
Systems Programming under Windows
Dmitri Loguinov (ver 1.11, Spring 2022)

The purpose of this document is to refresh common C/C++ programming techniques,
introduce MSDN notation, and set forth basic ideas for effective debugging in Windows.

1. MSDN and Visual Studio

MSDN notation may first appear unusual for those mostly familiar with Unix; however, it
is quite simple to learn. This section outlines the basic steps in tackling MSDN and
overviews the main elements you should know.

1.1 General Ideas

The first step is to understand how to search MSDN (http://msdn.microsoft.com), which
is also known as Microsoft Docs. To avoid frustration, you should be prepared that
certain functions (e.g., select) produce many irrelevant results from .NET, C#, SQL,
and other areas. One approach is to allow Google to pick the specific page based on the
frequency of request from other users and its internal ranking algorithm (e.g., by
searching for “MSDN select c++”). Another approach is to type the desired function in
Visual Studio (any .cpp or .h file), place the cursor within its name, and press F1 to bring
up the relevant documentation. Finally, you can manually scroll though MSDN search
results until you see the version with “(Windows)” in the title (e.g., “select
function (Windows) ”).

Reading MSDN and understanding the various caveats will save you plenty of time when
an APIs crashes because you are passing NULL pointers to it or incorrectly handling its
response. Part of this understanding involves knowing the various datatypes that
Microsoft uses. It is recommended that you perform a lookup on every unfamiliar type
you encounter. Below are some of the most common datatypes:

CHAR = char
DWORD = unsigned int // "double word"
BYTE = unsigned char
BOOL = int // boolean
HANDLE = void*
LONG = int
UINT = unsigned int
UINT64 = unsigned __int64

Many pointer types are created from existing scalar types by prepending them with LP
(long pointer):

LPDWORD = DWORD*
LPVOID = void*
LPCSTR = char* (expects NULL termination, C-style string)

 1

http://msdn.microsoft.com/
http://msdn.microsoft.com/en-us/library/windows/desktop/ms740141(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms740141(v=vs.85).aspx

Note that there is another (rarely used) type called LPSTR. This is also a char*, but there
is no expectation that the byte array be NULL-terminated. For more type definitions, see:

http://msdn.microsoft.com/en-us/library/aa383751(VS.85).aspx

1.2 Example

To make these concepts clearer, consider the following example:

BOOL WINAPI ReadFile(
 __in HANDLE hFile,
 __out LPVOID lpBuffer,
 __in DWORD nNumberOfBytesToRead,
 __out_opt LPDWORD lpNumberOfBytesRead,
 __inout_opt LPOVERLAPPED lpOverlapped
);

The first thing to notice is that the return value of the function is BOOL and the calling
convention is WINAPI (look this up). The function takes a file handle, a void pointer to
your buffer, and how many bytes to read. It then fills the buffer and returns the number
of bytes written using the DWORD* pointer you supplied during the call. This argument is
optional only when using overlapped I/O (see function description) and should be present
otherwise. The last argument is always optional and specifies a pointer to an OVERLAPPED
structure that can be used to make the function asynchronous.

In general, parameters marked with __in must be initialized prior to calling the function.
Those marked with __out receive output results, usually through the use of pointers, but
do not need to contain any specific initial values. Those with __inout must contain
initial values that are overridden after successful completion.

For optional parameters that you do not wish to provide, pointers are usually set to
NULL, while scalar datatypes to 0, although you should read the entire function
description to see if MSDN says otherwise.

1.3 Return Values

Always read MSDN about what each function returns and how to check for errors. You
should be prepared that any API can fail, even at the most unexpected time. Thus, you
must write code that remains robust to API failure (i.e., recovers from errors in ways that
do not lead to crashes, undetected error conditions, or deadlocks). The correct way of
processing fatal errors is to print the error code (optionally the function where this
occurred and API name) and then quit the program:

if (someAPI (...) != SUCCESS)
{
 printf ("%s: someAPI failed with %d\n", __FUNCTION__, GetLastError());
 exit (-1);
}

 2

http://msdn.microsoft.com/en-us/library/aa383751(VS.85).aspx

To put this into practice, consider the following piece that tries to print the first 128 bytes
of a file:

HANDLE h = CreateFile (name, ...); // open file for reading
char buf [128];
ReadFile (h, buf, 128, ...);
printf ("%s\n", buf);

First, suppose the file does not exist. In that case, CreateFile returns an invalid handle,
which the program then attempts to use in other API calls. Second, suppose the file
exists, but has length 0. Then this fragment will print garbage from an uninitialized array.
A similar result occurs if there is an error while reading the file. The final issue is that
printf is likely to run outside buffer boundaries because the received data is not NULL-
terminated, creating another crash possibility.

The proper approach is to first check if CreateFile succeeds; if not, the program should
print the result of GetLastError() and quit. Next, if the program passes this stage, it has
to check the return value from ReadFile and how many bytes were read. If more than 0
bytes arrived, the code may proceed to NULL-terminating the buffer and then printing its
contents. The final caveat is that in this example you can read only up to 127 bytes,
always leaving at least one byte for the NULL.

Exercise: write a robust version of the above code segment.

1.4 Keyboard Shortcuts

When you start Visual Studio for the first time, it offers you to select the keyboard layout.
Make sure to choose “Visual Studio C++ 6”; otherwise, many of the keyboard shortcuts
mentioned during class and office hours will not work. You can always change this later
by going to Tools  Options  Environment  Keyboard.

1.5 Unicode

It is recommended that you disable Unicode in your Project Properties (Alt-F7). This is
accomplishing by changing Advanced  Character Set to “Not Set.” Otherwise, you will
have to deal with wide-char strings in many system APIs.

The general Microsoft term for wide (i.e., 2-byte) chars is wchar_t, which is typedef’ed
to the more commonly seen WCHAR. To allow the same code to compile with Unicode
enabled or disabled without hacking the program, Microsoft introduced another type
called TCHAR that many Unicode-friendly APIs now use on MSDN:

#ifdef UNICODE
 typedef WCHAR TCHAR;
#else
 typedef char TCHAR;
#endif

 3

In simple terms, TCHAR maps to regular chars if Unicode is disabled and wide chars
otherwise. If you have to proceed with the Unicode route, you can use the following
helper macros:

WCHAR strW[] = L"hello"; // wide-char version of string
TCHAR strT1[] = _T("hello"); // either WCHAR or CHAR
TCHAR strT2[] = TEXT("hello"); // same

and typedef shortcuts:

LPCTSTR = TCHAR* // NULL-terminated
LPCWSTR = WCHAR* // NULL-terminated

For Unicode text manipulation, you can use wprintf, _tprintf, swprintf,
_stprintf, and their numerous variations.

Certain APIs exist in two versions, where A at the end indicates a function that takes
char pointers and W indicates all strings must be wide-chars. An example of this would
be CreateFileA and CreateFileW. Normally, you would not call these directly; instead,
the intended approach is to always call CreateFile and let the compiler choose the former
version if unicode is disabled and the latter version otherwise.

1.6 Variable Names

Microsoft’s naming convention has two basic rules. First, variables start with a lower-
case letter (sometimes indicating what type of data it is), with each subsequent word
capitalized, e.g., bRet, nBytesToRead. Second, functions are similar, except they don’t
have the initial datatype-indicator, e.g., ReadFile, GetOverlappedResult. On Unix, a more
common approach is to use underscore to separate words. You can use either convention
as long as you are consistent.

1.7 Linker Input

MSDN provides the necessary header files and libraries for most APIs at the bottom of
the help page. For example, timeGetTime() requires windows.h and winmm.lib.
Libraries can be inserted through Project Properties  Linker  Input  Additional
Dependencies. You can also use

#pragma comment(lib, "winmm.lib");

from within the source code.

1.8 Command-Line Arguments

To input command-line arguments into Visual Studio, right click the project in Solution
Explorer, then select Properties  Debugging  Command Arguments.

1.9 Precompiled Headers

 4

New projects in Visual Studio created with Windows Desktop Wizard can utilize
precompiled headers, which allow much quicker compilation of the program. There are
two basic rules to follow. First, every .cpp file must start with #include "pch.h".
Second, you should include all standard header files (e.g., windows.h, stdio.h, and
STL) in pch.h, which gets compiled once and is then used to support all .cpp files in
your project. Unlike traditional compilation, modification to .cpp code under precompiled
headers does not require any of the .h files to be revisited.

You should also include your own frequently-used .h files in pch.h. To avoid include
loops, it is a good idea to start all header files with #pragma once, which prevents the
compiler from including the file more than once per .cpp.

1.10 When MSDN is Insufficient

If MSDN fails to provide enough information, use other sources to obtain answers. You
should persist until you completely understand the underlying functionality of the APIs in
question and the cause of the various undesirable phenomena your code may exhibit. You
should strive to fix every bug in your program and make it produce the results you want,
not something random it does on its own.

Start with Googling the specific error conditions and/or function usage. Read tutorials
and other people’s recommendations (e.g., stackoverflow.com) for similar problems. If
this fails, post general-scope (i.e., not involving your code) questions in Piazza. In more
specific cases, you can email the instructors for help, providing them with as much data
and your analysis as possible.

2. General C/C++

This section covers standard C/C++ problems that students encounter when dealing with
system APIs and memory.

2.1 Pointer Background

Many programming tasks require manipulation of buffers using C/C++ pointers. While
textbook pointers cover the basic concepts and syntax, this often turns out insufficient to
prevent major headaches during systems programming.

The first prerequisite is to thoroughly understand how C/C++ deal with pointers, which
can be accomplished by reading online tutorials:

http://boredzo.org/pointers/
http://www.cplusplus.com/doc/tutorial/pointers/
http://www.cprogramming.com/tutorial/lesson6.html

and/or specific chapters in C books:

 5

http://boredzo.org/pointers/
http://www.cplusplus.com/doc/tutorial/pointers/
http://www.cprogramming.com/tutorial/lesson6.html

B.W. Kernigan and D.M. Ritchie, “The C Programming Language,” Prentice Hall, 1988.
I. Horton, “Beginning C: From Novice to Professional,” Apress, 2006.

The rest of this document assumes sound knowledge of these concepts.

2.2 C Strings

A huge number of problems arise from not understanding C strings. Recall that C
terminates each string with a NULL character, which is done so that string-manipulation
functions (e.g., strlen, strcpy, printf) know when to stop scanning the string.
NULL is not required if you do not rely on these functions, but you should be aware of its
presence when dealing with normal string objects and take it into account during memory
allocation. Consider this fragment:

char str1 [] = "hello";
char buf [128];
char *str2 = new char [strlen(str1)]; // allocates 5 bytes
strcpy (str2, str1); // copies 6 bytes, overflows
memcpy (buf, str1, strlen(str1)); // copies "hello" without the NULL
printf ("%s", buf); // prints garbage, then possibly crashes

Observe that strcpy NULL-terminates the destination string and thus writes outside the
block allocated to str2, which causes heap corruption (in some cases, this may also lead
to a crash with an access violation). Furthermore, since buf in this example is not NULL-
terminated after memcpy, printf scans the entire 128 bytes searching for the trailing zero
and prints a bunch of random values found there. If none of them happen to be NULL, it
runs outside the allocated space and starts printing everything else found in the stack after
the buffer. This continues until a zero byte is found or the program hits the end of the
allocated stack region and crashes.

Buffer overflows like these are probably the most common problem in using pointers.
While they are relatively simple to debug in single-threaded programs, multi-threading
makes these issues a nightmare, which means that pointers should be thoroughly
understood and debugged before parallelization takes place.

It is also a good idea to make sure you grasp how number encoding works, including
binary numbers, ASCII digits, and signed representation:

char a = 0, b = '0', c = 250, d = NULL;
printf ("a = %d, b = %d, c = %d, d = %d\n", a, b, c, d);

Exercise: what are the printed values?

See http://www.asciitable.com/ for more information on ASCII and
http://en.wikipedia.org/wiki/Signed_number_representations for common ways to
represent signed integers.

 6

http://www.asciitable.com/
http://en.wikipedia.org/wiki/Signed_number_representations

It is recommended that you become familiar with traditional C functions strlen,
strcpy, strcmp, stricmp, strncmp, strcat, memchr, strtok, memset,

memcmp, strstr.

2.3 Memory and Pointers

From the perspective of the CPU, memory is a sequence of bytes rather than some
magical data structure, which is a common misconception for students with an extensive
STL and/or Java background. Compilers for low-level languages (C/C++, Assembly)
subscribe to the same philosophy as the CPU and require the programmer to explicitly
tell them how to interpret each RAM location through the use of pointers. For example,
nothing stops you from reading a char array using an int pointer and vice versa, or
exceeding boundaries of the allocated space. With greater flexibility and higher
performance of C/C++ comes the potential for crashing the code and corrupting memory
in rather subtle ways, which require significant debugging effort. However, this problem
can be overcome if sufficient energy is put into studying and practicing pointer usage.
This also may help in the future as many software companies (e.g., Google, Microsoft)
ask various pointer questions during their interviews.

To refresh, you can treat pointers as arrays:

int arr [100];
// initialize arr by writing a sequence of bytes with value 1
memset (arr, 1, sizeof (int) * 100);
int *ptr = arr; // points to the array
// read the first element
int a = *ptr; // or alternatively a = ptr[0]
int a1 = *arr; // or arr[0]
// reading the fourth element of arr
int b = ptr [3]; // preferred way of reading values
int b1 = arr [3];
// more tedious versions of the same
int c = *(ptr + 3); // or even worse: *(&ptr[3])
int c1 = *(arr + 3);

The lesson here is to use notation that is the simplest and most revealing about your
intentions. If you are using a pointer to read an array, then square brackets [] is the best
route. Exercise: figure out the values of a, b, c in the fragment above.

Along similar lines, many API functions return values through the use of pointers.
Suppose we have this declaration:

void DoSomething (__in int op, __out LPDWORD result);

This function takes as input integer op and returns the result into another integer. A
common approach for students unfamiliar with pointers is to declare a pointer variable
and pass it to the function:

LPDWORD result; // same as DWORD *result;
DoSomething (OP_READ, result); // crash

 7

This snippet crashes because the function writes into an uninitialized pointer. After some
debugging, students usually change this to:

DWORD result;
LPDWORD result_ptr = &result;
DoSomething (OP_READ, result_ptr);

While this works, it is unnecessarily cluttered. A better approach is to reduce the amount
of notation and make the intended meaning of the second argument more clear:

DWORD result;
DoSomething (OP_READ, &result);

2.4 Pointer Arithmetic

Recall that pointer arithmetic moves the pointer by the size of the datatype it was
declared as pointing to. For example, notation p + 3 adds 12 bytes to the pointer if p is
an int* or 24 bytes if it is a double*.

Exercise: write an expression that moves ptr, defined as an int*, by 3 bytes forward.

2.5 Casting Pointers

Pointers hold virtual addresses of data located in RAM. There is never any attached
meaning with the pointer as to how large the allocated data segment is or how it was used
in the past. This means you are free to change the meaning of any address depending on
what is convenient.

Void* is the only pointer type that does not tell the compiler the size of the item it points
to. Thus, void pointers cannot be dereferenced or included in arithmetic operations;
however, they can be converted to other pointer types when access is required. A
common use for void pointers is passing or returning generic memory addresses to/from
functions:

// argument op determines the return type
void *someFunc (int op); // declaration

char *ptrA = (char*) someFunc (1); // returns a C string
int *ptrB = (int*) someFunc (2); // returns an int array

For non-void pointers, the declared type tells the compiler how to read/write RAM at that
particular address if and when this pointer is dereferenced, but nothing more. This
interpretation may change during run-time as desired:

char str [] = "hello"; // str is a pointer to some location on the stack
int *p = (int*) str; // cast a char* to an int*
printf ("str = %p, p = %p, initial 4 bytes are %X\n", str, p, *p);

Exercise: what are the printed values?

 8

Unlike C, conversion between non-identical pointer types in C++ requires an explicit
cast. If the compiler complains about incompatible pointers, you should make sure that
casting is done properly. Given successful compilation, the code above prints the two
pointer values and the first four bytes of the string as a hex1 integer.

Another example is to read from the front of a character buffer a 4-byte integer and then
an 8-byte uint64:

char buf [128] = "hello world!!";
int a = *(int*) buf; // read the first 4 bytes as int
uint64 b = *(uint64*) (buf + sizeof(int)); // read the next 8 bytes as uint64

An equivalent version:

char buf [128] = "hello world!!";
int *ptr1 = (int*) buf;
uint64 *ptr2 = (uint64*) (ptr1 + 1); // notice pointer arithmetic!
int a = *ptr1;
uint64 b = *ptr2;

Neither one is elegant. A better approach is to declare a class/struct that contains both
elements we are trying to read and give them some meaningful names:

class SomeData {
public:
 int len;
 UINT64 hash; // UINT64 is declared in Windows.h
};
char buf [128] = "hello world";
SomeData *sd = (SomeData*) buf;
printf ("len = %d, hash = %I64X\n", sd->len, sd->hash);

Now suppose that there is an array of floats immediately following the SomeData class in
the buffer. The length of this array is given by sd->len. Continuing the previous
example, printing the array is quite simple:

float *arr = (float*) (sd + 1); // notice how pointer arithmetic helps
for (int i = 0; i < sd->len; i++)
 printf ("arr [%d] = %f\n", i, arr [i]);

Exercise: modify the loop to prevent overflowing the 128 bytes allocated to buf in case
sd->len happens to be corrupted/invalid.

2.6 Struct Packing

When using structs to read raw buffers, it is important to be aware of compiler-related
data alignment. Consider the following:

class SomeData2 {
public:

1 Using hex notation is helpful in general. The reason is that it explicitly maps each byte to two consecutive
hex digits and greatly helps in debugging. It also keeps numbers shorter, which becomes quite noticeable
with 32-bit and especially 64-bit values.

 9

 int a;
 int b;
 char c;
};

char str [] = "hi there"; // 9 bytes allocated
SomeData2 x;
memcpy (str, &x, sizeof (SomeData2)); // overflow

This example aims to copy object x (containing 9 bytes worth of elements) in place of the
string. Instead, the result is stack corruption that happens due to struct alignment. In this
case, the compiler pads the end of the class to a multiple of sizeof(SomeData2::a).
This is needed to prevent alignment issues when working with arrays of structs. As a
result, sizeof(SomeData2)comes back with 12 bytes rather than 9.

A related problem occurs in our next example that intends to read the first byte of str
using p->a, the next 2 bytes using p->b, and finally the next 8 using p->c:

class SomeData3 {
public:
 char a; // offset 0 from beginning of class
 short b; // offset 2, not 1
 __int64 c; // offset 8, not 3
};

char str [] = "hello there"; // 12 bytes allocated
SomeData3 *p = (SomeData3 *) str;
printf ("buffer contents: %d, %d, %I64d\n", p->a, p->b, p->c); // overflow

The overflow here occurs because individual fields are themselves aligned to a multiple
of their own data-type size, meaning that a short may consume 2, 4, or even 8 bytes
depending on what follows it. It is easy to see then why SomeData3 contains 16 bytes.

To solve this problem, you must pack all sensitive structs (e.g., network headers, any data
sent to another program or kernel) to 1 byte:

#pragma pack(push,1) // save current packing, then change to 1 byte
class SomeData4 {
public:
 char a; // offset 0 from beginning of class
 short b; // offset 1
 __int64 c; // offset 3
};
#pragma pack(pop) // restore old packing

Because packing persists until changed, it applies to all .h files included afterwards. It is
thus critical that you restore default packing after you are done declaring your classes.
In fact, certain system .h files are known to break with incorrect packing, which leads to
strange compiler complaints and unpleasantly long debug sessions.

Working with pointers to unnaturally aligned structs, MSDN recommends using a special
keyword that tells the compiler to optimize its element-fetching routine (this only affects
speed, not correctness of execution):

SomeData4 __unaligned *p = new SomeData4 [100];

 10

2.7 Sizing Data

Instead of hardwiring 4 for the size of an integer or 11 for SomeData4 above, the
recommended approach is to always use sizeof(). This avoids mistakes in manual
computation of object length and allows easy modification to the class without having to
change all hardwired constants.

The main pitfall with sizeof() is that it is often incorrectly applied to pointers:

class Circle {
public:
 double x;
 double y;
 double radius;
};
Circle c, *ptr = &c;
// the next function takes a void pointer and the size of the data
ProcessData ((void*) ptr, sizeof (ptr));

In this case, sizeof returns 4 in Win32/x86 and 8 in x64, while the correct size of the
structure is 24 bytes, regardless of the architecture. The proper version sizes the class
directly and avoids declaring a redundant variable ptr altogether:

Circle c;
ProcessData ((void*) &c, sizeof (Circle)); // sizeof(c) is possible too

2.8 Byte Order

You should be aware of how the CPU stores data in RAM, specifically various integer
types (i.e., short, int, __int64). Two approaches are the least-significant byte (LSB)
first (e.g., Intel, AMD) and the most-significant byte (MSB) first (e.g., Motorola).
Consider string "hello" again. In this case, the memory holds 6 bytes:

0x68, 0x65, 0x6C, 0x6C, 0x6F, 0

Performing a fetch operation on this buffer using an Intel CPU:

int val = *(int*) str;

makes the CPU assume that str points to an integer stored in LSB order and results in
val = 0x6C6C6568. See the following for a more detailed discussion:

http://en.wikipedia.org/wiki/Endianness

Exercise: write an expression that loads the same 4 bytes from the front of str into an
integer, but in MSB order and without knowing the underlying LSB/MSB architecture.

When you need to convert your local representation to MSB (also called network byte
order), you can use networking functions htons (host-to-network short) and htonl (host-

 11

http://en.wikipedia.org/wiki/Endianness

to-network long) that simply flip the byte order on LSB machines and keep the value
unchanged on MSB. Thus, one solution to the last exercise would be:

int val = htonl (*(int*) str);

However, you should think of other ways that do not require any special APIs.

2.9 Operator Precedence

Another source of bugs is incorrect assumptions about operator order. For example:

char str[] = "hello";
int len;

if (len = strlen (str) == 5)
 printf ("good\n");
else
 printf ("something’s shady\n");
// what is the value of len here?

Since assignment has lower precedence than comparison, the above assigns 1 to len if
the string length is 5 and 0 otherwise. Probably the intended meaning was:

if ((len = strlen (str)) == 5)

Another example:

int a = 5 << 3 + 1;

Here, addition has a higher precedence than bit shifting, which results in compiler’s
seeing:

int a = 5 << (3 + 1); // a is now 80 instead of 41

For a complete list, see:

http://en.cppreference.com/w/cpp/language/operator_precedence

2.10 Bit Shifts

Another often overlooked, but powerful, technique involves bit manipulation. In some
cases, bit operations significantly speed up computation (e.g., bit shifting vs
multiplication). In other cases, they are required to read/write individual bits that encode
certain information that the program needs. See the following for the basic syntax and
usage:

http://www.cprogramming.com/tutorial/bitwise_operators.html
http://en.wikipedia.org/wiki/Bitwise_operation

Bit shifts are also often used in assembling numbers from individual bytes. For example,
given two single-byte values, we can create a two-byte number as:

 12

http://en.cppreference.com/w/cpp/language/operator_precedence
http://www.cprogramming.com/tutorial/bitwise_operators.html
http://en.wikipedia.org/wiki/Bitwise_operation

char x = 0x44, y = 0x20; // x is MSB, y is LSB
short z = (x << 8) + y; // z is now 0x4420

While this may work in some cases, there are additional caveats. First, when x is shifted
left, it may exceed the size of the default allocation unit (typically an int, but this might
be compiler-specific) and result in an overflow. It is thus advisable to perform an explicit
cast to the larger datatype before the shift.

int x = 0x44, y = 0x20; // x is MSB, y is LSB
__int64 zA = (x << 32) + y; // overflow!
__int64 zB = ((__int64)x << 32) + y; // correct

Second, when combining bytes declared using a signed datatype, the sign bit gets
propagated with pretty undesirable side effects:

char x = 0xF4, y = 0x20; // x is MSB, y is LSB
int z = (x << 8) + y; // z is now 0xFFFFF420 instead of 0xF420

Thus, it is important to convert each byte to an unsigned datatype before shifting it. With
this in mind, the correct version of the above is:

char x = 0xF4, y = 0x20; // x is MSB, y is LSB
int z = ((unsigned char)x << 8) + y; // z is now 0xF420

It might be temping to directly upconvert x to unsigned int, but that again leads to
problems since 0xF4 is treated as a signed 1-byte number whose sign bit propagates to 4
bytes. Perhaps the safest route is to operate with all-unsigned types:

typedef unsigned char uchar;
typedef unsigned int uint;
typedef unsigned __int64 uint64;

uchar x = 0xF4, y = 0x20; // x is MSB, y is LSB
uint z = ((uint)x << 8) + y; // OK
uint64 w = ((uint64) z << 32) + z; // OK

Similarly, when using chars as indexes into arrays, keep an eye on values above 0x7F
(127 decimal). When the compiler implicitly upconverts them to an int (Win32/x86) or
__int64 (x64), they become negative. For example, the following code incorrectly
computes the histogram of byte frequency:

char str [] = "hello..."; // suppose the string may contain Unicode chars
int hist [256]; // histogram values
memset (hist, 0, sizeof (int) * 256); // init to zero
// the loop runs while str [i] != 0
for (int i = 0; str [i]; i++)
 hist [str [i]] ++; // memory corruption when str[i] > 127

The correct version casts each byte of the string to unsigned char:

 hist[(uchar) str [i]] ++;

or alternatively:

 13

uchar *str2 = (uchar*) str;
for (int i = 0; str2 [i]; i++)
 hist [str2 [i]] ++;

2.11 Access to Bits

Another common task is to access bit groups within a single byte or a larger combination
of bytes. For individual bits, the standard approach is to use bitwise operations:

DWORD value = 0x893784; // some integer
int bit = 3; // which bit to examine, right-most bit is the 0th bit
DWORD mask = 1 << bit;
if (value & mask == 0)
{
 printf ("bit %d is not set! I will set it\n", bit);
 value |= mask;
}
else

printf ("bit %d is already set!\n", bit);

Exercise: fix this fragment to leverage C++ operators in correct order.
Exercise: change the above segment to clear the same bit if it is already set and leave it
untouched otherwise.

For multi-bit groups, bitmasking becomes tedious. An alternative approach is to break the
bytes into bits using structs. Suppose we know the layout of the target memory chunk and
assume it represents the flags that an API returns to us:

int value = GetStatusCode(); // some integer to examine
class Flags {
public:
 int disk:3; // disk code: lowest bits 0-2
 int network:2; // network code: bits 3-4
 int other:27; // remaining 27 bits
};

// interpret the return value as of type Flags
Flags *ff = (Flags *) &value;
if (ff->network == STATUS_OK)
 printf ("operation successful\n");
else

printf ("network error %d\n", ff->network);

For more information, see:

http://www.cs.cf.ac.uk/Dave/C/node13.html

2.12 Large Buffers

A common technique for speeding up and simplifying buffer operations is to use mem*
functions (e.g., memset, memcpy, memcmp). For example:

double data [2000], copy [100];
// make a copy of the first 100 values
memcpy (copy, data, sizeof(double) * 100);

Note that these functions require conversion of array size to bytes using sizeof.

 14

http://www.cs.cf.ac.uk/Dave/C/node13.html

2.13 Static and Dynamic Variables

Recall that static variables are allocated on the stack, dynamic from the process heap:

void f (void) {
 int a [100]; // static
 int *b = new int [100]; // dynamic
}

The reason why this distinction is important is that your code may crash with stack
overflows if you attempt to place huge static arrays into functions. This is especially true
if you are running many Win32/x86 threads, which require small stacks to fit in the 2-GB
limit of a 32-bit process.

C/C++ also have global variables (declared outside of functions), which are considered
bad programming style and should be avoided whenever feasible.

2.14 Purpose of Header Files

Header files in C/C++ are sometimes misunderstood. Their purpose is not to contain
your entire program; instead, they should only define classes and function prototypes
used in other cpp files/modules. If you split your code into say three separate parts –
memory manager, network client, and user interface – each would be written in a separate
.cpp file2. If one of the modules needs services of other modules, it must be able to
instantiate their classes. Then, it would include the corresponding .h file that defines
sufficient information for compilation to succeed. The actual function bodies should be
located in separate .obj files and combined into the executable by the linker.

2.15 String Literals

In C/C++, setting up pointers to char* literals is allowed by the compiler, but this is not
usually recommended. Example:

char *ptr = "hello"; // hello exists in compiler’s immutable space
ptr[0] = 'a'; // crash or unpredictable behavior
memset (ptr, 0, 5); // crash or unpredictable behavior
OtherFunction (ptr); // may crash internally on write

It is possible to prevent the code from compiling in the first two examples by explicitly
defining the pointer as const:

const char *ptr = "hello"; // declared as read-only
ptr[0] = 'a'; // compiler fails
memset (ptr, 0, 5); // compiler fails

2 Templated classes and inline functions are an exception to this rule.

 15

However, if multiple people work on the project, someone else may decide they don’t
like these compilation errors and attempt to override them using explicit casting to non-
const pointers, leading to an eventual crash:

memset ((void*)ptr, 0, 5); // compiles, then crashes
OtherFunction ((char*)ptr); // compiles, then may crash internally on write

The preferred approach is to allocate regular static memory for short strings and dynamic
memory for larger arrays, e.g.,

char ptr[] = "hello";
char *ptr2 = new char [1 << 24]; // 16 MB
strcpy (ptr2, "hello");

2.16 Double Pointers

A common mistake is to inadvertently create a double pointer when a single pointer is
needed:

char *buf = new char [128];
ReadFile (handle, &buf, 128, ...);

This dumps the data on top of variable buf (which is just a pointer) instead of the buffer
it’s pointing to, leading to stack corruption and a crash.

One typical task that actually requires double pointers is creation of arrays of arrays:

int **dbl = new int* [100]; // 100 ptrs to int
for (int i = 0; i < 100; i++)
 dbl [i] = new int [i+1]; // allocate i+1 elements for the i-th pointer

This sets up 100 arrays whose size increases from 1 to 100 elements. It is a good idea to
familiarize yourself with this and even more complex pointer usage.

2.17 Function Arguments

It will be common that your functions require access to some non-trivial-size objects
(e.g., queues, sets). A typical mistake in these cases is to pass the object by value:

set<UINT64> s;
for (int i = 0; i < 1e6; i++)
 s.insert (i*i); // add some initial values to s

int n = 1 << 24; // size of input array = 224
int *inputArr = new int [n];
// count the number of items in array that are squares of other integers
for (int i = 0; i < n; i++)
{
 if (CheckSet (s, inputArr [i]) == true) // true if the set has this item
 count ++;
}
...
bool CheckSet (set<int> s, int val)
{

...
}

 16

Now, notice how the entire set gets copied into the function 16M times within this loop.
Changing CheckSet() to accept a pointer to the set makes the loop run 186K times faster
in debug mode and 925K times faster in release mode.

3. Debugging

This section deals with basic single-threaded debugging techniques and their usage in
Visual Studio. Multi-threading is covered in the next section.

3.1 Debug Mode

A program can be compiled in debug or release mode, which are
toggled by the drop-down menus shown on the right. Either way,
the program can be run in two modes – with or without the debugger attached to the
process. The former case, started with F5, allows you to stop on breakpoints and trace the
program. The latter case, started with Ctrl-F5, generally runs faster, but skips over
breakpoints. The picture above additionally shows how to select the platform, which can
be 32-bit (also known as Win32/x86) or 64-bit (also known as x64). To avoid running out
of RAM, always use the latter.

To set a breakpoint, press F9 on the line where you want the debugger to stop. Once you
have control of the program, you can step through it with either F10 (skipping over
functions) or F11 (going into functions). You also execute Run To Cursor with Ctrl-F10
or Step Out (i.e., exit the current function) with Shift-F11.

To see variable values, you can point to them with the cursor, keeping in mind that the
debugger stops before executing the breakpoint line (e.g.,
the fragment on the right correctly shows the yet-
uninitialized value of z).

3.2 Debug Windows

There is a number of debug windows in Visual Studio. To see them all, run the program
to a breakpoint, then check out Debug  Windows. The most basic of them is the Watch
Window (shown as “Watch 1”) that allows you to see variable values. You can insert
simple expressions into its cells and inspect memory locations. The values can be shown
in both decimal (default) or hex (by appending “,x” after the value):

 17

You can also change the default to hex by right-clicking the white space and selecting
“hexadecimal display.” If you want to add some expression in the program to the watch
window, you can select it and right-click to Add Watch:

The Auto-Watch version (called “Autos”) automatically populates the variables based on
what your code is doing. The Local-Watch (called “Locals”) shows the variables defined
with the scope of the current function. The Immediate Window lets you compute various
expressions using command-line format and even run functions that are members of
existing classes (e.g., queue.size()).

When debugging a crash, perhaps the most useful
window is the Call Stack. It allows one to see the
nested order of function calls that have led to the
crash and unwind the stack to check what
parameters/conditions have produced this sequence of
calls.

Consider the crash example on the right, where the
heap throws a debug assertion. Clicking on Retry,
then Break, shows line 52 of dbgdel.cpp. This by
itself isn’t very useful in fixing the problem; however, examining the call stack

shows that the crash was caused by the delete operator
called around line 87 of main(). Double-clicking main()in
the call stack brings up the portion of code shown on the

 18

right3. The bug is obvious here as the pointer being deleted was not obtained from the
heap, but in more complex cases you can examine variables in this function using the
Watch Window and traverse even further up the stack to see what originated the faulty
condition.

Note that variable values are not available in release mode; however, the call stack works
fine in many cases and allows identification of who called the function that crashed. This
is very helpful when the crash condition occurs inside someone else’s code (e.g., STL)
and you have to roll up the call stack to see what you did to cause this.

3.3 Advanced Breakpoints

In some cases, your code will execute the same fragment for many iterations (e.g.,
millions or billions) without a problem, but will eventually run into something
unexpected and crash. The goal in such cases is to reproduce the exact conditions that led
to the crash and stop the program just before it crashes, not after. This allows you to step
through the crashing scenario and observe how it develops this particular problem.

Consider this fragment driven by an LCG (linear congruential generator), which is a
high-performance random-number generator with a given period:

DWORD val = 0; // random number, initially 0
int period = 1 << 24; // period of LCG, 16M
char *buf = (char*) VirtualAlloc (NULL, 1<<31, ...); // allocate 2 GB
... // initialize buffer
for (int i = 0; i < (1 << 30); i++)
{
 val = (val * 5 + 1) & (period - 1); // next random value
 TweakBuffer (buf, val); // applies some alg to buf
}

Suppose you discover that this program crashes in TweakBuffer() after some number of
iterations. After the crash, you find out (using the call stack and the watch window) that i
equals 80,998,213. Obviously, it is unrealistic to manually step through this loop almost
81M times to catch TweakBuffer on crashing.

The first technique is to use Visual Studio breakpoint facilities. You can right-click the
red ball indicating a breakpoint and select “Conditions...” This opens a box into which
one can type a boolean expression, such as i == 89998213. The code is supposed to
break when this condition becomes true. However, there are two issues with this
approach. First, the debugger sometimes misses the correct condition and does not break
at all. Second, since the debugger basically wakes up for each iteration to check the
condition, your code executes excruciatingly slow. On a 2.8 GHz computer, conditional
breakpoints run at 1160 iterations/sec, meaning that grinding through a loop with 80.9M
steps takes just over 20 hours. While this approach is viable for a handful of iterations, it
becomes inapplicable in general cases.

3 The debugger will usually point the green arrow to the next line after the call that led to the crash since
this is the return value found in the stack. However, in some cases, like with operator delete in this figure,
it may directly identify the location of the call.

 19

The second (correct) technique is to embed an if statement that checks for the desired
condition and then set a regular (unconditional) breakpoint inside of it:

for (int i = 0; i < 1<<30; i++)
{
 val = (val * 5 + 1) & (period - 1); // next random value
 if (i == 80998213)
 int z = 0; // F9 <----- breakpoint in Debug mode goes here
 TweakBuffer (buf, val); // applies some alg to buf
}

Ignoring the overhead of TweakBuffer, this version gets through 80.9M iterations and
breaks on the desired condition in 160 ms.

3.4 Debug Too Slow

In certain cases, the debug-mode version of your program takes too much time to crash.
This often occurs when you have a large number of iterations with calls to libraries that
implement extravagantly meticulous debug checks, with two typical cases being STL and
new/delete. For debugging in release mode, which normally does not show correct
variable values, see the following:

https://docs.microsoft.com/en-us/cpp/build/how-to-debug-a-release-build?view=vs-2019

3.5 Typical Errors

Many standard libraries throw debug assertions as a way to prevent a crash at some later
point. Most of these are memory-related, such as heap/stack corruption, deletion of
invalid pointers, and bad_alloc (e.g., due to insufficient RAM). In some cases, they
indicate conditions that potentially lead to a bug (e.g., usage of uninitialized variables).

In release mode, debug assertions are ignored and your program is left to crash in some
other (possibly unrelated) location, which makes debugging harder. In some scenarios,
however, the release mode may not crash at all, which does not by itself mean the code is
safe. Instead, successful execution simply shows that the bug did not surface in ways that
the CPU, runtime libraries, or the kernel were able to notice.

In addition to assertion failures, there are also hard-crash conditions (exceptions) that the
CPU throws and the debugger catches, the most common of which is an access violation
(i.e., reading from/writing to an invalid pointer).

If you run into attempts to execute an invalid instruction or a data segment, the most
likely cause is your stack getting wiped and the return address of some function pointing
to garbage. In such cases, you should check where you might be overflowing a static
array declared on the stack.

Stack overflows is another common crash condition that arises when you place too much
data into local variables inside functions and/or recurse too much. Any array larger than a

 20

https://docs.microsoft.com/en-us/cpp/build/how-to-debug-a-release-build?view=vs-2019

couple of KB should be allocated dynamically from the heap. While the default thread
stack in Windows is 1 MB, homework sometimes requires lowering this to 64 KB, which
leaves little room for large local arrays.

It is important to remember that release and debug builds result in different versions of
the program (e.g., due to optimizations and reordering of instructions) and apply different
initialization to buffers, which explains why crashes seen in one type of build may go
unnoticed in another. Thus, you should always verify your results in both.

3.6 Magic Numbers

When you print your variables in hex and see these special cases, you can easily detect
where they came from:

cdcdcdcd, baadf00d uninitialized heap memory
cccccccc uninitialized stack memory
abababab, fdfdfdfd heap guard blocks
feeefeee freed heap memory

You should back-trace to the first occurrence of these values in your printouts and find
out how they come about. For a longer list, see:

http://en.wikipedia.org/wiki/Magic_number_(programming)

3.7 When the Debugger is Insufficient

While the debugger is very useful in general, there are conditions it cannot help with. The
best type of bug is the one that results in a crash and leads you to the exact line that you
need to fix. However, in certain cases, the program may deadlock or produce an incorrect
result without explicitly crashing. In these situations, you have the oldest and still most
powerful debugging tool at your disposal – printf. To find out where the code
deadlocks, you can scatter printfs across the program and see the last printout before
the code hangs. Some of this functionality can also be accomplished by breaking into a
hanging program from the debugger (start with F5, then DebugBreak All…) and
examining the call stack, which should tell you what the program is currently doing.

When Break All fails to produce anything useful, as well as when debugging correctness
of your algorithms, a common route is to create a detailed trace of what your code has
been doing and how it got to the final (incorrect) output. Start with printing a message for
every major step, action performed, and variables involved. Then sit down with a piece of
paper and trace by hand what the correct sequence should have been. Once you identify
the step where things go wrong, add more printouts targeting specifically that step and its
substeps (if any). For this to be feasible, the input parameters to the program must result
in a small-enough computation that you can manually trace.

3.8 When Printf is Insufficient

 21

http://en.wikipedia.org/wiki/Magic_number_(programming)

For every debugging technique, including printf, there is code that defeats it. In
addition, even if printf eventually leads to finding the bug, in some cases it might
require such an enormous amount of time that the whole approach becomes infeasible. In
such cases, you can unleash the divide-and-conquer technique on the program, which
entails commenting out large chunks of the code, patching the remainder to run, and
observing what combinations of code exhibits the flaw. In some scenarios, this also
requires replacing certain components with equivalent constructs written by others. For
example, consider:

for (int i=0; i < 1e9; i++)
{
 DWORD x = GetSomeVal (i);
 if (hashTable.Find (x) == NOT_FOUND)

{
 hashTable.Add (x);
 queue.Push (AnotherFunction (hashTable.Find (x+2), i, buf));
 }
 ComputeStats (buf);
}

When this loop runs and eventually produces something incorrect, the starting point is to
understand what is causing the bug – GetSomeVal, hashTable.Add,
hashTable.Find, queue.Push, AnotherFunction, or ComputeStats. To rule out
cross-function contamination, one could start by commenting out ComputeStats and
seeing if the other functions work as expected. If the bug persists, you can then replace
your version of the hash table and queue with STL and so on. By narrowing down the
cause of the problem, you can then zoom into the specific (buggy) function and repeat the
same process therein.

Of course when there are multiple bugs in different functions that create errors in the
final result only through interaction with each other, this process may take longer.

3.9 Debugging Small Chunks

One code-development technique, often seen in CS homework, is to write (sometimes on
paper) the entire program before even trying to compile it. While this might be fine for
tiny programs, writing lots of code at once is poorly scalable (i.e., does not work for large
programs) and is a debugging nightmare as the programmer faces a huge codebase full of
bugs on the very first run. If we assume that a function contains k bugs on average and
the debugging complexity scales quadratically with the number of bugs, the overall
workload involved in debugging a complete N-function program is (Nk)2.

A much better approach is to come up with some initial high-level design, but then
perform code development in stages that are closely coupled with debugging. Placing the
various functional pieces into separate functions/classes and debugging them as soon as
practically possible allows the programmer to apply divide-and-conquer principles to the
development complexity and keep the total debugging workload at Nk2 instead of (Nk)2.

Furthermore, early debugging allows the programmer to better reason about the problems
they are facing and dynamically redesign the remaining pieces to better suit the

 22

environment in which the program is expected to run. Unless this is a repeat of an earlier
task, coding often requires a gradual knowledge build-up before the programmer can
achieve an in-depth understanding of the conditions returned by the various APIs,
deadlock possibilities, synchronization failures, and various avenues for optimization.
Thus, early debugging may allow a significant reduction in development time and may
prevent the need to rewrite large chunks of code that were designed on paper without
fully understanding the underlying solution.

3.10 Testing

While both writing code and finding crash-related bugs are important, one must also
come up with sufficient test cases to verify that the program is robust to various types of
input. It is recommended that all new code be stepped through with F10 and the
operational logic be checked along each branching path (i.e., for different inputs that
trigger those paths). Until the code has been extensively verified, it should not be
considered correct.

Poor testing and/or lacking effort to anticipate API/user behavior makes your code easy
to break, which is not a desirable property.

3.11 Memory Leaks

Visual Studio can be configured to show leaked memory in the Output window after the
program terminates (run with F5 under debugger), including block size and memory
contents. However, it does not tell you the name of the variables or where the allocation
took place. To do more advanced debugging, use Visual Leak Detector:

https://kinddragon.github.io/vld/

For VS 2017 and later, additional linker options may need tweaking in order to be able to
double-click the output and see where the leaked blocks were allocated:

https://stackoverflow.com/questions/44708137/visual-leak-detector-with-visual-studio-
2017-no-source-code-line-numbers

3.12 CRT Debug Heap

It is sometimes convenient to let the program periodically check for heap corruption and
throw an exception as soon as something abnormal is detected. This can be done using a
special version of the heap that checks for consistency on every call to memory-related
functions (e.g., new/delete, malloc/free). Example:

#include <crtdbg.h>

main ()
{

_CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_CHECK_ALWAYS_DF);
 char *p = new char [100];
 memset (p, 0, 120); // corruption here

 23

https://kinddragon.github.io/vld/
https://stackoverflow.com/questions/44708137/visual-leak-detector-with-visual-studio-2017-no-source-code-line-numbers
https://stackoverflow.com/questions/44708137/visual-leak-detector-with-visual-studio-2017-no-source-code-line-numbers

 printf (“Finished\n”);
 }

The debugger will throw an assert failure on the last line of main, because printf uses
internal calls to malloc. However, if you had a ton of code between memset and printf,
this result may be largely useless.

It should also be noted that calls to new/delete in the debug heap are extremely slow.
This may completely prevent usage of this strategy on certain projects (i.e., those that
manipulate huge amounts of data).

3.13 Page Heap

While the debug heap is useful in many cases, it does not always help locate the bug. As
explained above, this happens if the delay between memory corruption and the next
new/delete request is large. A more powerful tool is the page heap, which places an
inaccessible page immediately after each buffer that is returned by new/malloc. In such
cases, exceeding array boundaries immediately crashes the program (at least in theory,
some exceptions apply). To enable the page heap on a particular process:

1) Find gflags.exe in your Windows SDK (e.g., C:\Program Files (x86)\Windows
Kits\10\Debuggers\x64). Visual Studio sometimes installs an incomplete version of the
kit, which doesn’t have gflags. This can be fixed by visiting

https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk

2) Run gflags /p /enable yourprogram.exe /full

3) Run the program in Visual Studio using F5 (under debugger) and wait for it to crash
with an access violation. The location of the crash should indicate where the bug is.

After you are done, run gflags /p /disable yourprogram.exe

Additional links:

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags

https://stackoverflow.com/questions/2470131/visual-studio-how-to-find-source-of-heap-
corruption-errors

4. Multi-Threading

This section deals with multi-threaded debugging. In general, there are no good ways of
debugging parallel programs as the most basic tools (such as stepping-thru or
breakpoints) become useless. In fact, concurrent programs are usually highly sensitive to
timing effects and may not run into any problems if the debugger alters their execution.

 24

https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags
https://stackoverflow.com/questions/2470131/visual-studio-how-to-find-source-of-heap-corruption-errors
https://stackoverflow.com/questions/2470131/visual-studio-how-to-find-source-of-heap-corruption-errors

 25

Your first goal should be to separate general algorithmic flaws from concurrency bugs,
eliminating the former before you attempt to catch the latter. In practice, this translates
into running code with one thread and verifying that it produces the desired outcome. If
bugs persist in single-threaded mode, you know they are not related to synchronization
and can be tackled using techniques in the previous section.

Once you have a perfectly working single-threaded program, the next step is to start
adding threads and keeping track of the conditions that lead to the problem (e.g., more
than 1000 threads crash). The goal here is to find the minimum number (ideally just 2)
that allows you to see the problem. Once you settle on this number, make sure the
conditions are easily reproducible (e.g., by tweaking the input or running on small
datasets) such that you do not have to wait a long time to experience the problem.

The final step is to sprinkle printf statements all over the program and start tracking
what it is doing. The goal is to identify the first deviation from the correct operation and
then stop the program just before it reaches a faulty state. For example, suppose your
program searches a graph with 1 billion nodes using BFS and discovers the exit at
incorrect distance 11 after crunching through 700M nodes. Since it is impossible to
directly detect which of the 700M steps was incorrect, you should start by verifying that
the number of nodes at each depth makes sense (e.g., by comparing to some reference
output or computing it manually). If you detect that your depth-2 result contains 302
nodes instead of the correct 299, you can significantly reduce the scope of the problem
and refocus your energy on just the first 300 nodes. In CSCE 313, you can request an
entire trace of nodes in the order they should be discovered and catch your program when
it deviates from this list.

If at any point you need to find out what your threads are currently doing, stop the
program on a breakpoint (or break into it) and use the Threads Window (Debug 
Windows  Threads). This is quite helpful in debugging multi-threaded deadlocks.

