CSCE 313-200

Introduction to Computer Systems
Spring 2024

File System |V

Dmitri Loguinov
Texas A&M University

April 3, 2024

Chapter 11: Roadmap

11.1 1/0O devices

11.2 1/O function

11.3 OS design issues

11.4 1/O buffering

11.5 Disk scheduling

11.6 RAID

11.7 Disk cache

11.8-11.10 Unix, Linux, Windows

Do b B2 e
RAID EEEE
L8 9 §

10 || 11 |
12 Jas JL4 15
* Redundant Array of . RAID-0
Inexpensive Disks (RAID) S
- Nowadays “I" is Independent | I 0 | Z z |
» RAID-O (striping) B
- Non-redundant sequential L6 |l s L7l 7
writing to all disks RAID-1
- Each stripe has some fixed
block size (e.g., 64 KB) « RAID-1 (cont'd)
- R/W speed N*S for N disks - R/W speed N*S/2
- Any failure renders array — Tolerates single disk
unusable, all data lost failure, may survive up
* RAID-1 (mirroring) to N/2 failures, but may

also crash with just 2

- One spare for each disk

KNI 2 | | po2
RAID L] B
_6 |

RAID-2 and 3 G Mot (o
< an o _RAID-4
- Require synchronized disks e
i i 0 1 2 PO-2
Not popular in practice 1 ; — .
* AllRAID levels 4+ compute || "¢ | |rss | 07| [8 |
block/stripe parity LPe-11) (19 10 L1
- Usually an XOR of all blocks | RAID-5 =
- Failure of a disk allows ... _
recovery of block by XORing ° RAID=5
parity with remaining blocks - Parity split over all disks
« RAID-4 - Read speed S*(N-1)

- Tolerates failure of any
single disk, crashes if 2
or more fail concurrentl)él1

- Bottlenecks on parity disk (e.g.,
modification of blocks 2 and 6
cannot proceed in parallel)

RAID

* RAID-6 .
— Dual parity, read speed S*(N-2)

— Tolerates failure of any 2 disks, 7T :
crashes if 3 or more falil RAID-5

- On some cards, write speed
30% slower than RAID-5

* RAID-XY or X+Y
- Several RAID-X arrays 5
organized into a RAID-Y . RAID-50

* Windows also offers a
spanned volume in software

- Writes to one disk until full, then
switches to the next > ’

RAID-0

Chapter 11: Roadmap

11.1 1/O devices

11.2 1/O function

11.3 OS design issues

11.4 1/O buffering

11.5 Disk scheduling

11.6 RAID

11.7 Disk cache

11.8-11.10 Unix, Linux;Windows

Disk Cache

* |n caching, the main issue is achieving high hit rates

* Classical LRU (Least Recently Used)
- Evict the item that hasn’t been used the longest

 |n practice, doubly-linked queue/list is enough

- Most-recent items inserted at the tail, old evicted at the head
tail head tail head

X A - B X | g
insertion of A is accessed,
|_I B evicts Z V_I moves to front
newest oldest newest oldest of list, nobody
evicted
tail head

A B “ » How to quickly find accessed
- item in the queue?

newest oldest . .
- Linear'scanning is slow 7

Disk Cache

* |dea: maintain a hash table that stores a pointer to the
item’s location in the queue/list

* How to update the hash table during eviction?
- Either look up item in hash table or store a reverse pointer

hash table

LRU queue/list

qﬁEE

no need to store items in both hash table and LRU queue

Disk Cache

* Age and frequency of usage may not be related
- More accurate method may be LFU (Least Frequently Used)
- Assign counter C to items, how often it has been accessed
- Sort items by C, evict the one with the smallest counter

* Requires a min-heap ordered by access counters
heap hash table

-
-

Disk Cache

LFU complexity

- O(1) for cache hit, logN for reinsertion (existing item)

- O(1) for cache miss, logN for eviction (new item)

Could also use a balanced binary search tree

- Left-most child is always evicted counter linked list

Another approach: organize 1 o 5 o

O

counters into doubly-linked list m 3

- Each counter has a list of nodes

that tie for their value of C L !

- Nodes contain pointers to actual items 3 T

which are part of the hash table as before
ptr to X ptr to A

Constant-time access/insertion/eviction

10

Disk Cache

 Problem #1: LFU is biased against new items, which it
may evict immediately after insertion
- As an improvement, evict every K cache requests and use
LRU within each linked list of nodes that have the same C
* Problem #2: items with large counters
stay virtually forever in the cache

- Suppose an item gets 1M initial hits due
to locality, but is then never needed again

- |t will not get evicted until C = 1M is
the smallest counter in the heap/list
« Goal: prevent fresh items from being immediately
evicted and discount the importance of back-to-back
access 11

Disk Cache

* Hybrid LRU-LFU methods

- Attempt to register only long-term usage

 New section is similar to LRU
- Iltems move to the tail on access, counters unchanged
- Eviction moves from the head to the old section

* Old section is similar to LFU, sorted by counter
- Hits increment C and move item

to tail of new section
m—> evicted

old section 12

Disk Cache

e Research suggests that the LFU (old) section is still
biased against new blocks, evicts them right away

e Solution: create a middle section to build up counters

- On hits, middle-aged items increment counters and move to
the tail of new section

- When item is old, its C should reflect its long-term usage
middle section

| becomes middle-aged m—’ evicted

old section 13

becomes old

	CSCE 313-200�Introduction to Computer Systems�Spring 2024
	Chapter 11: Roadmap
	RAID
	RAID
	RAID
	Chapter 11: Roadmap
	Disk Cache
	Disk Cache
	Disk Cache
	Disk Cache
	Disk Cache
	Disk Cache
	Disk Cache

