
1

CSCE 313-200
 Introduction to Computer Systems

 Spring 2024
 

CSCE CSCE 313313--200200
 Introduction to Computer SystemsIntroduction to Computer Systems

 Spring 2024Spring 2024

File System File System VV
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

April 5, 2024April 5, 2024



2

Chapter 12: RoadmapChapter 12: RoadmapChapter 12: Roadmap

12.1 Overview
12.2 File organization
12.3 Directories
12.4 Sharing
12.5 Record blocking
12.6 Secondary storage
12.7 File security
12.8-12.10 Unix, Linux, Windows



3

•
 

As before, a file
 

is just a bunch of bytes
•

 
Our next task is to figure out how to organize these 
bytes within the file to enable ease of operation
━

 

Mostly concerned here with data lookup and retrieval
•

 
Assume data is split into items/records
━

 

Each record has multiple fields
 

(e.g., name, age, SSN)
•

 
1) Pile is the most general
━

 

Records dumped into file as they 
become available to the program, 
in no particular order, \n separator

━

 

Different records may have different 
length or # of fields, typically read by humans

━

 

e.g., Unix syslog file into which all kernel modules write

File OrganizationFile OrganizationFile Organization

error1

 

error1 driver1

 

driver1

error2

 

error2 driver2

 

driver2

RAMRAM CPUCPU

D1

 

D1

D2

 

D2

D3

 

D3



4

•
 

2) Sequential file
 

(sorted or unsorted)
━

 

One field in each record is the key, everything else is
 

value
━

 

Search for a given key or range
•

 
Fixed-size fields
━

 

E.g., payroll database with all fields padded to same size
•

 
Variable-size fields
━

 

E.g., graph (key = nodeID, 
value = degree +

 
adjacency list)

•
 

If sorted by key
━

 

If fixed-size values, binary
 

search to find records
━

 

If variable-size, need unambiguous record separators
━

 

Painful to add elements as resorting the file is expensive

File OrganizationFile OrganizationFile Organization

salary1

 

salary1 age1

 

age1

salary2

 

salary2 age2

 

age2

SSN1

 

SSN1

SSN2

 

SSN2

deg1

 

deg1 list1

 

list1
deg2

 

deg2 list2

 

list2

node1

 

node1

node2

 

node2



5

•
 

3) Indexed Sequential
━

 

File structure that has the main file
 

with data (usually huge) 
and a separate file containing the index

 
for keys

•
 

Suppose the main file is
 

Google’s wordURL
 

mapping
━

 

Query
 

maps
 

hashes of words to pages with them

•
 

Binary search on the index, find offset in main file

File OrganizationFile OrganizationFile Organization

650650

651651
offoff

300300

651651

main file (2 PB), not sorted

offoff

index

…

…

…

…

600600

22 url1

 

url1
6M6M

url2

 

url2
url1

 

url1 url2

 

url2 url3

 

url3 …… url6M

 

url6M

33 url1

 

url1 url2

 

url2 url3

 

url3

hash

hash



6

•
 

If index is too big to fit in RAM and binary search is 
inefficient, a k-level index is possible

•
 

Assume level-1 index size F, read I/O block size B
━

 

Binary
 

search needs
 

log2

 

(F/B) seeks
━

 

On the other hand, k-level
 

index needs
 

k-1 seeks
•

 
F = 10 TB file, B = 1 MB block size → 23 seeks, while 
multi-index above does it in k-1 = 2 seeks

File OrganizationFile OrganizationFile Organization

650650

651651
offoff

offoff

…

…
level-1: 10 TB

500500

600600
offoff

offoff

…

…
level-2: 100 GB

00

10001000
offoff

offoff

…
level-3: 10 GB 

fits in RAM

00 600600

B B



7

•
 

4) Indexed
━

 

Separate index for every possible field, allows database-like 
operations on fields

•
 

Main challenge
 

for indexed files is keeping the index 
updated when it doesn’t fit in RAM

•
 

5) Hashed file
━

 

Treat file contents as RAM, hash items directly to some offset

•
 

What to do with collisions?

File OrganizationFile OrganizationFile Organization

uint64 N; // hash table size
// preallocate file of size N * sizeof(item)
void Hash (Item x) {

off = HashFunction (x.key) % N;
file.Seek (off * sizeof(Item));
file.Write (&x, sizeof(Item));

}

uint64 N; // hash table size
// preallocate file of size N * sizeof(item)
void Hash (Item x) {

off = HashFunction (x.key) % N;
file.Seek (off * sizeof(Item));
file.Write (&x, sizeof(Item));

}


	CSCE 313-200�Introduction to Computer Systems�Spring 2024
	Chapter 12: Roadmap
	File Organization
	File Organization
	File Organization
	File Organization
	File Organization

