<u>CSCE 463/612</u> <u>Networks and Distributed Processing</u> <u>Spring 2024</u>

Network Layer III

Dmitri Loguinov Texas A&M University

April 10, 2024

Chapter 4: Roadmap

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
- 4.5 Routing algorithms
- 4.6 Routing in the Internet
- 4.7 Broadcast and multicast routing

IPv4 Datagram Format

IP Fragmentation & Reassembly

- Network links have varying MTUs (maximum transmission units) – largest possible link-level frames
 - Different link types, different MTUs (most common 1500)
- Large IP datagram divided ("fragmented") within network
 - One datagram becomes several datagrams
 - "Reassembled" only at final destination
 - IP header bits used to identify, order related fragments

fragmentation: in: one large datagram out: 3 smaller datagrams

IP Fragmentation and Reassembly

Example

- 4000 byte datagram (including IP header)
- MTU = 1500 bytes

lengthIDfragflagoffset=4000=x=0=0

One large datagram becomes several smaller datagrams

Chapter 4: Roadmap

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - IPv6
- 4.5 Routing algorithms
- 4.6 Routing in the Internet
- 4.7 Broadcast and multicast routing

IP Addressing: Introduction

- IP address: 32-bit identifier for host or router *interface*
- Interface: connection between host/router and physical link
 - Also called a port
 - Routers have many interfaces
- Can hosts have multiple interfaces?
 - Yes, it's called multihoming

Subnets

• IP address:

- Subnet prefix: *k* bits
- Host suffix: 32-k remaining bits
- What's a subnet (LAN)?
 - Network composed of devices with the same subnet prefix of IP address
 - Can physically reach each other without intervening router

<u>Recipe</u>

- To determine the subnets, detach each interface from its host or router, creating islands of isolated networks
- Each isolated network is a subnet

223.1.3.0/24

Subnet mask: • 255.255.255.0 • or /24

IP Addressing: CIDR

- In the early Internet, only subnets with 8, 16, or 24 bit prefixes were allowed ("class A, B, C" networks)
- This was inflexible and wasteful as well
- **CIDR: Classless InterDomain Routing**
 - Subnet portion of address of arbitrary length
 - Address format: a.b.c.d/x, where x is # bits in the subnet portion of address

IP Addresses: How to Get One?

Q: How does a *host* get an IP address?

- Either hard-coded by system admin in a file
 - Windows: Control-panel → network → configuration → tcp/ip
 → properties
 - Linux: /etc/rc.config
- Or dynamically assigned by DHCP (Dynamic Host Configuration Protocol)
 - "Plug-and-play" (more in Chapter 5)

IP Addresses: How to Get One?

Q: How does a *network* get subnet part of IP addr?
 A: Gets allocated portion of its provider ISP's address space

• Task: split this ISP into one /21, three /23, and eight /26

Hierarchical Addressing: Route Aggregation

Hierarchical addressing allows efficient advertisement of routing information:

Hierarchical Addressing: More Specific Routes

ISP-B has a more specific route to Organization 1

IP Addressing: Last Word...

Q: How does an ISP get a block of addresses?

A: ICANN: Internet Corporation for Assigned Names and Numbers assigns IPs to regional registries

- These are ARIN (North/South America), RIPE (Europe), APNIC (Asia-Pacific), and AfriNIC (Africa)
- These registries process ISP and user requests for subnet space
 - Also manage DNS and resolve disputes