
1

CSCE 313-200
 Introduction to Computer Systems

 Spring 2024

CSCE CSCE 313313--200200
 Introduction to Computer SystemsIntroduction to Computer Systems

 Spring 2024Spring 2024

File System File System IIIIII
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

March 27, 2024March 27, 2024

2

Chapter 11: RoadmapChapter 11: RoadmapChapter 11: Roadmap

11.1 I/O devices
11.2 I/O function
11.3 OS design issues
11.4 I/O buffering
11.5 Disk scheduling
11.6 RAID
11.7 Disk cache
11.8-11.10 Unix, Linux, Windows

3

•

Programmed I/O (PIO)
━

CPU directly reads device,
transferring data to RAM
or CPU registers

━

Slow legacy devices (e.g.,
serial/parallel ports, PS/2
keyboard or mouse)

━

PIO mode 0 to 6: speed
range 3.3-25 MB/s

•

Not used for high-rate I/O
━

But appropriate for loading
config registers from a
device or initializing it

I/O FunctionI/O FunctionI/O Function

•

Direct Memory Access
(DMA)
━

DMA controller responsible
for data transfer between
device and RAM

•

While PIO keeps the CPU
occupied during entire I/O
transaction, DMA is fully
independent of the CPU

•

Zero-copy transfer
━

Data bypasses intermediate
buffers and gets to
application through DMA

4

Chapter 11: RoadmapChapter 11: RoadmapChapter 11: Roadmap

11.1 I/O devices
11.2 I/O function
11.3 OS design issues
11.4 I/O buffering
11.5 Disk scheduling
11.6 RAID
11.7 Disk cache
11.8-11.10 Unix, Linux, Windows

5

•

Consider application that
processes data

•

Single buffering

━

Per-buffer delay TP

+TD

•

Double buffering

requires at least two threads
━

Per-buffer delay max(TP

, TD

)

App BufferingApp BufferingApp Buffering

while (true) {
ReadData (buf);
ProcessData (buf);

}

while (true) {
ReadData (buf);
ProcessData (buf);

}

semaFull = {0,2}; semaEmpty = {2,2}
int curDisk = 0;
while (true) {

semaEmpty.Wait();
ReadData (buf[curDisk]);
semaFull.Release();
curDisk ^= 1;

}

semaFull = {0,2}; semaEmpty = {2,2}
int curDisk = 0;
while (true) {

semaEmpty.Wait();
ReadData (buf[curDisk]);
semaFull.Release();
curDisk ^= 1;

} disk thread

int curProc = 0;
while (true) {

semaFull.Wait();
ProcessData (buf[curProc]);
semaEmpty.Release();
curProc ^= 1;

}

int curProc = 0;
while (true) {

semaFull.Wait();
ProcessData (buf[curProc]);
semaEmpty.Release();
curProc ^= 1;

} proc thread

TP

TD

CPU

Disk

single

TP

TD

CPU

Disk

double

0 1 0 1

0 1 0

6

•

Suppose disk or application
 is bursty, but on average

 ReadData() is faster than
ProcessData()
━

Even double-buffering
may stall processing

•

Multi-buffering
━

N 

3

buffers, circular array
━

Solves the problem by
 reading ahead, smoothes

 out any fluctuations
•

Easy for single thread,

 what about K threads?

App BufferingApp BufferingApp Buffering CPU

Disk

disk bursty

0 1

0 1

0

0
stall

CPU

Disk

app bursty

stall stall

0 1 0 1

0 1 0 1

0 1

0

4-buffering

1 2 3

0 12 3

0 1 2

0

3 0

CPU

Disk

7

•

Naïve approach: give each thread

its own

N-buffering

•

Optimal management

of buffers (load-balancing)
requires a different architecture
━

See homework #3
•

Why not make K independent disk threads?
━

Leads to disk-seek

thrashing; no benefit to parallelization if
there is only 1 disk and it’s the bottleneck

App BufferingApp BufferingApp Buffering

Processing thread1

Processing thread1

disk threaddisk thread

N-way bufferN-way buffer N-way bufferN-way buffer

Processing threadK

Processing threadK

8

•

Single

OS buffering

is normal
 operation

of ReadFile

━

ProcessData() is just a
memcpy to user space 

•

No OS buffering

is used for
extreme I/O rates (GB/s and
faster) 
━

Earlier we called this zero-copy
•

Note that the OS treats data

 in OSbuf as a cache
━

Makes it available on the next read through the file
━

Data that fits entirely in RAM can be served from the cache

Inside the OSInside the OSInside the OS

// no buffering: TD
ReadFile(char *userBuf) {

SetupDMA (userBuf);
WaitForDMA (userBuf);

}

// no buffering: TD
ReadFile(char *userBuf) {

SetupDMA (userBuf);
WaitForDMA (userBuf);

}

// single buffer: TD +Tcopy
ReadFile (char *userBuf) {

SetupDMA (OSbuf);
WaitForDMA (OSbuf);
memcpy (userBuf, OSbuf);

}

// single buffer: TD +Tcopy
ReadFile (char *userBuf) {

SetupDMA (OSbuf);
WaitForDMA (OSbuf);
memcpy (userBuf, OSbuf);

}

9

Chapter 11: RoadmapChapter 11: RoadmapChapter 11: Roadmap

11.1 I/O devices
11.2 I/O function
11.3 OS design issues
11.4 I/O buffering
11.5 Disk scheduling
11.6 RAID
11.7 Disk cache
11.8-11.10 Unix, Linux, Windows

10

•

Hard drive consists of P platters,
each

with two magnetic surfaces

━

Platters spin on a central spindle,
rotational speed R is given in RPM

•

Data is read using 2P heads, one for each surface
•

Surface broken into K
concentric circles called tracks
━

Track 0 near the outer edge
•

Track consists of N
sectors

of B bytes each

•

The same track on all 2P
surfaces comprises a cylinder

Disk InternalsDisk InternalsDisk Internals

11

•

Question:

how much can a disk read in one rotation?
━

C = 2P*N*B (cylinder size = number of surfaces * track size)
•

Question:

total disk capacity?

━

2P*N*B*K = C*K (cylinder size * number of tracks)
•

Question:

for R=7200 RPM drive, how to figure out

cylinder size and how many tracks it has?
━

Assume 

is the inter-track delay

during sequential read
━

Then, disk read speed S = C / (60/R + 

)
━

Since 

is unknown, we neglect it in our estimates
•

Example:

2 TB Hitachi with 150 MB/s sustained read

━

Solving C*R/60 = 150 MB/s, we get C = 1.25 MB
━

Solving C*K = 2TB, we get K = 1.6M

Disk InternalsDisk InternalsDisk Internals

12

Time to obtain b bytes

from disk
•

Seek time TS
━

Delay needed to move the heads to the right track
━

Includes time to start, move, and settle down
━

Average 8 ms for regular HDDs, ~0.1

ms for SSDs
•

Rotational delay TR

= 60 / (2*R)
━

Time until the right sector passes under head
━

On average ½

revolution; for 7200 RPM, it’s 4ms
━

Absent in SSDs
•

Transfer delay TT

= b / S
━

Time to read a chunk of size b bytes
•

Total time T = TS

+ TR

+ TT

Disk InternalsDisk InternalsDisk Internals

13

•

Examples:

total time to read one sector of Hitachi
━

T = 8 + 4 + 512 / 150e6 = 12.003 ms
•

If we read sectors randomly across the disk?
━

Speed dominated by TS

+TR

, approx 41.6 KB/s
•

Want 100 randomly scattered records in 15-MB file?
━

Seeking takes 1.2 seconds, reading the whole file 112 ms
•

Lesson #1: disk seeking should be minimized

•

If we read data sequentially, but one sector at a time?
━

One sector per revolution, i.e., 120 sectors/s, 60 KB/s
━

Usually speed isn’t this bad due to internal HDD caching
•

Lesson #2: sequential reads must be in large chunks

Disk InternalsDisk InternalsDisk Internals

14

•

Overlapped I/O sends multiple requests to HDD
━

Beneficial if supported by the underlying HDD protocol such
as SATA NCQ (Native Command Queuing)

Disk InternalsDisk InternalsDisk Internals

15

•

Lessons
━

If data is sequential, reading small chunks not only creates a
huge amount of kernel transitions, but also makes the disk
inefficient at reading sectors

━

Should ask for at least a

full cylinder

per call
•

NCQ/overlapped has several benefits:
━

Allows the drive to pull data out of order
━

Keeps the drive always reading ahead even when the OS is
processing previous chunks (e.g., completing DMA
housekeeping) or copying them to application buffers

Disk InternalsDisk InternalsDisk Internals

16

•

Demonstrate using N buffers, no data processing
━

Buffers are

used sequentially

•

This example just reads data in order, throws it away:
━

Obviously need to
 handle errors/EOF

━

If data is processed
 elsewhere, need to

wait for buffer to be
released before

 attempting a refill

Overlapped I/O ExampleOverlapped I/O ExampleOverlapped I/O Example

OVERLAPPED ol[N];
memset (ol, 0, sizeof(OVERLAPPED) * N);
// create ol[i].hEvent
issue N overlapped requests to buf[0] ... buf[N-1]
int cur = 0; // current buffer
while (true) {

WaitForSingleObject (ol[cur].hEvent, INFINITE);
GetOverlappedResult (..., ol + cur, ...);
// process buffer[cur] and refill
ReadFile (hFile, buffer[cur], ..., ol + cur);
cur = (cur + 1)%N;

}

OVERLAPPED ol[N];
memset (ol, 0, sizeof(OVERLAPPED) * N);
// create ol[i].hEvent
issue N overlapped requests to buf[0] ... buf[N-1]
int cur = 0; // current buffer
while (true) {

WaitForSingleObject (ol[cur].hEvent, INFINITE);
GetOverlappedResult (..., ol + cur, ...);
// process buffer[cur] and refill
ReadFile (hFile, buffer[cur], ..., ol + cur);
cur = (cur + 1)%N;

}

buffer0

buffer0 bufferN-1

bufferN-1

ol0

ol0 olN-1

olN-1

…

17

•

When future requests are known, OS or HDD may
optimize overall seek distance to

reduce delay

•

FIFO

serves them in order
━

Main benefit is that it’s fair
•

Priority-based

(OS decides)

•

Shortest Service Time First

(SSTF)
━

Nearest track from current location
•

SCAN

(elevator algorithm)

━

Serves tracks in increasing order until max, then scans back
•

C-SCAN
━

Always scans upward until max, then returns to track 0
━

Reduces the worst wait delay compared to SCAN

Disk SchedulingDisk SchedulingDisk Scheduling

FIFO SSTF

SCAN

	CSCE 313-200�Introduction to Computer Systems�Spring 2024
	Chapter 11: Roadmap
	I/O Function
	Chapter 11: Roadmap
	App Buffering
	App Buffering
	App Buffering
	Inside the OS
	Chapter 11: Roadmap
	Disk Internals
	Disk Internals
	Disk Internals
	Disk Internals
	Disk Internals
	Disk Internals
	Overlapped I/O Example
	Disk Scheduling

