CSCE 313-200

Introduction to Computer Systems
Spring 2024

File System V

Dmitri Loguinov
Texas A&M University

April 5, 2024

Chapter 12: Roadmap

12.1 Overview

12.2 File organization

12.3 Directories

12.4 Sharing

12.5 Record blocking

12.6 Secondary storage

12.7 File security

12.8-12.10 Unix, Linux;Windows

File Organization

As before, a file is just a bunch of bytes

Our next task is to figure out how to organize these
bytes within the file to enable ease of operation

- Mostly concerned here with data lookup and retrieval

Assume data is split into items/records
- Each record has multiple fields (e.g., name, age, SSN)

1) Pile is the most general

D, | error, | driver,

- Records dumped into file as they -
become available to the program, | P2 Sl driver,

in no particular order, \n separator | D, | RAM | CPU

- Different records may have different
length or # of fields, typically read by humans

- e.g., Unix syslog file into which all kernel modules write 3

File Organization

2) Sequential file (sorted or unsorted)
- One field in each record is the key, everything else is value

- Search for a given key or range SIS\ salary, | age;

Fixed-size fields S salary, | age,

- E.g., payroll database with all fields padded to same size

Variable-size fields deg, list,

- E.g., graph (key = nodelD, BEEEN deg, | list

value = degree + adjacency list)
If sorted by key
- |f fixed-size values, binary search to find records

- |If variable-size, need unambiguous record separators
- Painful to add elements as resorting the file is expensive

File Organization

e 3) Indexed Sequential

- File structure that has the main file with data (usually huge)
and a separate file containing the index for keys

* Suppose the main file is Google’s word—>URL mapping
- Query maps hashes of words to pages with them

url, | url,

url, | url, [urly | ... | urlg,

url, | url, | url,

« Binary search on the index, find offset in main file

File Organization

 Ifindex is too big to fit in RAM and binary search is
inefficient, a k-level index is possible

500 off

off | 1B
600 off |
level-3: 10 GB ! L : : 3
fits in RAM i . level-2: 100 GB . level-1: 10 TB

« Assume level-1 index size F, read I/O block size B
- Binary search needs log,(F/B) seeks
- On the other hand, k-level index needs k-1 seeks

« F=10TB file, B=1 MB block size — 23 seeks, whlle
multi-index above does it in k-1 =2 seeks

File Organization

* 4) Indexed

- Separate index for every possible field, allows database-like
operations on fields

« Main challenge for indexed files is keeping the index
updated when it doesn't fit in RAM

5) Hashed file
- Treat file contents as RAM, hash items directly to some offset

uint64 N; // hash table size

// preallocate file of size N * sizeof(item)

void Hash (ltem x) {
off = HashFunction (x.key) % N;
Tfile_Seek (off * sizeof(ltem));
Tile_Write (&x, sizeof(ltem));

}

What to do with collisions?

	CSCE 313-200�Introduction to Computer Systems�Spring 2024
	Chapter 12: Roadmap
	File Organization
	File Organization
	File Organization
	File Organization
	File Organization

