<u>CSCE 463/612</u> <u>Networks and Distributed Processing</u> <u>Spring 2024</u>

Application Layer VI

Dmitri Loguinov Texas A&M University

February 21, 2024

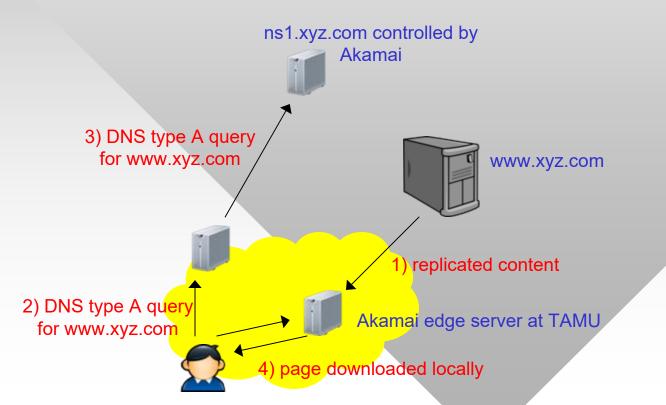
Chapter 2: Roadmap

2.1 Principles of network applications
2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

SMTP, POP3, IMAP

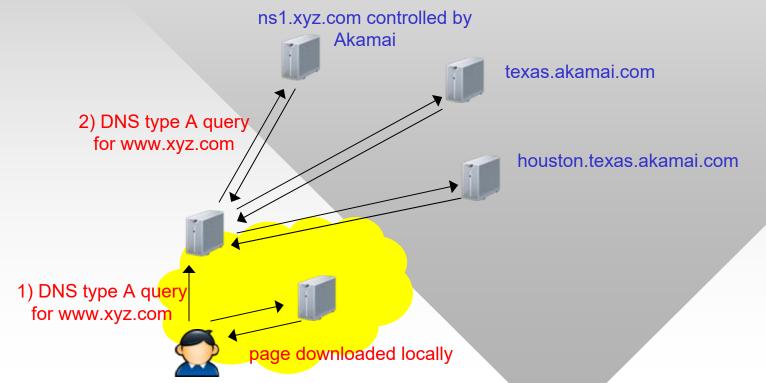
2.5 DNS (extras)
2.6 P2P file sharing

CDNs


- Content Distribution Networks (CDNs)
 - Push replicated content (files, video, images) towards edges
 - Distributed system of application-layer servers
- One of the pioneering CDNs is Akamai
 - J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl, "Globally Distributed Content Delivery," IEEE Internet Computing, Sep/Oct 2002.

www.xyz.com

 Desired model of operation: replicated content HTTP GET Akamai edge server at TAMU


<u>CDNs 2</u>

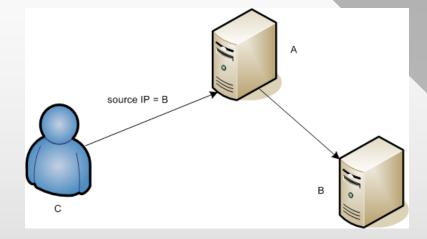
- How to direct user to closest replica?
 - Akamai relies on DNS to bounce the user to the best server
 - Based on location of local resolver finds the best server (e.g., using distance, load, latency, available bandwidth)

<u>CDNs 3</u>

- How many servers are there?
 - Around 365K in 135 countries and 1350 networks
- Often Akamai produces long redirect chains
 - Usually through CNAMEs based on the IP of local resolver

- One research problem in CDNs is how to determine best edge server for the user
 - If multiple options are present, which one is better?
 - What if closest server is overloaded?
 - Not all servers have every possible version of content
 - Need to account for ISP agreements on bandwidth
- Example:
 - Lookup from Germany gives out an IP in Frankfurt

www.dhs.gov CNAME www.dhs.gov.edgekey.net
www.dhs.gov.edgekey.net CNAME e4340.dscg.akamaiedge.net
e4340.dscg.akamaiedge.net A 23.45.237.161 (TTL 20 seconds)


- Same lookup from TAMU produces an IP in Dallas

<u>CDNs 5</u>

- One pitfall of CDNs is that distance from user to their local resolver is generally unknown
 - May lead to inaccuracies for large ISPs
- Another drawback is long resolution chains
 - 15 CNAMEs back-to-back is not just huge latency, but also prone to incorrect configuration, dead-ends, loops
 - Caching helps with latency, but Akamai uses extremely small TTLs (e.g., 20 sec), so might still be an issue
- Useful online tools
 - dnswatch.info shows a full trace of lookups from the root
 - ip2location.com, ipgeolocation.io map IPs to country/city
 - Registrars (e.g., ARIN, RIPE) allocate subnets; their whois database can be used to map IPs to owner networks

DNS Vulnerabilities

- <u>Terminology</u>: IP spoofing
 - Packets with fake source IP

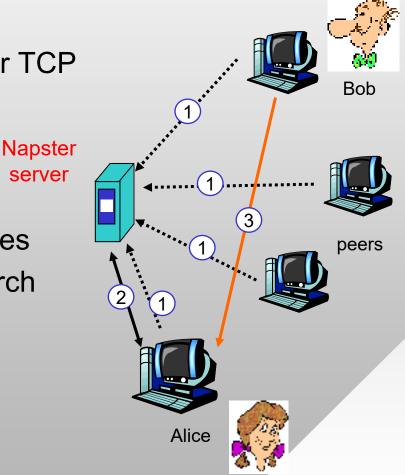
- For spoofing to work, ISP network of attacker must allow such packets to depart
 - Robert Beverly, Arthur Berger, Young Hyun, and K Claffy, "Understanding the Efficacy of Deployed Internet Source Address Validation Filtering," ACM IMC, 2009
 - Of 12K IPs tested, 31% were able to spoof (18% across the US, 5% for edu and home networks)
- TCP spoofing is hard
 - Almost impossible to complete the handshake without knowing parameters of the response packet (only B sees them)
- However, UDP spoofing is easy

DNS Vulnerabilities 2

- <u>Terminology</u>: amplification attacks
 - Hacker transmits small packets to intermediate hosts, which then generate more traffic towards the victim
 - Relies on spoofing the IP of the victim
 - Difficult to trace as the attacker remains hidden
- DNS amplification (1999)
 - Short questions produce large replies, combined with spoofing
 - Large reply = many answers or additional records
- How much amplification can be achieved?
 - IP+UDP+DNS headers = 40 bytes, question \approx 15 bytes
 - Maximum reply is 512 bytes over UDP, ratio 9.3:1
 - 1 Mbps upstream bandwidth per attacker host \rightarrow 9.3 Mbps

Chapter 2: Roadmap

2.1 Principles of network applications
2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

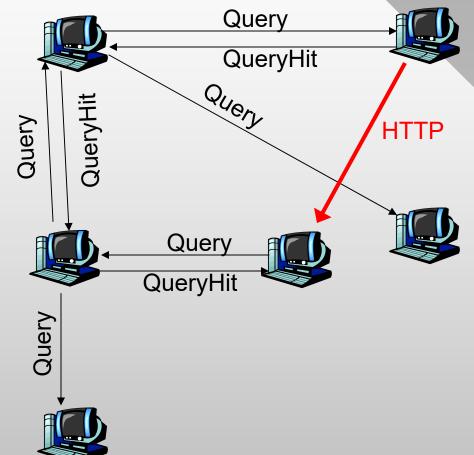

SMTP, POP3, IMAP

2.5 DNS
2.6 P2P file sharing

Hybrid P2P

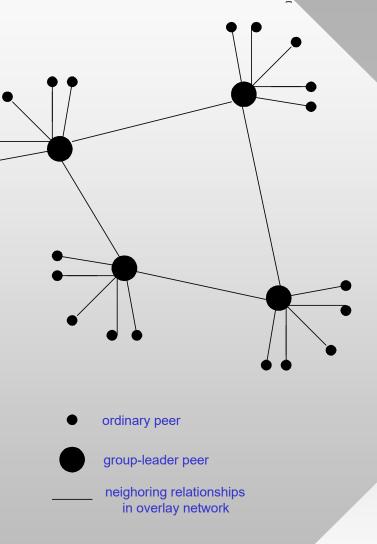
- Napster (1999)
 - Application-layer protocol over TCP
 - Centralized directory server
- Sequence of steps
 - Connect to server, login
 - Upload your IP/port + list of files
 - Give server keywords for search
 - Select "best" answer (ping)
 - Download from peer
- Single point of failure
- Performance bottleneck
- Target for litigation due to copyright infringement

server


Decentralized P2P

- Napster folded in 2002
 - Other P2P systems took over (Gnutella, KaZaA, BitTorrent, eDonkey)
- Gnutella/0.4 (2001)
 - Public-domain protocol
 - Fully distributed design
- Many Gnutella clients implementing protocol
 - Limewire, Morpheus, BearShare

- How to find content?
- <u>Idea</u>: construct a graph
 - Edge between peer X and Y if there's a TCP connection between them
- All active peers and edges are called an overlay network
 - Peer typically connected to < 30 neighbors
- Search proceeds by flooding up to some depth
 - Limited-scope flooding


Decentralized P2P

- Queries are P2P
 - Inefficient due to huge volumes of traffic
 - Average degree k, depth of flood d, overhead (k-1)^d
- Downloads are P2P from a single user
 - Unreliable (peer departure or failure kills transfer)
 - Inefficient (asymmetry of upstream/downstream bandwidth)
- Join protocol (bootstrapping)
 - Find an entry peer X, flood its neighbors to obtain more candidates, establish connections to those who accept

Hierarchical P2P

- Gnutella/0.4 scaled to about 25K users and then choked
- Alternative construction
 proposed by KaZaA (2002)
 - Peer is either a group leader (supernode) or assigned to one
- Group leader tracks the content of all its children, acting like a mini-Napster

- Peers query their group leaders, which flood the supernode graph until some number of matches found
- Query-hits not routed, but sent directly to original supernode

Hierarchical P2P

- With 150 neighbors, this architecture is 150x more efficient than Gnutella/0.4 in message overhead
 - With 389M downloads as of 2008, KaZaA was more popular than Napster ever was, accounting for 50% of ISP bandwidth in some regions and running 3M concurrent users
- Gnutella/0.6 soon adopted the same structure
 - Scaled to 6.5M online users, 60M unique visitors per week
- Additional features
 - Hashed file contents to identify exact version of files
 - Upload and request queuing at each user, rate-limiting
 - Parallel downloads from multiple peers
 - Support for crawl requests that reveal neighbors

Other P2P

- <u>Terminology</u>: user holding a complete file is a <u>seed</u>
 - Traditional systems download only from seeds
 - Seed departs, transfer fails
- <u>Idea</u>: let non-seeds grab chunks from each other
 - Peers organize into a group (torrent) based on the file they're downloading
- Traditional systems
 download files sequentially
 - Starvation for final blocks

- <u>Idea</u>: maximize availability
 - Participants forced to serve chunks they have to others
 - Rarest chunk in torrent is always replicated first
 - Known as BitTorrent (2001)
 - Protocol with many implementations
 - Requires trackers to keep torrent membership
 - Had more concurrent users that YouTube and Facebook combined
 - Built-in incentives to share
 - Rate-limiting (choking) based on upload activity

Other P2P

- Tor (Onion Router)
 - Anonymity network of peers
- Each packet sent through a random chain of P2P nodes
 - Final user relays packet towards destination
 - Return packets processed similarly along reverse path
- Tor can be run thru an API
 - Extremely slow
 - Many exit points are known and blocked by Google
- Roughly 36M users

- Freenet
 - Anonymous information exchange, hiding identities of communicating parties
 - Original Skype chat
 - Video streaming services either directly between users or relayed through non-firewalled peers
 - **Distributed Hash Tables**
 - General class of P2P systems that map information into highdimensional search space with guaranteed log(N) bounds on delay to find content ¹⁷