
1

CSCE 463/612
 Networks and Distributed Processing

 Spring 2024
 

CSCE 463/612CSCE 463/612
 Networks and Distributed ProcessingNetworks and Distributed Processing

 Spring 2024Spring 2024

Transport Layer VIIITransport Layer VIII
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

March 22, 2024March 22, 2024



2

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

━

 

Segment structure
━

 

Reliable data transfer
━

 

Flow control
━

 

Connection management
3.6 Principles of congestion control
3.7 TCP congestion control



3

TCP Congestion ControlTCP Congestion ControlTCP Congestion Control

•
 

End-to-end
 

control (no 
network assistance)

•
 

Sender limits transmission:
LastByteSent - 
LastByteAcked 

 
CongWin

• CongWin is a function of 
perceived network 
congestion

•
 

The effective window is 
the minimum of CongWin, 
flow-control window 
carried in the ACKs, and 
sender’s own buffer space

•
 

How does sender 
perceive congestion?
━

 

Loss event = timeout 
or

 
3 duplicate acks

•
 

TCP sender reduces 
rate (CongWin) after 
loss event

•
 

Three mechanisms:
━

 

Slow start 
━

 

Conservative after 
timeouts

━

 

AIMD (congestion 
avoidance)



4

TCP Slow StartTCP Slow StartTCP Slow Start

•
 

When connection begins, CongWin = 1

 
MSS

━

 

Example: MSS = 500 bytes and RTT = 200 msec
━

 

Q: initial rate?
━

 

A: 20 Kbits/s
•

 
Available bandwidth may be much larger than 
MSS/RTT
━

 

Desirable to quickly ramp up to a “respectable”
 

rate
•

 
Solution: Slow Start (SS)
━

 

When a connection begins, it increases rate exponentially 
fast until first loss or receiver window is reached

━

 

Term “slow”
 

is used to distinguish this algorithm from 
earlier TCPs which directly jumped to some huge rate



5

TCP Slow Start (More)TCP Slow Start (More)TCP Slow Start (More)

•
 

Let W be congestion window in 
pkts and B

 
= CongWin be the 

same in bytes (B
 

= MSS *

 
W)

•
 

Slow start
━

 

Double CongWin every RTT
•

 
Done by incrementing CongWin 
for every ACK received:
━

 

W

 
= W+1

 
per ACK 

(or B
 

= B

 
+ MSS)

•
 

Summary:
 

initial rate is slow but 
ramps up exponentially fast

Host A

one segment

R
TT

Host B

time

two segments

four segments



6

w
in

do
w

 W
in

 p
kt

s

RTT round

Congestion AvoidanceCongestion AvoidanceCongestion Avoidance

•
 

TCP Tahoe
 

loss 
(timeout or triple dup 
ACK):
━

 

Threshold = CongWin/2

━

 

CongWin is set to 1

 

MSS
━

 

Slow start until threshold 
is reached; then move to 
linear probing

•
 

TCP Reno
 

loss:
━

 

Timeout: same as Tahoe
━

 

3 dup ACKs: CongWin is 
cut in half, then continue 
linear probing (called fast 
recovery, now part of 
AIMD)

Three dup ACKs indicate 
that network is capable of 
delivering subsequent segments

Timeout before 3-dup ACK is 
more alarming

Fast Recovery Philosophy:

previous timeout
loss detected via triple dup ACK



7

TCP Reno AIMD (Additive Increase, 
Multiplicative Decrease)

 

TCP Reno AIMD (Additive Increase, TCP Reno AIMD (Additive Increase, 
Multiplicative Decrease)Multiplicative Decrease)

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion window

Multiplicative decrease:
 

cut 
CongWin in half after fast 
retransmit (3-dup ACKs)

Additive increase:
 

increase 
CongWin by 1 MSS every 
RTT in the absence of loss 
events: probing

3-dup ACK (loss)

Peaks are different:
 

# of 
flows or RTT changes



8

TCP Reno EquationsTCP Reno EquationsTCP Reno Equations

•
 

To better understand TCP, we next examine its AIMD 
equations (congestion avoidance)

•
 

General form (loss detected through 3-dup ACK):

•
 

Reasoning
━

 

For each window of size W, we get exactly W
 acknowledgments in one RTT (assuming no loss!)

━

 

This increases window size by roughly 1
 

packet per RTT
•

 
Performing actions on packet arrival is lower 
overhead than waking up on timers



9

TCP Reno EquationsTCP Reno EquationsTCP Reno Equations

•
 

What is the equation in terms of B
 

 = MSS *

 
W ?

•
 

Equivalently, TCP increases B
 

by MSS
 

per RTT
•

 
What is the rate of TCP given that its window size is 
B

 
(or W)?

•
 

Since TCP sends a full window of pkts per RTT, its 
ideal rate can be written as:



10

TCP Reno Sender Congestion ControlTCP Reno Sender Congestion ControlTCP Reno Sender Congestion Control

Event State TCP Sender Action Commentary
ACK receipt 
for previously 
unacked data 

Slow Start 
(SS)

CongWin += MSS, 
If (CongWin >= ssthresh) {

Set state to “Congestion

 
Avoidance”

}

Results in a doubling of 
CongWin every RTT

ACK receipt 
for previously 
unacked data

Congestion
Avoidance 
(CA) 

CongWin += MSS2 / CongWin   Additive increase, resulting 
in increase of CongWin by 
1 MSS every RTT

Loss event 
detected by 
triple duplicate 
ACK

SS or CA ssthresh = max(CongWin/2, MSS)

 
CongWin = ssthresh

 
Set state to “Congestion Avoidance”

Fast recovery, 
implementing multiplicative 
decrease

Timeout SS or CA ssthresh = max(CongWin/2, MSS)  
CongWin = MSS
Set state to “Slow Start”

Enter slow start

Duplicate 
ACK

SS or CA Increment duplicate ACK count for 
segment being acked

CongWin and Threshold 
not changed



11

TCP Reno Congestion ControlTCP Reno Congestion ControlTCP Reno Congestion Control

•
 

Summary:

Congestion 
avoidance

 

Congestion 
avoidanceSlow startSlow start

Timeout

 
W

 

= 1

Triple dup ACK

 
W

 

= W/2reach 
threshold 
or triple 

dup ACK

New ACK

 
W

 

= W

 

+ 1/W

New ACK

 
W

 

= W

 

+ 1

Timeout

 
W

 

= 1



12

TCP ThroughputTCP ThroughputTCP Throughput

•
 

What’s the average
 

throughout of TCP as a function 
of max window size W and RTT

 
?

━

 

Ignore slow start and assume perfect AIMD (no timeouts)
•

 
Let W be the window size when loss occurs
━

 

At that time, throughput is W *MSS/RTT

━

 

Just after loss, window drops to W/2, throughput is halved
•

 
Average rate:

W/2

W



13

TCP ModelTCP ModelTCP Model

•
 

Example: 1500-byte segments, 100 ms RTT, want 
10 Gbps average throughput rav
━

 

Requires max window size W
 

= 111,111

 
in-flight segments, 

166 MB of buffer space (Wav

 

= 83,333

 
packets)

━

 

But there are bigger issues as discussed below
•

 
Next: derive average throughput in terms of loss rate
━

 

Assume packet loss probability is p
━

 

Roughly one packet lost for every 1/p

 
sent packets

•
 

Step 1: derive the number of packets transmitted in 
one oscillation cycle

W/2

W



14

TCP ModelTCP ModelTCP Model

•
 

Examine time in terms of RTT units
━

 

At each step, window increases by 1
 

packet
•

 
The number of packets sent between two losses:

•
 

Combining W/2

 
terms, we have:



15

TCP ModelTCP ModelTCP Model

•
 

Thus we arrive at:

•
 

Step 2: now notice that this number equals 1/p

━

 

Ignoring the linear term, we approximately get:

•
 

In other words:



16

TCP ModelTCP ModelTCP Model

•
 

Step 3: writing in terms of average
 

rate:

•
 

Simplifying:

•
 

This is the famous formula of AIMD throughput
━

 

Note: homework #3 does not use congestion control and its 
rate is a different function of p


	CSCE 463/612�Networks and Distributed Processing�Spring 2024
	Chapter 3: Roadmap
	TCP Congestion Control
	TCP Slow Start
	TCP Slow Start (More)
	Congestion Avoidance
	TCP Reno AIMD (Additive Increase, Multiplicative Decrease)
	TCP Reno Equations
	TCP Reno Equations
	TCP Reno Sender Congestion Control
	TCP Reno Congestion Control
	TCP Throughput
	TCP Model
	TCP Model
	TCP Model
	TCP Model

