
1

CSCE 313-200
 Introduction to Computer Systems

 Spring 2024

CSCE CSCE 313313--200200
 Introduction to Computer SystemsIntroduction to Computer Systems

 Spring 2024Spring 2024

File System File System VIVI
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

April 10, 2024April 10, 2024

2

Chapter 12: RoadmapChapter 12: RoadmapChapter 12: Roadmap

12.1 Overview
12.2 File organization
12.3 Directories
12.4 Sharing
12.5 Record blocking
12.6 Secondary storage
12.7 File security
12.8-12.10 Unix, Linux, Windows

3

•

Files on disk are organized into a hierarchical
structure called directory tree
━

Starts from the optional drive, then the root
━

Non-leaf nodes are directories

(folders)
and leaves are usually files

•

Windows: separator is backslash \
━

Unix: forward slash /
•

Concatenation of directories

 from the root to the node is
the path

of that node

•

Windows files/folders are not
 case-sensitive, Unix are

DirectoriesDirectoriesDirectories

\\

usersusers

file.txtfile.txt

B.docB.doc

mikemike

reportsreports

A.docA.doc

path = C:\users\mike\reports\A.doc

C:C:

root

4

•

Each process executes in some current working
directory

(CWD) where all files with

a relative path

are

read/written
━

fopen (“report.txt”, ...) executes in CWD
━

C-style _getcwd(),

Windows API GetCurrentDirectory()
•

How to find out where the exe file was started from?
━

Parse argv[0], which always contains the full path
•

Manipulating directories
━

_chdir, _mkdir, _rmdir
━

SetCurrentDirectory, CreateDirectory, RemoveDirectory
•

Absolute

paths start from the root, relative

from

current directory

DirectoriesDirectoriesDirectories

5

•

Directory may be
watched for changes
━

Files modified, written, renamed, size changed, etc.
━

Including subdirectories
•

Addition

useful things:

━

CopyFile, MoveFile, DeleteFile, EncryptFile, FindFirstFile,
GetFileSize, GetTempFileName

•

Flushing write buffers: fflush, FlushFileBuffers
•

Reading zip files: LZOpenFile / LZRead

•

A list of file management APIs:
━

http://msdn.microsoft.com/en-us/library/aa364232(v=VS.85).aspx

More APIsMore APIsMore APIs
HANDLE WINAPI FindFirstChangeNotification (

__in LPCTSTR lpPathName,
__in BOOL bWatchSubtree,
__in DWORD dwNotifyFilter);

HANDLE WINAPI FindFirstChangeNotification (
__in LPCTSTR lpPathName,
__in BOOL bWatchSubtree,
__in DWORD dwNotifyFilter);

6

Chapter 12: RoadmapChapter 12: RoadmapChapter 12: Roadmap

12.1 Overview
12.2 File organization
12.3 Directories
12.4 Sharing
12.5 Record blocking
12.6 Secondary storage
12.7 File security
12.8-12.10 Unix, Linux, Windows

7

•

Each file has one owner

and a set of permissions
━

These specify what groups/users have what type of access to
the file; real headache to manage from a Windows program

•

Sharing mode

determines concurrent access to file
━

In CreateFile, FILE_SHARE_WRITE | FILE_SHARE_READ
allows to read files that are being written to by another process
(assuming it also

opens the file with the same parameters)

•

Attributes

are bit values of flags associated with file
━

E.g., archive, compressed, device, directory, encrypted,
hidden, normal, read-only, system file

━

Can be manipulated using GetFileAttributes, SetFileAttributes
•

If file needs to be locked temporarily, use LockFile
instead of prohibiting sharing altogether

File SharingFile SharingFile Sharing

8

•

ATL/MFC dialog to prompt users to choose a file

More on FilesMore on FilesMore on Files

char szFilter[] = “RGB files (*.rgb)|*.rgb|All Files
(*.*)|*.*||";
// if first argument is FALSE, produces Save As...
CFileDialog open (TRUE, NULL, "", 0, szFilter);
// spawn a window with dialog
if (open.DoModal() != IDOK) // selection made?

return 0;
// get the selected name into an ATL string; disable unicode
CString path = open.GetPathName ();
CString file = open.GetFileName ();
printf ("full path %s, file %s\n", (LPCSTR)path,

(LPCSTR)file);

char szFilter[] = “RGB files (*.rgb)|*.rgb|All Files
(*.*)|*.*||";
// if first argument is FALSE, produces Save As...
CFileDialog open (TRUE, NULL, "", 0, szFilter);
// spawn a window with dialog
if (open.DoModal() != IDOK) // selection made?

return 0;
// get the selected name into an ATL string; disable unicode
CString path = open.GetPathName ();
CString file = open.GetFileName ();
printf ("full path %s, file %s\n", (LPCSTR)path,

(LPCSTR)file);

#define _AFXDLL
#include <afxdlgs.h>
#include <Mmsystem.h> // if using timeGetTime()
#include <Windows.h> // cannot precede afxdlgs.h
// Project properties -> C/C++ -> Code Generation ->
// Runtime Library = Multi-threaded DLL (/MD)

#define _AFXDLL
#include <afxdlgs.h>
#include <Mmsystem.h> // if using timeGetTime()
#include <Windows.h> // cannot precede afxdlgs.h
// Project properties -> C/C++ -> Code Generation ->
// Runtime Library = Multi-threaded DLL (/MD)

9

Chapter 12: RoadmapChapter 12: RoadmapChapter 12: Roadmap

12.1 Overview
12.2 File organization
12.3 Directories
12.4 Sharing
12.5 Record blocking
12.6 Secondary storage
12.7 File security
12.8-12.10 Unix, Linux, Windows

10

•

Disk

is split into

groups of sectors called clusters
━

Cluster size is a multiple of sector size, usually up to 64 KB
•

File space allocated in terms of clusters
━

Internal fragmentation

refers to
wasted space inside each cluster

•

How to allocate clusters to files?
•

1) Pre-allocation
━

Size declared ahead of time, cannot
 be expanded later

•

2) Dynamic allocation
━

As more clusters are needed, they
 are provided by the OS

File AllocationFile AllocationFile Allocation

11

•

2.1) Contiguous allocation
━

Files are given only adjacent sets of blocks on disk

•

First problem is external fragmentation

(i.e., empty
space between files not large enough for new files)

•

Second problem when not enough contiguous space
━

Either request is denied, or the disk must undergo compaction
•

Slow and inefficient, not used in practice

File AllocationFile AllocationFile Allocation

00 11 22 33 44 55

66 77 88 99 1010 1111

original disk, blue file cannot write

00 11 22 33 44 55

66 77 88 99 1010 1111

compacted disk

12

•

2.2) Chained allocation
━

Clusters in files are organized into linked lists by storing a
pointer to next cluster

━

Must read the current cluster to find the next one
•

File fragmentation

into

non-sequential disk blocks

━

Affects access speed as it may require extensive seeking
•

Also, impossible to predict locality in cluster access
━

Difficult to realize that blocks 4-5 and 10-11 are sequential
━

Thus, the red file is read in 4 seeks instead of 2
•

Not widely used in practice by itself

File AllocationFile AllocationFile Allocation 00 11 22 33 44 55

66 77 88 99 1010 1111

13

•

2.3) Indexed allocation
━

Special File Allocation Table (FAT) specifies next cluster
━

0 = empty, E = EOC (end of cluster chain), 1 = reserved

━

Blue file stored in clusters 5312, red file in 49611
•

Primary example MS-DOS FAT12 / FAT16 / FAT32
━

Each directory holds entries with files/subdirectories
━

These include the name, attributes, creation/modification time,
size, and the first cluster

in FAT

File AllocationFile AllocationFile Allocation

22 33 44 55 66 77

88 99 1010 1111 1212 1313

disk

00 1212 99 33 1111 00

00 66 00 EE EE 00

FAT

14

•

Many systems are hybrids of 2.2-2.3
━

UFS (Unix File System) with multi-level Inode tables
━

NTFS with B+ trees, ext3 / ext4 in Linux with H-trees
•

Size limits
━

FAT16 = 2 GB and FAT32 = 8 TB (MBR limit 2 TB)
━

Most other modern systems scale to enormous numbers (e.g.,
NTFS 280

bytes, UFS 273, ext4 260, exFAT 276

for flash)
•

How to manage free space?
━

Full index for the state of each cluster (e.g., FAT)
━

Bitmaps of free/occupied clusters (e.g., NTFS in Windows,
HPFS in OS/2, exFAT / FAT64 in Windows CE, ext4 in Linux)

━

Free blocks chained on disk (pretty

slow)
━

Separate queue/stack of free block IDs stored on disk

File AllocationFile AllocationFile Allocation

15

•

When FAT16/32 wasn’t able to use the entire disk
━

It was split into partitions, each with own drive letter C:, D:, etc.
•

Now partitions fall under a more general term volume
━

Volume combines one or more partitions

grouped into

a logical
drive (e.g., RAID-0/1 or spanned)

━

To obtain cluster size, # of free clusters, and total volume size,
use GetDiskFreeSpace

•

Links

allow files to be referenced under different paths
━

Hard link points to the first cluster of file (see CreateHardLink)
━

Soft/symbolic link

stores a text path to the file, may exist
without the target file (see CreateSymbolicLink)

•

Shortcuts

are special files understood only by Windows
Explorer, unrelated to links

More TerminologyMore TerminologyMore Terminology

	CSCE 313-200�Introduction to Computer Systems�Spring 2024
	Chapter 12: Roadmap
	Directories
	Directories
	More APIs
	Chapter 12: Roadmap
	File Sharing
	More on Files
	Chapter 12: Roadmap
	File Allocation
	File Allocation
	File Allocation
	File Allocation
	File Allocation
	More Terminology

