
1

CSCE 313-200
 Introduction to Computer Systems

 Spring 2024
 

CSCE CSCE 313313--200200
 Introduction to Computer SystemsIntroduction to Computer Systems

 Spring 2024Spring 2024

File System File System IVIV
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

April 3, 2024April 3, 2024



2

Chapter 11: RoadmapChapter 11: RoadmapChapter 11: Roadmap

11.1 I/O devices
11.2 I/O function
11.3 OS design issues
11.4 I/O buffering 
11.5 Disk scheduling
11.6 RAID
11.7 Disk cache
11.8-11.10 Unix, Linux, Windows



3

•
 

Redundant Array of 
Inexpensive

 
Disks (RAID)

━

 

Nowadays “I”
 

is Independent
•

 
RAID-0 (striping)
━

 

Non-redundant sequential 
writing to all disks

━

 

Each stripe has some fixed 
block size (e.g., 64 KB)

━

 

R/W speed N*S for N disks
━

 

Any failure renders array 
unusable, all data lost

•
 

RAID-1 (mirroring)
━

 

One spare for each disk

RAIDRAIDRAID

•
 

RAID-1 (cont’d)
━

 

R/W speed N*S/2
━

 

Tolerates single disk 
failure, may survive up 
to N/2 failures, but may 
also crash with just 2

0
2
4
6

0
2
4
6

1
3
5
7

1
3
5
7

RAID-1

0
4
8
12

1
5
9
13

2
6
10
14

3
7
11
15

RAID-0



4

•
 

RAID-2 and 3
━

 

Require synchronized disks
━

 

Not popular
 

in
 

practice
•

 
All RAID levels 4+ compute 
block/stripe parity
━

 

Usually an XOR of all blocks
━

 

Failure of a disk allows 
recovery of block by XORing 
parity with remaining blocks

•
 

RAID-4
━

 

Bottlenecks on parity disk (e.g., 
modification of blocks 2 and

 
6 

cannot proceed in parallel)

RAIDRAIDRAID

•
 

RAID-5 
━

 

Parity split over all disks
━

 

Read speed S*(N-1)
━

 

Tolerates failure of any 
single disk, crashes if 2 
or more fail concurrently

9
P6-8

P9-11

RAID-5

0
3
6

11

1
4

87
10

P3-5

2
5

P0-2

0
3
6
9

1
4
7
10

2
5
8
11

P0-2

P3-5
P6-8

P9-11

RAID-4



5

•
 

RAID-6
━

 

Dual parity, read speed S*(N-2)
━

 

Tolerates failure of any 2 disks, 
crashes if 3 or more fail

━

 

On some cards, write
 

speed 
30% slower than RAID-5

•
 

RAID-XY or X+Y
━

 

Several RAID-X arrays 
organized into a RAID-Y

•
 

Windows also offers a 
spanned

 
volume in software

━

 

Writes to one disk until full, then 
switches to the next 

RAIDRAIDRAID

RAID-50

RAID-5 RAID-5

RAID-0

6
P4-5

P6-7

RAID-6

0
2

Q4-5
Q6-7

1
Q2-3

54
7

P2-3

Q0-1

3
P0-1

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15



6

Chapter 11: RoadmapChapter 11: RoadmapChapter 11: Roadmap

11.1 I/O devices
11.2 I/O function
11.3 OS design issues
11.4 I/O buffering 
11.5 Disk scheduling
11.6 RAID
11.7 Disk cache
11.8-11.10 Unix, Linux, Windows



7

•
 

In caching, the main issue is achieving high hit rates
•

 
Classical LRU (Least Recently Used)
━

 

Evict the item that hasn’t been used the longest
•

 
In practice, doubly-linked queue/list is enough
━

 

Most-recent items inserted at the tail, old evicted at the head

Disk CacheDisk CacheDisk Cache

insertion of 
B evicts Z

A is accessed, 
moves to front 
of list, nobody 

evicted

•
 

How to quickly find accessed 
item in the queue?
━

 

Linear scanning is slow

XX AA ZZ

oldestnewest

tail head

BB XX AA

oldestnewest

tail head

AA BB XX

oldestnewest

tail head



8

•
 

Idea: maintain a hash table that stores a pointer to the 
item’s location in the queue/list

•
 

How to update the hash table during eviction?
━

 

Either look up item in hash table or store a reverse pointer

Disk CacheDisk CacheDisk Cache

ZZ

AA XX

……

……

……

……

hash table

ptrptr ptrptr …… ptrptr
LRU queue/list

no need to store items in both hash table and LRU queue



9

•
 

Age and frequency of usage may not be related
━

 

More accurate method may be LFU (Least Frequently Used)
━

 

Assign counter C to items, how often it has been accessed
━

 

Sort items by C, evict the one with the smallest counter
•

 
Requires a min-heap ordered by access counters

Disk CacheDisk CacheDisk Cache

ZZ

AA XX

……

……

……

……

hash table

5, ptr5, ptr 7, ptr7, ptr

……

1, ptr1, ptr

……

heap



10

•
 

LFU complexity
━

 

O(1) for cache hit, logN for reinsertion (existing item)
━

 

O(1) for cache miss, logN for eviction (new item)
•

 
Could also use a balanced binary search tree
━

 

Left-most child is always evicted
•

 
Another

 
approach: organize 

counters into doubly-linked list
━

 

Each counter has a list of nodes 
that tie for their value of C

━

 

Nodes contain pointers to actual items
 which are part of the hash table as before

•
 

Constant-time access/insertion/eviction

Disk CacheDisk CacheDisk Cache

ptr to Zptr to Z

ptr to Xptr to X ptr to Aptr to A

……

……

……

……

11 55 77
counter linked list



11

•
 

Problem #1:
 

LFU is biased against new items, which it 
may evict immediately after insertion
━

 

As an improvement, evict every K cache requests and use 
LRU within each linked list of nodes that have the same C

•
 

Problem
 

#2:
 

items with large counters
 stay virtually forever in the cache

━

 

Suppose an item gets
 

1M initial hits due 
to locality, but is then never needed again

━

 

It will not get evicted until C = 1M is 
the smallest counter in the heap/list

•
 

Goal: prevent fresh items from being immediately 
evicted and discount the importance of back-to-back 
access

Disk CacheDisk CacheDisk Cache



12

•
 

Hybrid LRU-LFU methods
━

 

Attempt to register only
 

long-term
 

usage
•

 
New section

 
is similar to LRU

━

 

Items move to the tail
 

on access, counters unchanged
━

 

Eviction moves from the head
 

to the old section

•
 

Old section
 

is similar to LFU, sorted by counter
━

 

Hits
 

increment
 

C
 

and move
 

item 
to

 
tail

 
of new

 
section

Disk CacheDisk CacheDisk Cache

ptrptr ptrptr …… ptrptr
new section C, ptrC, ptr C, ptrC, ptr

……

C, ptrC, ptr

……

old section

evicted

becomes old



13

•
 

Research suggests that the LFU (old) section is still 
biased against new blocks, evicts them right away

•
 

Solution:
 

create a middle section to build up counters
━

 

On hits,
 

middle-aged items increment counters and move
 

to
 the tail

 
of new section

━

 

When
 

item is old, its C should reflect its long-term usage

Disk CacheDisk CacheDisk Cache

ptrptr ptrptr …… ptrptr
new section C, ptrC, ptr C, ptrC, ptr

……

C, ptrC, ptr

……

old section

evicted

becomes old
C,ptrC,ptr C,ptrC,ptr …… C,ptrC,ptr

becomes middle-aged

middle section


	CSCE 313-200�Introduction to Computer Systems�Spring 2024
	Chapter 11: Roadmap
	RAID
	RAID
	RAID
	Chapter 11: Roadmap
	Disk Cache
	Disk Cache
	Disk Cache
	Disk Cache
	Disk Cache
	Disk Cache
	Disk Cache

