
1

CSCE 463/612
 Networks and Distributed Processing

 Spring 2024

CSCE 463/612CSCE 463/612
 Networks and Distributed ProcessingNetworks and Distributed Processing

 Spring 2024Spring 2024

Transport Layer IVTransport Layer IV
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

March 6, 2024March 6, 2024

2

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer (cont)
3.5 Connection-oriented transport: TCP

━

Segment structure
━

Reliable data transfer
━

Flow control
━

Connection management
3.6 Principles of congestion control
3.7 TCP congestion control

3

Pipelined ProtocolsPipelined ProtocolsPipelined Protocols

•

Pipelining:

sender allows multiple, “in-flight”, yet-to-
 be-acknowledged pkts

━

Range of sequence numbers must be increased
━

Buffering at sender and/or receiver

•

Two generic forms of pipelined protocols: Go-Back-N
and Selective Repeat

4

Pipelining: Increased UtilizationPipelining: Increased UtilizationPipelining: Increased Utilization

first packet bit transmitted, t = 0
sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd

packet arrives, send ACK
last bit of 3rd

packet arrives, send ACK

Usender = .024
30.008 = 0.00083 * L / R

RTT + L / R =

Increases utilization
by a factor of 3!

5

Go-Back-N (GBN)GoGo--BackBack--N (GBN)N (GBN)

Sender:
•

Window

of up to N consecutive unack’ed pkts allowed

•

A field in header that holds k unique seq numbers

•

ACK(n): ACKs all consecutive pkts up to & including seq #
n (cumulative ACK)
━

Means packets 1...n have been delivered to application
•

Timer for the oldest unacknowledged pkt (send_base):
━

Upon timeout: retransmit all pending pkts in current window
(yellow in the figure); reset the timer

6

GBN: Sender Extended FSMGBN: Sender Extended FSMGBN: Sender Extended FSM

Wait
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])
start_timer

timeout

rdt_send(data)
if (nextseqnum < base+N) {

sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send (sndpkt[nextseqnum])
if (base == nextseqnum) start_timer
nextseqnum++

}
else refuse_data(data)

new_base = getacknum(rcvpkt)+1
if (new_base > base) {

base = new_base

if (base == nextseqnum)

stop_timer // last ACK in window
else start_timer }

rdt_rcv(rcvpkt) &&
NOT corrupt(rcvpkt)

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)



base=1
nextseqnum=1



7

GBN: Receiver Extended FSMGBN: Receiver Extended FSMGBN: Receiver Extended FSM

•

ACK-only: always send ACK for correctly-received
pkt with highest in-order seq #
━

Duplicate ACKs during loss
━

Need only remember expectedseqnum

•

Out-of-order pkt:
━

Discard  no receiver buffering!
━

Re-ACK pkt with highest in-order seq #

Wait

rdt_rcv(rcvpkt) && NOT currupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

udt_send(sndpkt)
any other event

expectedseqnum=1
sndpkt = make_pkt(0, ACK, chksum)



8

GBN in ActionGBN in ActionGBN in Action
Sender (N=4) Receiver

1
2
3
4

ACK1, deliver
ACK2, deliver
ACK2, discard

5
6

timeout

3
4
5
6

ACK3, deliver
ACK4, deliver
ACK5, deliver
ACK6, deliver

ignore
ACK2, discard

ignore
ACK2, discard

ignore

9

Selective RepeatSelective RepeatSelective Repeat

•

Receiver individually acknowledges all correctly
received pkts
━

Buffers pkts, as needed, for eventual in-order delivery to
upper layer

•

Sender only resends pkts for which ACK was not
received
━

Separate timer for each unACKed pkt
•

Sender window
━

N consecutive packets in [snd_base, snd_base+N-1]

10

Selective Repeat: Sender, Receiver WindowsSelective Repeat: Sender, Receiver WindowsSelective Repeat: Sender, Receiver Windows

Receiver (N=7)

receiver window

sent & acked

sent & not acked

not sent & available

not available

rcv_base

Sender (N=7)

sender window

snd_base nextseqnum

received and delivered

received and buffered

available slot

expected but not received

1 2 3 4 5

1 2 3 4 5

11

Selective RepeatSelective RepeatSelective Repeat

Data from above :
•

If next available seq # in
window, send pkt

Timeout(n):
•

Resend pkt n, restart
timer n

ACK(n) in [snd_base,
snd_base+N-1]:

•

Mark pkt n as received
•

If n == snd_base,
advance snd_base to the
next unACKed seq #

sender
Receive pkt n in [rcv_base,

rcv_base+N-1]
•

Send ACK(n)

•

Out-of-order (n>rcv_base): buffer
•

In-order (n == rcv_base): deliver,
advance rcv_base to next not-

 yet-received pkt, deliver all
buffered, in-order pkts

Pkt n in [rcv_base-N, rcv_base-1]
•

ACK(n)

Otherwise:
•

Ignore

receiver

12

Selective Repeat in Action (N=4)Selective Repeat in Action (N=4)Selective Repeat in Action (N=4)

0 1 2 3 4 5 0

0 1 2 3 4 5 1

0 1 2 3 4 5

0 1 2 3 4 5 3

2

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

4

5

ACK0
0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5

ACK1

ACK3

tim
eo

ut
 o

n
pk

t 2

ACK4 ACK5 ACK2

13

Selective Repeat:
 Dilemma

Selective Repeat:Selective Repeat:
 DilemmaDilemma

Q:

How many seq #s k
are needed for
window size N in
selective repeat?

Example:
•

Seq #’s: 0, 1, 2, 3

•

Window size = 3
•

Receiver sees no
difference in two
scenarios!

•

Incorrectly passes
duplicate data as
new in (a)

	CSCE 463/612�Networks and Distributed Processing�Spring 2024
	Chapter 3: Roadmap
	Pipelined Protocols
	Pipelining: Increased Utilization
	Go-Back-N (GBN)
	GBN: Sender Extended FSM
	GBN: Receiver Extended FSM
	GBN in Action
	Selective Repeat
	Selective Repeat: Sender, Receiver Windows
	Selective Repeat
	Selective Repeat in Action (N=4)
	Selective Repeat:�Dilemma

