CSCE 463/612

Networks and Distributed Processing
Spring 2024

Transport Layer

Dmitri Loguinov
Texas A&M University

February 23, 2024

Chapter 3: Transport Layer

Our goals:

« Understand principles behind
transport layer services:

Application (5)

Multiolexina/demultiplexi Transport (4)
— Multiplexing/demultiplexing

- Reliable data transfer Netwc.)rk (3)
— Flow control Data-link (2)
- Congestion control Physical (1)

* Learn about transport layer
protocols in the Internet:
- UDP: connectionless transport
- TCP: connection-oriented transport

Chapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

- Segment structure

- Reliable data transfer

- Flow control

- Connection management
3.6 Principles of congestion control
3.7 TCP congestion control

Transport Services and Protocols

* Transport layer: logical pplk
communication e [oot <
between processes on B O %
different hosts o % N
- Relies on and enhances O —
network-layer services Rgetor
ical

* Network layer: logical
communication ranspor

application

between hosts CE Cg o

Internet Transport-layer Protocols

Reliable, in-order
delivery: TCP

- Congestion control
- Flow control

- Connection setup

Unreliable, unordered
delivery: UDP

- No-frills extension of “best-
effort” IP

Services not available:
- Delay or loss guarantees
- Bandwidth guarantees

application

network

data link

physical

network

data link

physical

network

data link

7

o7

physical

network

N{ data link

physical

A etwork

O link

E2

<

application

network

data link

physical

Chapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

- Segment structure

- Reliable data transfer

- Flow control

- Connection management
3.6 Principles of congestion control
3.7 TCP congestion control

Multiplexing/Demultiplexing
Demultiplexing at receiver host:

Gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Delivering received segments
to correct socket

[| =socket (D =process

application application application
transport transport transport
network network network
link link link
physical v physical

host 1 host 2 host 3

How Demultiplexing Works

 Host receives |IP datagrams

- Each datagram has source IP
address and destination IP
address

« Each datagram carries one
transport-layer header
- Transport header starts with

source and destination port
numbers

« Kernel uses port numbers to
direct packets to appropriate
socket or reject the message

- Each port # is a 16-bit
unsigned integer (1-65535)

source port # dest port #

Transport header

application
data
(message)

TCP/UDP segment format

Connectionless Demultiplexing

 \When host receives UDP
segment:

- OS checks destination
port/IP in segment

— Directs segment to the
socket with a matching

 Create a SOCK_DGRAM
socket
 Bind the socket

- Server: specify a well-known
port (e.g., 53 for DNS)

= Client: bind to port 0 (OS combination if socket is
assigns next available #) open: rejects otherwise
« Use SendtO(), reCVfrom() e |IP datagrams with
« Target UDP socket is different source IP
identified by a 2-tuple: addresses and/or source
(dest IP address, dest port' port numbers may be
number) directed to the same

socket! 9

Connectionless Demultiplexing (Cont

SP = source port, DP = destination port

SP: 6428 SP: 6428
DP: 9157 DP: 5775
C-2>A C->B
SP: 9157 SP: 5775
client DP: 6428 server DP: 6428 client
IP: A A>C IP: C B>C IP: B

SP provides “return address”

10

Connection-Oriented Demultiplexing

 TCP socket identified « Servers: possible to have

by a 4-tuple: multiple TCP sockets with
— Source IP address same port number:

- Source port number - Each socket identified by its
- Destination IP address own 4-tuple

- Destination port number * VWeb servers have
Receiver host uses all different sockets for each
four values to find connecting client
appropriate socket = All'are on port 80

Clients: each socket - Non-persistent HTTP may

have different socket for

must have unique port each request

11

Connection-Oriented Demultiplexing (Cont

Web server spawns a new process per connection

port 80
— 5775 9153
45 5775 N D 45—5
SP: 5775

DP: 80

S-IP:B

D-IP:C

SP: 5775 SP: 9153
client DP: 80 server DP: 80 client
IP:A | SIP:A IP: C S-IP: B IP: B
D-IP:C D-IP:C

SP = source port, DP = destination port;
S-IP = source IP, D-IP = destination IP

12

Connection-Oriented Demultiplexing (Cont

Web server spawns a new thread per connection

5775

9153

client
IP: A

SP = source port, DP = destination port;

SP: 5775

DP: 80

S-IP: A

D-IP:C

port 80
— 5775
SP: 5775
DP: 80
S-IP: B
D-IP:C
N
SP: 9153
DP: 80
server
IP- C S-IP: B
D-IP:C

S-IP = source IP, D-IP = destination IP

Client
IP:B

13

	CSCE 463/612�Networks and Distributed Processing�Spring 2024
	Chapter 3: Transport Layer
	Chapter 3: Roadmap
	Transport Services and Protocols
	Internet Transport-layer Protocols
	Chapter 3: Roadmap
	Multiplexing/Demultiplexing
	How Demultiplexing Works
	Connectionless Demultiplexing
	Connectionless Demultiplexing (Cont)
	Connection-Oriented Demultiplexing
	Connection-Oriented Demultiplexing (Cont)
	Connection-Oriented Demultiplexing (Cont)

