<u>CSCE 463/612</u> <u>Networks and Distributed Processing</u> <u>Spring 2025</u>

Application Layer II

Dmitri Loguinov Texas A&M University

February 4, 2025

Chapter 2: Roadmap

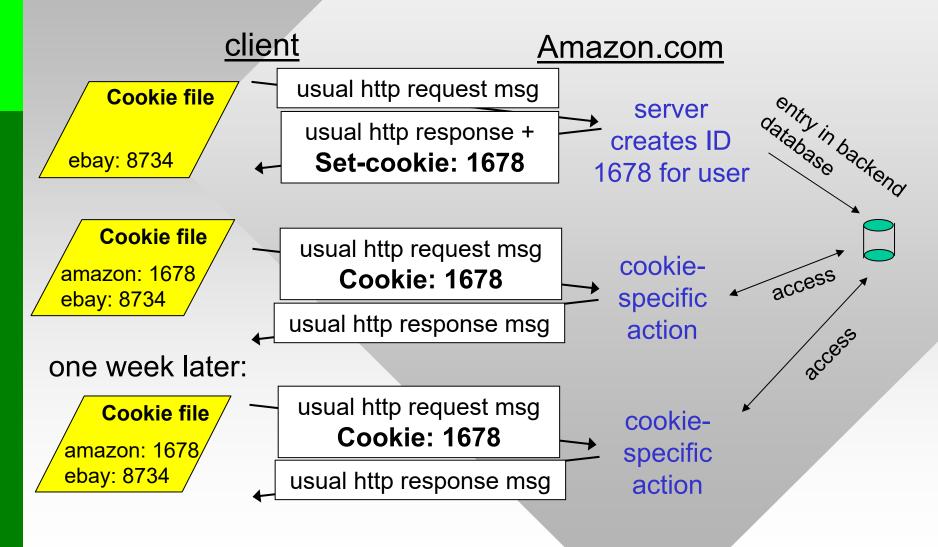
2.1 Principles of network applications

- 2.2 Web and HTTP
- 2.3 FTP
- 2.4 Electronic Mail
 - SMTP, POP3, IMAP

2.5 DNS

2.6 P2P file sharing

- 2.7 Socket programming with TCP
- 2.8 Socket programming with UDP
- 2.9 Building a Web server


User-Server State: Cookies

- User visits the same web site multiple times
 - Doesn't want to type password or make selections each time
- Website remembers info about the user
 - Amazon shopping cart
 - Pages viewed, items bought, credit cards used
 - Zip code and cable channels (tvguide.com)
 - Weather.com (zip)

Four components:

- Cookie header line in the HTTP response message
- Cookie file kept on user's host and managed by user's browser
- Cookie header line in HTTP request message
- Back-end database at website

Cookies: Keeping State

Cookie Example

telnet irl.cs.tamu.edu 80
GET / HTTP/1.0

HTTP/1.1 200 OK

Connection: close

Date: Tue, 4 Feb 2025 18:47:25 GMT

Server: Microsoft-IIS/10.0

MicrosoftOfficeWebServer: 5.0_Pub

X-Powered-By: ASP.NET

Content-Length: 6916

Content-Type: text/html

Set-Cookie: ASPSESSIONIDACSRQCTQ=PIGHLBAAJICJONABJFINMLOA; path=/

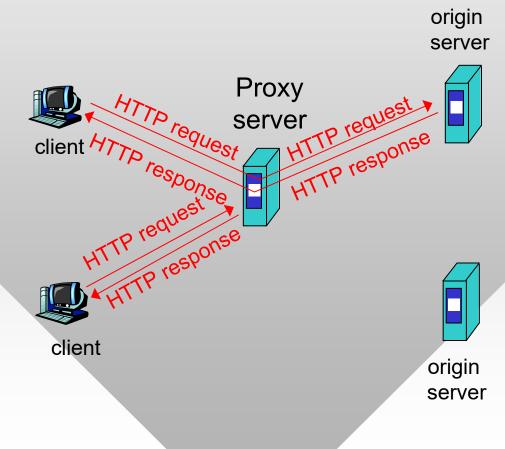
Cache-control: private

Non-persistent cookies expire when browser is closed; *persistent* ones are preserved until a future expiration time ("Expires=" attribute); if multiple cookies provided, each has its own *Set-Cookie* line

path prefix where cookie is valid

cookie value

shared caching not allowed


Cookies (continued)

- Cookie file location is browser-dependent
 - For example, Internet Explorer:
 C:\Users\<user>\AppData\Roaming\Microsoft\Windows\Cookies
 - Impersonation is possible by copying or intercepting user cookies (through sniffing and malicious scripting)
- Other privacy issues
 - Websites accumulate data about users (form input, actions), share this information with others
 - So-called third-party (tracking) cookies
- Incognito browsing mode starts with no cookies
 - New cookies are accepted and kept until browser is closed

Web Caches (Proxy Server)

Goal: satisfy client request without involving origin server

- Browser explicitly sends requests via cache or cache intercepts all outgoing HTTP traffic
 - Object in cache: cache returns object
 - Else cache requests object from origin server, then returns object to client

More About Web Caching

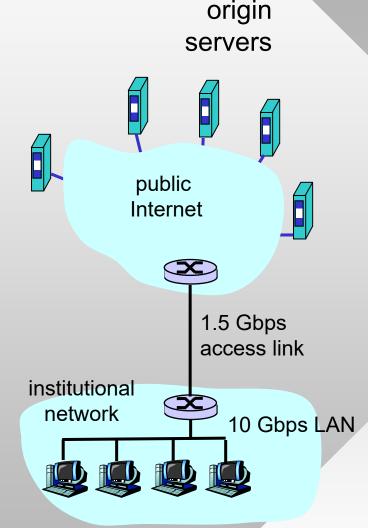
- Cache acts as both client and server
- Typically cache is installed by your ISP, university, or company at some network border

Why web caching?

- Reduce response time for client request
- Reduce traffic on the access link

Why web caching (cont'd)

- Reduce load on the servers and allow them to scale to a larger number of users
- Increase security cached pages can be scanned for viruses before user download is allowed
- Filter URLs to prevent undesirable destinations

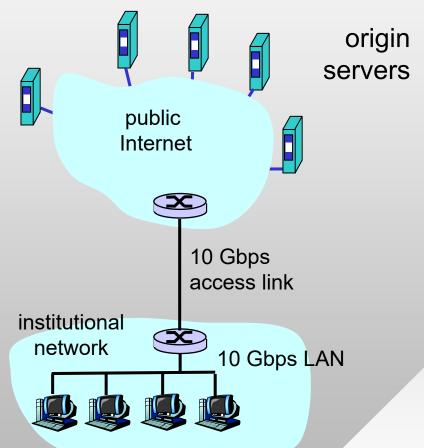

Caching Example

Assumptions

- Average object size = 100,000 bits
- Average request rate from institution's browsers to origin servers = 15K/sec
- Delay from ISP router to any origin server and back to router = 2 sec

<u>Consequences</u>

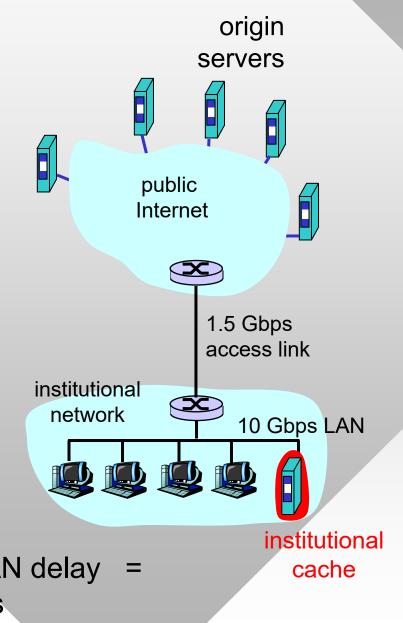
- Utilization on LAN = 15%
- Utilization on access link = 100%
- Total delay = Internet delay + access delay + LAN delay =
 - = 2 sec + access queuing delay + milliseconds


Caching Example (cont)

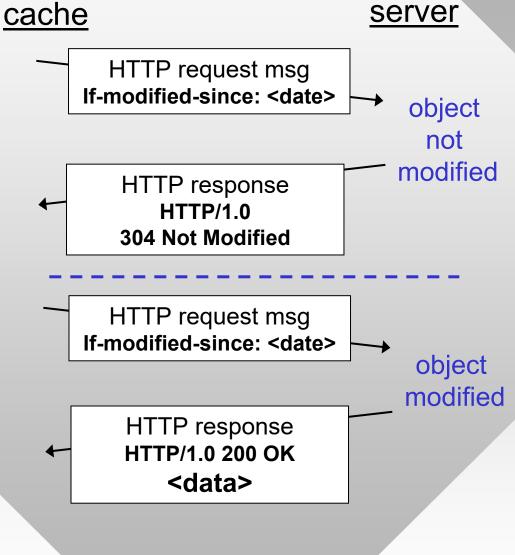
Possible solution

 Increase bandwidth of access link to, say, 10 Gbps

Consequences


- Utilization on LAN = 15%
- Utilization on access link = 15%
- Total delay = Internet delay + access delay + LAN delay
 - = 2 sec + msecs + msecs
- Often a costly upgrade

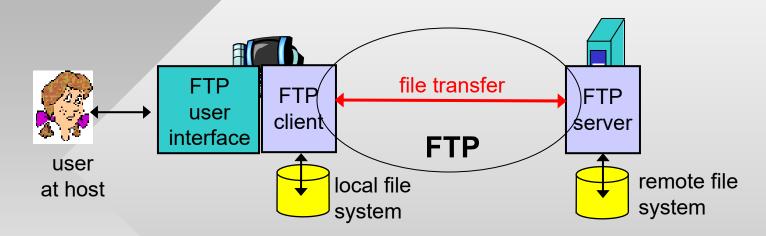
Caching Example (cont)


Install cache

- Suppose hit rate is 40%
 Consequences
- 40% of requests will be satisfied almost immediately
- 60% requests go to origin server
- Utilization of access link reduced to 60%, resulting in lower queuing delays
- Total average delay = Internet delay + access delay + LAN delay = 0.6 * 2.0 secs + msecs ≈ 1.2 secs

Conditional GET

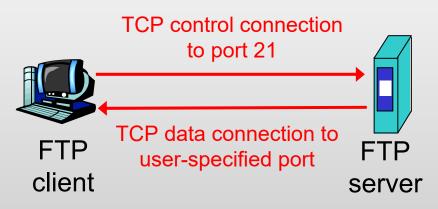
- Goal: don't send object if cache has up-to-date cached version
 - <u>Client</u>: specify date of cached copy in HTTP request
 - <u>Server</u>: response contains no object if cached copy is up-to-date
- Expires field in header
 - Server may provide date when content expires
 - Expires: Sat, 01 Oct 2024 16:00:00 GMT



12

Chapter 2: Roadmap

2.1 Principles of network applications 2.2 Web and HTTP 2.3 FTP 2.4 Electronic Mail - SMTP, POP3, IMAP 2.5 DNS 2.6 P2P file sharing 2.7 Socket programming with TCP 2.8 Socket programming with UDP 2.9 Building a Web server


FTP: The File Transfer Protocol

- Transfer file to/from remote host
- Client/server model
 - client: initiates the transfer (either to/from remote)
 - server: accepts connection on remote host
- FTP: RFC 959 (1985)
- FTP server: port 21

FTP: Separate Control, Data Connections

- FTP client contacts server on port 21 to open control connection
 - Obtains authorization over this channel
 - Sends commands for file transfer and/or directory listing
- Active mode (default): server opens data connection to the client
 - One for each command

- Passive mode:
 - Data connection opened by client
 - Useful when client is behind a firewall
- After transferring object, sender closes data connection 15

FTP Commands, Responses

Sample commands:

- Sent as ASCII text over control channel
 - USER username
 - PASS password
 - PORT or PASV
 - LIST return list of files in current directory
 - RETR filename
 retrieves (gets) file
 - STOR filename stores
 (puts) file onto remote host

Connection management

- Active mode (PORT)
 - PORT tells the server to which <IP, port> to issue a connect
 - Third party IP is OK in theory, DDoS possibility
- Passive mode (PASV)
 - PASV forces the server to open a new socket to which the client can connect

commands do not work until user is authorized

telnet ftp.gnu.org 21

220 GNU FTP server ready

HELO

PASV

530 Please login with USER and PASS

USER anonymous

230-Due to U.S. Export Regulations, all cryptographic software on this 230-site is subject to the following legal notice:

230- This site includes publicly available encryption source code

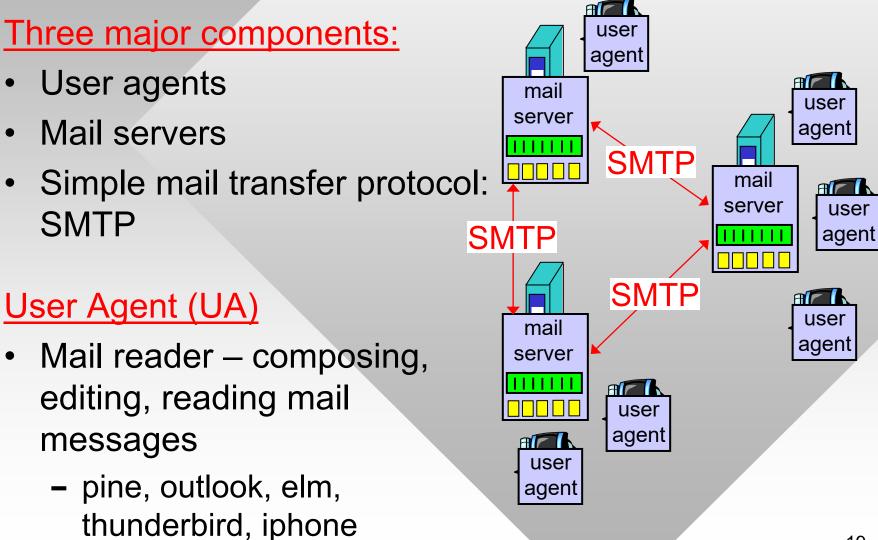
230 Login successful.

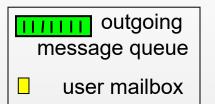
PORT 128,194,135,66,10,5

----- passive example

specifies IP 128.194.135.66 and port number 2565

227 Entering Passive Mode (140,186,70,20,154,15)

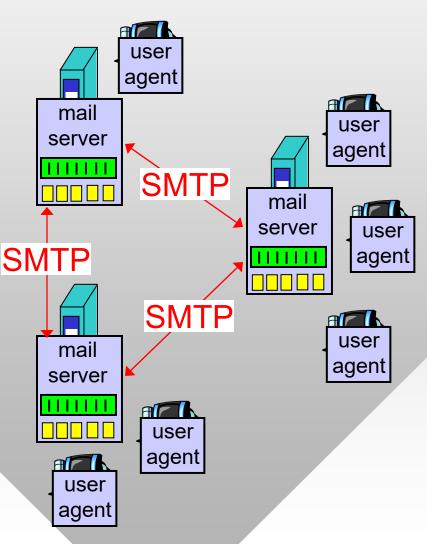

status code


IP 140.186.70.20 and port 39439

Chapter 2: Roadmap

2.1 Principles of network applications 2.2 Web and HTTP 2.3 FTP 2.4 Electronic Mail - SMTP, POP3, IMAP 2.5 DNS 2.6 P2P file sharing 2.7 Socket programming with TCP 2.8 Socket programming with UDP 2.9 Building a Web server

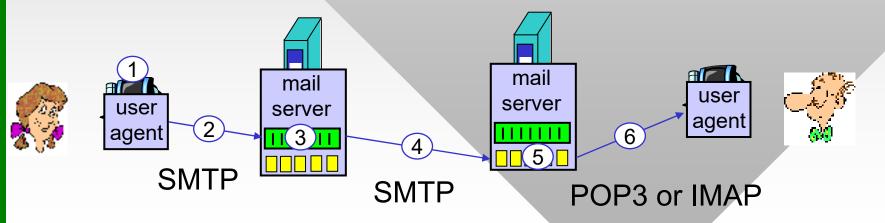
Electronic Mail


Electronic Mail: Mail Servers

Mail Servers

- Message queue of outgoing (to be sent) mail messages
- Mailbox contains incoming messages for user

SMTP protocol


- Used by mail servers to send email messages
 - Client: sending mail server
 - Server: receiving mail server

Scenario: Alice Sends Message to Bob

- 1) Alice uses UA to compose message and "to" bob@someschool.edu
- 2) Alice's UA sends message to her mail server
- 3) Message accepted and placed in outgoing queue

- 4) SMTP client sends message to Bob's server
- 5) Bob's mail server places the message in Bob's mailbox
- 6) Bob invokes his user agent to read message

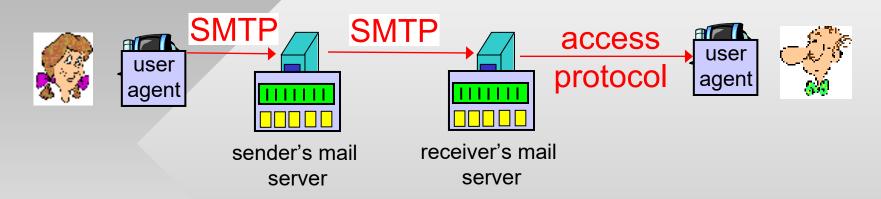
Electronic Mail: SMTP [RFC 821, 974, 1869, 2821]

- Original RFC in 1982, latest version in 2001
- Uses TCP to reliably transfer email message from client to server, port 25
- Three phases of transfer
 - SMTP handshake (greeting)
 - Transfer of messages
 - Closure
- Command/response interaction
 - Commands: ASCII text separated by \r\n
 - Response: status code and phrase (one line)

Sample SMTP Interaction

telnet mail.cs.tamu.edu 25 220 pine.cs.tamu.edu ESMTP Sendmail 8.12.9/8.12.9; Mon, 20 Sep 2004 15:52:57 -0500 (CDT) HELO viper.cs.tamu.edu 250 pine.cs.tamu.edu Hello irl-viper.cs.tamu.edu [128.194.135.66], pleased to meet you MAIL FROM: <dmitri@cs.tamu.edu> 250 2.1.0 <dmitri@cs.tamu.edu>... Sender ok RCPT TO:<dmitri@cs.tamu.edu> 250 2.1.5 <dmitri@cs.tamu.edu>... Recipient ok DATA 354 Enter mail, end with "." on a line by itself Hello Blah-blah-blah 250 2.0.0 i8KKqvvk027391 Message accepted for delivery OUIT

221 2.0.0 pine.cs.tamu.edu closing connection


SMTP: Final Words

- SMTP uses non-pipelined persistent connections
- SMTP requires message (header & body) in 7-bit ASCII (codes < 128)
 - Additional restrictions may exist for the line length
- SMTP server uses
 \r\n.\r\n to determine
 the end of message
 - <u>Solution</u>: UA inserts a dot in front of all lines already starting with a dot

Comparison with HTTP:

- HTTP: pull, SMTP: push
- Both have ASCII command/response interaction, status codes
- HTTP: each object encapsulated in its own request/response msg
- SMTP: multiple objects sent in one msg separed by special tokens

Mail Access Protocols

- SMTP: delivery/storage to receiver's server
- Mail access protocol: retrieval from server
 - POP3: Post Office Protocol v3 [RFC 1939] port 110
 - Authorization (agent <-->server) and download
 - IMAP: Internet Mail Access Protocol [RFC 1730] port 143
 - More features (more complex)
 - Manipulation of stored messages on server
 - HTTP: Hotmail, Yahoo!, Gmail, etc.

POP3 Protocol

- Server responses
 - **-** +OK
 - -ERR

Authorization phase

- Client commands:
 - user: declare username
 - pass: password

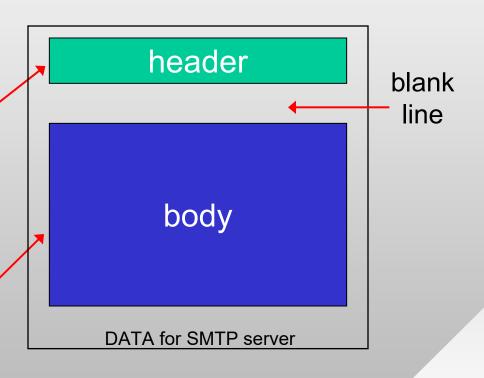
Transaction phase, client:

- list: list message #s
- retr: retrieve message
 by number
- dele: delete
- quit

```
telnet mail.cs.tamu.edu 110
+OK POP3 server ready
user bob
+OK
pass hungry
+OK user successfully logged on
list
1 498
2 912
retr 1
<message 1 contents>
dele 1
retr 2
<message 2 contents>
dele 2
quit
+OK POP3 server signing off
```

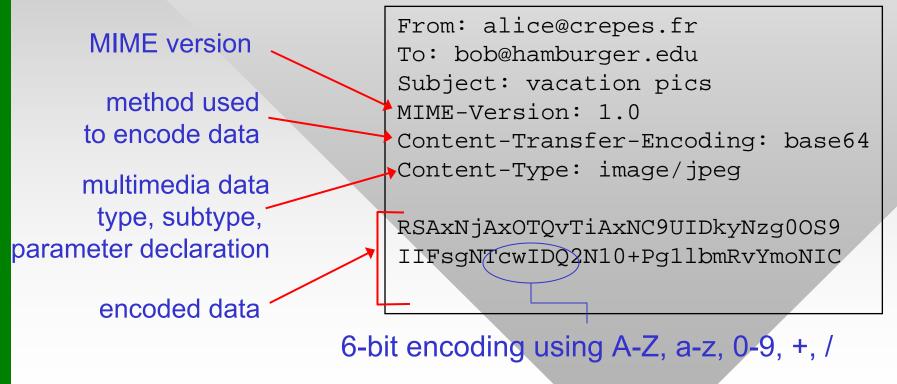
POP3 (More) and IMAP

More about POP3


- Example used "download and delete" mode
- "Download-and-keep"
 - Multiple copies of message on different clients
- POP3 is stateless across sessions
 - Server assigns unique IDs to each message
 - Command UIDL lists IDs
 - UA determines new messages by remembering IDs of downloaded email

IMAP

- Keeps message status (folder membership, read/unread, flagged, replied to) at the server: stateful protocol
- More features for the user, but more computationally expensive for the server


Mail Message Format

- SMTP: protocol for exchanging email msgs
- RFC 822: standard for text message format
- Header lines, e.g.,
 - **–** To:
 - From:
 - Subject:
 - Different from SMTP commands!
- Body
 - The "message", 7-bit ASCII characters only

Message Format: MIME

- MIME: Multipurpose Internet Mail Extensions, RFCs 2045, 2056 (1996)
 - Additional lines in header declare MIME content type

Message Format: MIME 2

Multiple objects separated by a specific boundary

```
Content-Type: multipart/mixed;
    boundary="----=_NextPart_000_0074_01C6DB4C.731EBEB0"
This is a multi-part message in MIME format.
-----=_NextPart_000_0074_01C6DB4C.731EBEB0
Content-Type: text/plain;charset="iso-8859-1"
Content-Transfer-Encoding: 7bit
Some text message here...
```

-----=_NextPart_000_0074_01C6DB4C.731EBEB0 Content-Type: application/pdf;name="9-18-06.pdf" Content-Transfer-Encoding: base64