CSCE 463/612

Networks and Distributed Processing
Spring 2024

Application Layer V

Dmitri Loguinov
Texas A&M University

February 16, 2024




Chapter 2: Roadmap

2.1 Principles of network applications
2.2 Web and HTTP
2.3 FTP

2.4 Electronic Malil
- SMTP, POP3, IMAP

2.5 DNS
2.6 P2P file sharing




Replace A with AAAA for IPv6

DNS Records

DNS: distributed database of resource records (RR)

(name, value, type, ttl)

 Type A  Type CNAME
- name = host - name = host
- value = |IPv4 address - value = host it’s aliased to
(4 byte DWORD) - Reduces manual effort to
e Type NS change IPs and other records
- name = domain * Type MX
- value = hostname of - name = domain
authoritative name - value = name of SMTP server

server for this domain associated with domain




Reverse Queries

 Reverse DNS lookups are performed using a special
construction of a fake DNS name

- Reason: DNS resolves names from right to left with the
semantics of going from the most general to the most specific

- In IPs, the MSB is most general, LSB is most specific

 The IP address is reversed and is followed by
“in-addr.arpa” (or “ip6.arpa” for IPv6)

- Example: 128.194.135.65 is requested as
65.135.194.128.in-addr.arpa

- The query type must be set to PTR
« RFC 1035 (1987) describes DNS headers/commands

- Also see http://www.networksorcery.com/enp/protocol/dns.htm




DNS Protocol, Messages

 Query and reply messages use same format
- Packet starts with a fixed DNS header (12 bytes)

- Followed by a variable-length section
4 bytes

 Transaction ID (TXID) < >
- 16-bit number assigned TXID flags ‘
by client to each query nQuestions nAnswers -
— Echoed by server in nAuthority | nAdditional | | vies

response packet : | |
questions (variable size)

* Flags specify the type of
request being made
and response status

* The other 4 fields provide
a count of records in each variable-size section

answers (variable size)

authority (variable size)
additional (variable size)

(&)}




DNS Protocol, Messages

TXID flags

» Queries contain only the nQuestions | nAnswers

nAuthority nAdditional

guestion section

- Most servers expect questions (variable size)

one question per packet answers (variable size)

. Response packets always authority (variable size)
repeat the question

additional (variable size)

- Safety mechanism if TXID runs into collision at the client

 Authority section carries NS record(s)

- Used during iterative lookups to specify the next DNS
server to query (similar to HTTP redirects)

* All numbers are in network byte order
- Use proper conversion (i.e., htons() in this case)




DNS Flags

QR (1) | opcode (4) | AA(1) | TC(1) | RD (1) | RA(1)| reserved (3) result (4)

: : T |

0 = query authoritative recursion recursion 0 = success
1 = response answer desired available 1 = format error
2 = server fall
0 = standard query truncated 3= noDNS name
response

* For binary fields, 1 = true and 0 = false

* For query packets:
- Set RD = 1; all other fields are zero
- Specify nQuestions = 1

- Correctly create the actual question and append it to the
header in the packet buffer




Nslookup Usage (Windows)

* nslookup -querytype=mx cs.tamu.edu

cached
answers
and
additional
records

Address: 128.194_.135_.72

Non-authoritative answer:
cs.tamu.edu MX preference
_r cs.tamu.edu MX preference

Server: gw.irl.cs.tamu.edu

smtp-relay.tamu.edu internet address
pine.cs.tamu.edu internet address

100, mail exchanger = smtp-relay.tamu.edu
10, mail exchanger = pine.cs.tamu.edu

165.91.143.199
128.194.138.12

* nslookup -querytype=hinfo cs.tamu.edu

Server:
Address:

cs.tamu.

gw.irl._cs.tamu.edu
128.194.135.72

edu

primary name server = dnsl.cs.tamu.edu
responsible mail addr = root.cs.tamu.edu

serial = 2006090513
refresh = 1800 (30 mins)
retry = 900 (15 mins)
expire = 1209600 (14 days)

default TTL = 3600 (1 hour)

smaller preference
value means higher —
priority




Nslookup Usage (Windows)

* nslookup -querytype=ptr 12.138.194.128.in-addr.arpa

Server: gw.irl_cs.tamu.edu
Address: 128.194.135.72
Non-authoritative answer:
12.138.194.128.in-addr.arpa name = mail.cs.tamu.edu nSIOOkUp performs
12.138.194.128.in-addr.arpa name = pine.cs.tamu.edu string reversal
12.138.194.128.in-addr.arpa name = pophost.cs.tamu.edu
12.138.194.128.in-addr.arpa name = mailhost.cs.tamu.edu transparenﬂy, but
12.138.194.128.in-addr.arpa name = pop.cs.tamu.edu hw2 will need to do
12.138.194.128.in-addr.arpa name = imap.cs.tamu.edu . . .
this explicitly
* nslookup -querytype=ptr 12.1.55.186
Server: sl8.irl.cs.tamu.edu v
Address: 128.194.135.58
Non-authoritative answer:
186.55.1.12.in-addr.arpa canonical name = 186.184/29.55.1.12.1n-addr.arpa
186.184/29.55.1.12.in-addr.arpa name = outlook.milestonescientific.com




Using UDP

 DNS runs over UDP that has no connection phase
- Each request and response is exactly 1 packet

- Calls to recvfrom() and sendto() correspond to receiving/
sending 1 packet from/to a socket

- No need to loop on receive
* General idea:

sock = socket (AF_INET, SOCK_DGRAM, 0);
// bind sock to port O — see the handout
len = CreateRequest(buf, hostname);
while (work to be done) {
sendto (sock, buf, len, 0, &addressTo, ...);

iIfT (select (...) >0) {
recvfrom (sock, recvBuf, ..., O, &addressFrom...);
parseResponse (recvBuf);
ks
s

closesocket (sock);




TXID flags
nQuestions nAnswers

Homework #2 nAuthority | nAdditional

questions (variable size)

* Unlike HTTP, all fields are binary e (ke )

- Make sure to refresh pointer usage i (e S
* Question format: additional (variable size)
stry size stry stry, size stry, 0 Query type Query class
1 byte 1 byte ) 2 bytes - 2 bytes i
) question >
* Create structs for fixed headers class QueryHoader €
~ Fill in the values (flags: DNS_QUERY i Short crass:
and DNS_RD, nQuestions = 1) 3
- Allocate memory for the packet class et o aer
- Write question into buffer CShort queotions:
Y 11




Homework #2

* High-level operation for DNS questions:

char packet [MAX DNS LEN]; // 512 bytes i1s max
char host[] = “www.google.com™;
int pkt_size = strlen(host) + 2 + sizeof(FixedDNSheader) + sizeof(QueryHeader);

// Tixed fTield initialization

FixedDNSheader *dh = (FixedDNSheader *) packet;

QueryHeader *gh = (QueryHeader*) (packet + pkt_size - sizeof(QueryHeader));
dh->1D = ...

dh->flags = ...

gh->type = ...
gh->class = ...

// Till In the question
MakeDNSquestion (dh + 1, host);
// transmit to Winsock

sendto (sock, packet, ...);

 |If packet is incorrectly formatted, you will usually get no
response; use Wireshark to check outgoing packets

12




class DNSanswerHdr {
u_short type;

Homework #2

u_short len;

j

 Formation of questions:

makeDNSquestion (char* buf, char *host) {
while(words left to copy){
buf[1++] = size of next word;
memcpy (buf+i, next word, size of next word);
1 += size of next word;

+
buf[1] = O; // last word NULL-terminated

}
« Answers start with an RR name, followed by a fixed
DNS answer header, followed by the answer itself

- Uncompressed answer (not common)

Ox3 ““irl” 0x2 “cs” 0x4 “tamu” Ox3 “edu” 0Ox00
<DNSanswerHdr> <ANSWER>

- Compressed (2 upper bits 11, next 14 bits jump offset)
OxCO 0Ox0C <DNSanswerHdr> <ANSWER>

* For type-A questions, the answer is a 4-byte IP

13



Homework #2

class DNSanswerHdr {
To check the header CShore oypet.
— Hex printout on screen N ushort Tan:
- Wireshark

What is sizeof(DNSanswerHdr)?

- The actual size is 10 bytes, but the compiler will
align/pad it to 4-byte boundary (so 12)

Remember to change struct spragma pack(push. 1)

// define headers here

paCklng Of a” ClaSSGS that deflne #pragma pack(pop)

binary headers to 1 byte

Caveats (must be properly handled):
- Exceeding array boundaries on jJumps
- Infinite looping on compressed answers

14



Homework #2

 How to check if compressed and read 14-bit offset?
- Suppose array char *ans contains the reply packet
- The answer begins within this array at position curPos

14 bits
char *ans; // points to reply buffer char *ans; // points to reply buffer
iIT (ans [curPos] >= 0xCO) 1T ( (ans [curPos] >> 6) == 3)
// compressed; so jump // compressed; so jump
else else
// uncompressed, read next word // uncompressed, read next word

// computing the jump offset
int off = ( (ans[curPos] & Ox3F) << 8) + ans|curPos + 1];

* The first two checks will generally fail
- Use only unsigned chars when reading buffer! 15




Homework #2

* Note that jumps may appear mid-answer
Ox3 “i1rl” OxCO Ox22 <DNSanswerHdr> <ANSWER>

« Jumps may be nested, but must eventually end with a
0-length word

- Need to remember the position following the very first jump
so that you can come back to read DNSanswerHdr

* Replies may be malicious or malformatted
- Homework must avoid crashing

 If AAAA (IPv6) answers are present, skip

- Use DNSanswerHdr: : Ien to jump over unknown types

» Caution with TAMU VPN

- Malformed packets are filtered out
16




	CSCE 463/612�Networks and Distributed Processing�Spring 2024
	Chapter 2: Roadmap
	DNS Records
	Reverse Queries
	DNS Protocol, Messages
	DNS Protocol, Messages
	DNS Flags
	Nslookup Usage (Windows)
	Nslookup Usage (Windows)
	Using UDP
	Homework #2
	Homework #2
	Homework #2
	Homework #2
	Homework #2
	Homework #2

