resource graph is impossible

•

DPH v1.3

PreventionPreventionPrevention

CRITICAL_SECTION cs[N]; // one mutex for each fork

GrabForks (int i) {
if (i != N-1) { // not the last guy

EnterCriticalSection (&cs[i]);
EnterCriticalSection (&cs[i+1]);

}
else {

// special case, a leftie
EnterCriticalSection (&cs[0]);
EnterCriticalSection (&cs[N-1]);

}
}

CRITICAL_SECTION cs[N]; // one mutex for each fork

GrabForks (int i) {
if (i != N-1) { // not the last guy

EnterCriticalSection (&cs[i]);
EnterCriticalSection (&cs[i+1]);

}
else {

// special case, a leftie
EnterCriticalSection (&cs[0]);
EnterCriticalSection (&cs[N-1]);

}
}

T=0

2M/sec N = 5

T=100ms

254/sec N = 500

ii jj

10

•

Condition #3: no preemption of held mutexes
━

Let waiter (OS) forcefully remove forks and reassign them
•

More realistic version:
━

If

unable to make progress, threads can voluntarily release
held mutexes, randomly sleep, and start again

•

Similar to PC 3.4, which was the fastest in prior tests

PreventionPreventionPrevention

CRITICAL_SECTION cs[N]; // one mutex for each fork

GrabForks (int i) {
EnterCriticalSection (&cs[i]);
do {

if (TryEnterCriticalSection (&cs[(i+1)%N]) != 0)
break;

// unable to acquire
LeaveCriticalSection (&cs[i]);
Sleep (rand()*DELAY);
EnterCriticalSection (&cs[i]);

} while (true);
}

CRITICAL_SECTION cs[N]; // one mutex for each fork

GrabForks (int i) {
EnterCriticalSection (&cs[i]);
do {

if (TryEnterCriticalSection (&cs[(i+1)%N]) != 0)
break;

// unable to acquire
LeaveCriticalSection (&cs[i]);
Sleep (rand()*DELAY);
EnterCriticalSection (&cs[i]);

} while (true);
}

T=0

1.9M/sec

N = 5

T=100ms

2400/sec
N = 500

DPH v1.4

11

•

Q: Find problems with this program:

•

A: Deletion of invalid block and a memory leak
━

Thrown when main() exits
•

Reason is that a copy of x is created to pass to Func
━

This copy gets deleted when Func() returns
━

Which in turn triggers destructor ~X() and deletion of buf
•

Finally, when main quits, it calls ~X() again
━

Which attempts to delete buf a second time

Debug SessionDebug SessionDebug Session

class X {
char *buf;
int size;
X() { buf = new char [100]; size = 100; }
~X() { delete buf; }

};

class X {
char *buf;
int size;
X() { buf = new char [100]; size = 100; }
~X() { delete buf; }

};

main () {
X x;

Func (x);
}

main () {
X x;

Func (x);
}

void Func (X x)
{

return;
}

void Func (X x)
{

return;
}

12

•

A walk-thru of what happens:

Debug SessionDebug SessionDebug Session

main () {
X x;

main () {
X x;

100 bytes of RAM
at address 3340
100 bytes of RAM
at address 3340

Func (x);Func (x);

100 bytes of RAM
at address 3490
100 bytes of RAM
at address 3490

X temp;X temp;

temp = x;temp = x;

Func(temp);Func(temp);

buf = 3490buf = 3490
size = 100size = 100

object temp

calls temp’s
constructor

buf = 3340buf = 3340
size = 100size = 100

object tempcopies
fields from
x to temp

calls Func
with temp on

the stack

buf = 3340buf = 3340
size = 100size = 100

object x

13

•

Next, on return from Func(x)

•

Lesson: pass pointers to classes whenever feasible
━

Saves a lot of headache with copying stuff over, also faster
•

If a call-by-value is needed, use copy constructors
━

See http://en.wikipedia.org/wiki/Copy_constructor

Debug SessionDebug SessionDebug Session

100 bytes of RAM
at address 3490
100 bytes of RAM
at address 3490

freed memory at
address 3340

freed memory at
address 3340

destroys tempdestroys temp buf = 3340buf = 3340
size = 100size = 100

object temp

calls temp’s
destructor

buf = 3340buf = 3340
size = 100size = 100

object x
} // main terminates} // main terminates calls x’s

destructor,
deletes same
block again

leaked memory, no
way to delete

	CSCE 313-200�Introduction to Computer Systems�Spring 2024
	Chapter 6: Roadmap
	Dining Philosophers
	Dining Philosophers
	Chapter 6: Roadmap
	Prevention
	Prevention
	Prevention
	Prevention
	Prevention
	Debug Session
	Debug Session
	Debug Session

