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•
 

As before, a file
 

is just a bunch of bytes
•

 
Our next task is to figure out how to organize these 
bytes within the file to enable ease of operation
━

 

Mostly concerned here with data lookup and retrieval
•

 
Assume data is split into items/records
━

 

Each record has multiple fields
 

(e.g., name, age, SSN)
•

 
1) Pile is the most general
━

 

Records dumped into file as they 
become available to the program, 
in no particular order, \n separator

━

 

Different records may have different 
length or # of fields, typically read by humans

━

 

e.g., Unix syslog file into which all kernel modules write
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•
 

2) Sequential file
 

(sorted or unsorted)
━

 

One field in each record is the key, everything else is
 

value
━

 

Search for a given key or range
•

 
Fixed-size fields
━

 

E.g., payroll database with all fields padded to same size
•

 
Variable-size fields
━

 

E.g., graph (key = nodeID, 
value = degree +

 
adjacency list)

•
 

If sorted by key
━

 

If fixed-size values, binary
 

search to find records
━

 

If variable-size, need unambiguous record separators
━

 

Painful to add elements as resorting the file is expensive
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•
 

3) Indexed Sequential
━

 

File structure that has the main file
 

with data (usually huge) 
and a separate file containing the index

 
for keys

•
 

Suppose the main file is
 

Google’s wordURL
 

mapping
━

 

Query
 

maps
 

hashes of words to pages with them

•
 

Binary search on the index, find offset in main file
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•
 

If index is too big to fit in RAM and binary search is 
inefficient, a k-level index is possible

•
 

Assume level-1 index size F, read I/O block size B
━

 

Binary
 

search needs
 

log2

 

(F/B) seeks
━

 

On the other hand, k-level
 

index needs
 

k-1 seeks
•

 
F = 10 TB file, B = 1 MB block size → 23 seeks, while 
multi-index above does it in k-1 = 2 seeks
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•
 

4) Indexed
━

 

Separate index for every possible field, allows database-like 
operations on fields

•
 

Main challenge
 

for indexed files is keeping the index 
updated when it doesn’t fit in RAM

•
 

5) Hashed file
━

 

Treat file contents as RAM, hash items directly to some offset

•
 

What to do with collisions?

File OrganizationFile OrganizationFile Organization

uint64 N; // hash table size
// preallocate file of size N * sizeof(item)
void Hash (Item x) {

off = HashFunction (x.key) % N;
file.Seek (off * sizeof(Item));
file.Write (&x, sizeof(Item));

}

uint64 N; // hash table size
// preallocate file of size N * sizeof(item)
void Hash (Item x) {

off = HashFunction (x.key) % N;
file.Seek (off * sizeof(Item));
file.Write (&x, sizeof(Item));

}
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