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Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

━

 

Segment structure
━

 

Reliable data transfer
━

 

Flow control
━

 

Connection management
3.6 Principles of congestion control
3.7 TCP congestion control
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TCP Congestion ControlTCP Congestion ControlTCP Congestion Control

•
 

End-to-end
 

control (no 
network assistance)

•
 

Sender limits transmission:
LastByteSent - 
LastByteAcked 

 
CongWin

• CongWin is a function of 
perceived network 
congestion

•
 

The effective window is 
the minimum of CongWin, 
flow-control window 
carried in the ACKs, and 
sender’s own buffer space

•
 

How does sender 
perceive congestion?
━

 

Loss event = timeout 
or

 
3 duplicate acks

•
 

TCP sender reduces 
rate (CongWin) after 
loss event

•
 

Three mechanisms:
━

 

Slow start 
━

 

Conservative after 
timeouts

━

 

AIMD (congestion 
avoidance)
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TCP Slow StartTCP Slow StartTCP Slow Start

•
 

When connection begins, CongWin = 1

 
MSS

━

 

Example: MSS = 500 bytes and RTT = 200 msec
━

 

Q: initial rate?
━

 

A: 20 Kbits/s
•

 
Available bandwidth may be much larger than 
MSS/RTT
━

 

Desirable to quickly ramp up to a “respectable”
 

rate
•

 
Solution: Slow Start (SS)
━

 

When a connection begins, it increases rate exponentially 
fast until first loss or receiver window is reached

━

 

Term “slow”
 

is used to distinguish this algorithm from 
earlier TCPs which directly jumped to some huge rate
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TCP Slow Start (More)TCP Slow Start (More)TCP Slow Start (More)

•
 

Let W be congestion window in 
pkts and B

 
= CongWin be the 

same in bytes (B
 

= MSS *

 
W)

•
 

Slow start
━

 

Double CongWin every RTT
•

 
Done by incrementing CongWin 
for every ACK received:
━

 

W

 
= W+1

 
per ACK 

(or B
 

= B

 
+ MSS)

•
 

Summary:
 

initial rate is slow but 
ramps up exponentially fast

Host A

one segment

R
TT

Host B

time

two segments

four segments
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Congestion AvoidanceCongestion AvoidanceCongestion Avoidance

•
 

TCP Tahoe
 

loss 
(timeout or triple dup 
ACK):
━

 

Threshold = CongWin/2

━

 

CongWin is set to 1

 

MSS
━

 

Slow start until threshold 
is reached; then move to 
linear probing

•
 

TCP Reno
 

loss:
━

 

Timeout: same as Tahoe
━

 

3 dup ACKs: CongWin is 
cut in half, then continue 
linear probing (called fast 
recovery, now part of 
AIMD)

Three dup ACKs indicate 
that network is capable of 
delivering subsequent segments

Timeout before 3-dup ACK is 
more alarming

Fast Recovery Philosophy:

previous timeout
loss detected via triple dup ACK
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TCP Reno AIMD (Additive Increase, 
Multiplicative Decrease)

 

TCP Reno AIMD (Additive Increase, TCP Reno AIMD (Additive Increase, 
Multiplicative Decrease)Multiplicative Decrease)

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion window

Multiplicative decrease:
 

cut 
CongWin in half after fast 
retransmit (3-dup ACKs)

Additive increase:
 

increase 
CongWin by 1 MSS every 
RTT in the absence of loss 
events: probing

3-dup ACK (loss)

Peaks are different:
 

# of 
flows or RTT changes
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TCP Reno EquationsTCP Reno EquationsTCP Reno Equations

•
 

To better understand TCP, we next examine its AIMD 
equations (congestion avoidance)

•
 

General form (loss detected through 3-dup ACK):

•
 

Reasoning
━

 

For each window of size W, we get exactly W
 acknowledgments in one RTT (assuming no loss!)

━

 

This increases window size by roughly 1
 

packet per RTT
•

 
Performing actions on packet arrival is lower 
overhead than waking up on timers
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TCP Reno EquationsTCP Reno EquationsTCP Reno Equations

•
 

What is the equation in terms of B
 

 = MSS *

 
W ?

•
 

Equivalently, TCP increases B
 

by MSS
 

per RTT
•

 
What is the rate of TCP given that its window size is 
B

 
(or W)?

•
 

Since TCP sends a full window of pkts per RTT, its 
ideal rate can be written as:
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TCP Reno Sender Congestion ControlTCP Reno Sender Congestion ControlTCP Reno Sender Congestion Control

Event State TCP Sender Action Commentary
ACK receipt 
for previously 
unacked data 

Slow Start 
(SS)

CongWin += MSS, 
If (CongWin >= ssthresh) {

Set state to “Congestion

 
Avoidance”

}

Results in a doubling of 
CongWin every RTT

ACK receipt 
for previously 
unacked data

Congestion
Avoidance 
(CA) 

CongWin += MSS2 / CongWin   Additive increase, resulting 
in increase of CongWin by 
1 MSS every RTT

Loss event 
detected by 
triple duplicate 
ACK

SS or CA ssthresh = max(CongWin/2, MSS)

 
CongWin = ssthresh

 
Set state to “Congestion Avoidance”

Fast recovery, 
implementing multiplicative 
decrease

Timeout SS or CA ssthresh = max(CongWin/2, MSS)  
CongWin = MSS
Set state to “Slow Start”

Enter slow start

Duplicate 
ACK

SS or CA Increment duplicate ACK count for 
segment being acked

CongWin and Threshold 
not changed
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TCP Reno Congestion ControlTCP Reno Congestion ControlTCP Reno Congestion Control

•
 

Summary:

Congestion 
avoidance

 

Congestion 
avoidanceSlow startSlow start

Timeout

 
W

 

= 1

Triple dup ACK

 
W

 

= W/2reach 
threshold 
or triple 

dup ACK

New ACK

 
W

 

= W

 

+ 1/W

New ACK

 
W

 

= W

 

+ 1

Timeout

 
W

 

= 1
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TCP ThroughputTCP ThroughputTCP Throughput

•
 

What’s the average
 

throughout of TCP as a function 
of max window size W and RTT

 
?

━

 

Ignore slow start and assume perfect AIMD (no timeouts)
•

 
Let W be the window size when loss occurs
━

 

At that time, throughput is W *MSS/RTT

━

 

Just after loss, window drops to W/2, throughput is halved
•

 
Average rate:

W/2

W
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TCP ModelTCP ModelTCP Model

•
 

Example: 1500-byte segments, 100 ms RTT, want 
10 Gbps average throughput rav
━

 

Requires max window size W
 

= 111,111

 
in-flight segments, 

166 MB of buffer space (Wav

 

= 83,333

 
packets)

━

 

But there are bigger issues as discussed below
•

 
Next: derive average throughput in terms of loss rate
━

 

Assume packet loss probability is p
━

 

Roughly one packet lost for every 1/p

 
sent packets

•
 

Step 1: derive the number of packets transmitted in 
one oscillation cycle

W/2

W
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TCP ModelTCP ModelTCP Model

•
 

Examine time in terms of RTT units
━

 

At each step, window increases by 1
 

packet
•

 
The number of packets sent between two losses:

•
 

Combining W/2

 
terms, we have:
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TCP ModelTCP ModelTCP Model

•
 

Thus we arrive at:

•
 

Step 2: now notice that this number equals 1/p

━

 

Ignoring the linear term, we approximately get:

•
 

In other words:
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TCP ModelTCP ModelTCP Model

•
 

Step 3: writing in terms of average
 

rate:

•
 

Simplifying:

•
 

This is the famous formula of AIMD throughput
━

 

Note: homework #3 does not use congestion control and its 
rate is a different function of p
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