
1

CSCE 463/612
 Networks and Distributed Processing

 Spring 2024

CSCE 463/612CSCE 463/612
 Networks and Distributed ProcessingNetworks and Distributed Processing

 Spring 2024Spring 2024

Transport Layer VTransport Layer V
Dmitri LoguinovDmitri Loguinov
Texas A&M UniversityTexas A&M University

March 8, 2024March 8, 2024

2

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

━

Segment structure
━

Reliable data transfer
━

Flow control
━

Connection management
3.6 Principles of congestion control
3.7 TCP congestion control

3

TCP: Overview

[RFCs: 793, 1122,
1323, 2001, 2018, 2581, 3390, 5681]

TCP: OverviewTCP: Overview

[RFCs: 793, 1122, [RFCs: 793, 1122,
1323, 2001, 2018, 2581, 3390, 5681]1323, 2001, 2018, 2581, 3390, 5681]

•

Full duplex data:
━

Bi-directional data flow in
same connection

•

MSS: maximum segment
size (excluding headers)

•

Connection-oriented:
━

Handshaking (exchange
of control msgs)
initializes sender/receiver
state before sending data

•

Flow controlled:
━

Sender will not
overwhelm receiver

•

Point-to-point (unicast):
━

One sender, one receiver
•

Reliable, in-order byte stream:
━

Packet boundaries are not
visible to the application

•

Pipelined:
━

TCP congestion and flow
control set window size

•

Send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

4

Chapter 3: RoadmapChapter 3: RoadmapChapter 3: Roadmap

3.1 Transport-layer services
3.2 Multiplexing and demultiplexing
3.3 Connectionless transport: UDP
3.4 Principles of reliable data transfer
3.5 Connection-oriented transport: TCP

━

Segment structure
━

Reliable data transfer
━

Flow control
━

Connection management
3.6 Principles of congestion control
3.7 TCP congestion control

TCP Segment StructureTCP Segment StructureTCP Segment Structure

•

Sequence/ACK numbers
━

Count bytes, not segments
━

ACKs piggybacked on
data packets

•

Flags (U-A-P-R-S-F)
━

Urgent data (not used)
━

ACK field is valid
━

PUSH (reduce latency)
━

RST (reset connection)
━

SYN (connection request)
━

FIN (connection close)
•

Hdr length in DWORDs (4-bit field)
━

Normally 20 bytes, but longer if options are present

source port # dest port #

32 bits

sequence number
acknowledgement number

receiver window
Urg data pointerchecksum

FSRPAUhdr
len

not
used

application data
(variable length)
application data
(variable length)

Options (variable length)

6

TCP Seq. #’S and ACKsTCP Seq. #TCP Seq. #’’S and ACKsS and ACKs
Seq. #’s:
•

Sequence number of
the first byte

in

segment’s data
ACKs:
•

Seq # of next byte

 expected from sender
•

Cumulative ACK

Q:

how receiver
handles out-of-

 order segments?
A: TCP spec doesn’t say,

up to implementor

Host A Host B

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of

‘C’, echoes
back ‘C’

time
Simple telnet scenario

Seq=43, ACK=80

Seq=79, ACK=43, data = ‘C’

Seq=42, ACK=79, data = ‘C’

7

TCP Round Trip Time and TimeoutTCP Round Trip Time and TimeoutTCP Round Trip Time and Timeout

Q:

how to set TCP
timeout value (RTO)?

•

Want it slightly larger
than the next RTT
━

But the RTT varies
•

Too short: premature
timeout
━

Unnecessary
retransmissions

•

Too long: slow reaction
to segment loss
━

Protocol may stall,
exhibit low performance

•

Idea: dynamically measure
RTT, average these samples,
then add safety margin

• SampleRTT:

measured time
from segment transmission
until ACK receipt
━

Ignore retransmissions, why?
• SampleRTT will vary, want

estimated RTT “smoother”
━

Average several recent
measurements, not just current
SampleRTT

8

TCP Round Trip Time and TimeoutTCP Round Trip Time and TimeoutTCP Round Trip Time and Timeout

EstimatedRTT(n)

= (1-α)*EstimatedRTT(n-1)

+ α*SampleRTT(n)EstimatedRTT(n)

= (1-α)*EstimatedRTT(n-1)

+ α*SampleRTT(n)

•

Exponentially weighted moving average

(EWMA)
━

Influence of past sample decreases exponentially fast
━

Typical value: α

=

1/8

•

Task: derive a non-recursive formula for
EstimatedRTT(n)

━

Assume EstimatedRTT(0) = SampleRTT(0)
━

Let Y(n) = EstimatedRTT(n)

and y(n) = SampleRTT(n)

9

Example RTT Estimation:Example RTT Estimation:Example RTT Estimation:

100

150

200

250

300

0 10 20 30 40 50 60

sample number

RT
T

(m
s)

sampled RTT
estimated RTT

10

TCP Round Trip Time and TimeoutTCP Round Trip Time and TimeoutTCP Round Trip Time and Timeout

•

Setting the timeout:

• EstimatedRTT plus a “safety margin”
━

Larger variation in EstimatedRTT larger safety margin

•

First estimate how much SampleRTT deviates from
EstimatedRTT (typically, β

= 1/4):

RTO(n) = EstimatedRTT(n) + 4*DevRTT(n)RTO(n) = EstimatedRTT(n) + 4*DevRTT(n)

DevRTT(n) = (1-β)*DevRTT(n-1) + β

*|SampleRTT(n)-EstimatedRTT(n)|DevRTT(n) = (1-β)*DevRTT(n-1) + β

*|SampleRTT(n)-EstimatedRTT(n)|

Then set retransmission timeout (RTO):

11

Example Timeout Estimation:Example Timeout Estimation:Example Timeout Estimation:

100

150

200

250

300

350

400

0 10 20 30 40 50 60

sample number

RT
T

(m
s)

sampled RTT
estimated RTT
timeout

	CSCE 463/612�Networks and Distributed Processing�Spring 2024
	Chapter 3: Roadmap
	TCP: Overview [RFCs: 793, 1122, 1323, 2001, 2018, 2581, 3390, 5681]
	Chapter 3: Roadmap
	TCP Segment Structure
	TCP Seq. #’S and ACKs
	TCP Round Trip Time and Timeout
	TCP Round Trip Time and Timeout
	Example RTT Estimation:
	TCP Round Trip Time and Timeout
	Example Timeout Estimation:

