
CSCE 463/612: Networks and Distributed Processing
Homework 1 Part 1 (25 pts)

Due date: 1/21/25

1. Purpose
This assignment builds an understanding of text-based application-layer protocols, multi-
threading, system APIs, and Windows sockets.

2. Problem Description
Using Visual C++, your goal is to create a simple web client that accepts URLs and then crawls
them to display basic server/page statistics.

2.1. Code (25 pts)

Your program must accept a single command-line argument with a target URL. If the argument
is missing or there are too many of them, print usage information and quit. You should be able to
handle URLs that fall under this general format

scheme://host[:port][/path][?query][#fragment]

where the only acceptable scheme in this homework is “http”. Examples (IRL servers require
TAMU VPN):

hw1.exe http://tamu.edu [no path, no port, no query]
hw1.exe http://www.tamu.edu:80 [no path, port]
hw1.exe http://128.194.135.72:80/courses/index.asp#location [IP, port, path, fragment]
hw1.exe http://165.91.22.70/ [IP, path]
hw1.exe http://s2.irl.cs.tamu.edu/IRL7 [64MB HTML file]
hw1.exe http://s2.irl.cs.tamu.edu/IRL8 [128MB HTML file with zeros]
hw1.exe http://facebook.com:443?addrbook.php [no path, query, non-HTTP response]
hw1.exe http://relay.tamu.edu:465/index.html [path, port, recv error]
hw1.exe http://ftp.gnu.org:21/ [recv timeout]
hw1.exe http://s22.irl.cs.tamu.edu:990/view?test=1 [path, port, query, no DNS]
hw1.exe http://128.194.135.25?viewcart.php/ [no path, query, connect timeout]

Note that if the path is omitted, you must use the root directory / in its place. If the URL passes
basic checks (i.e., correct scheme, non-zero port number), you should attempt to obtain the page
via HTTP 1.0. Note that HTTP 1.1 allows the server to chunk the transfer, which is harder to de-
code (see the extra-credit section at the end of part 3). It is therefore important to request the ver-
sion of HTTP that you can process.

If you manage to connect and receive a valid reply (HTTP 2xx), parse the HTML result and dis-
play the required information about your download (see below); otherwise, the program should
legibly report the type of error encountered and terminate gracefully, even if the remote host is
hanging or not responding. Note that your code must be able to handle pages of arbitrary length
by dynamically expanding the buffer provided to recv().

The following two examples show the required behavior during successful downloads:

 1

http://tamu.edu/
http://www.tamu.edu/
http://128.194.135.72/courses/index.asp#location
http://165.91.22.70/
http://s22.irl.cs.tamu.edu:990/view?test=1
http://128.194.135.11/?viewcart.php/

URL: http://www.dmoz.org
 Parsing URL... host www.dmoz.org, port 80, request /
 Doing DNS... done in 655 ms, found 149.174.98.43
 * Connecting on page... done in 47 ms
 Loading... done in 141 ms with 17839 bytes
 Verifying header... status code 200
 + Parsing page... done in 0 ms with 102 links
--
HTTP/1.1 200 OK
Date: Sun, 18 Jan 2015 01:52:21 GMT
Server: Apache
Set-Cookie: JSESSIONID=2C016DC9413B184589C279886C0BA9D0; Path=/
Content-Length: 17621
Connection: close
Content-Type: text/html;charset=UTF-8

and

URL: http://128.194.135.72
 Parsing URL... host 128.194.135.72, port 80, request /
 Doing DNS... done in 0 ms, found 128.194.135.72
 * Connecting on page... done in 0 ms
 Loading... done in 78 ms with 6957 bytes
 Verifying header... status code 200
 + Parsing page... done in 0 ms with 10 links
--
HTTP/1.1 200 OK
Cache-Control: private
Content-Length: 6633
Content-Type: text/html
Server: Microsoft-IIS/7.0
Set-Cookie: ASPSESSIONIDAASDCQDS=FIMPNKHBEFLNGPCOGOOPPBHI; path=/
X-Powered-By: ASP.NET
MicrosoftOfficeWebServer: 5.0_Pub
MS-Author-Via: MS-FP/4.0
Date: Sun, 18 Jan 2015 01:54:01 GMT
Connection: close

Note that one-tab indentation after the first line, an asterisk for the connection phase, a plus for
the parsing phase, and timing of each networking step (e.g., using clock()) are required. The
printout following a horizontal line contains only the HTTP header.

If you manage to receive the page, but the status code is not 2xx, skip the HTML parser, but print
everything else:

URL: http://www.yahoo.com
 Parsing URL... host www.yahoo.com, port 80, request /
 Doing DNS... done in 484 ms, found 98.138.253.109
 * Connecting on page... done in 31 ms
 Loading... done in 109 ms with 1746 bytes
 Verifying header... status code 301
--
HTTP/1.0 301 Redirect
Date: Sun, 18 Jan 2015 01:39:06 GMT
Via: http/1.1 ir24.fp.ne1.yahoo.com (ApacheTrafficServer)
Server: ATS
Location: https://www.yahoo.com/
Content-Type: text/html
Content-Language: en
Cache-Control: no-store, no-cache
Connection: keep-alive
Content-Length: 1450

 2

If you are unable to download the page, stop at the last attempted step and display the failure
condition (for network errors, provide the corresponding WSAGetLastError() result):

URL: http://facebook.com:443?addrbook.php
 Parsing URL... host facebook.com, port 443, request /?addrbook.php
 Doing DNS... done in 5 ms, found 31.13.93.35
 * Connecting on page... done in 15 ms
 Loading... failed with non-HTTP header (does not begin with HTTP/)

URL: http://relay.tamu.edu:465/index.html
 Parsing URL... host relay.tamu.edu, port 465, request /index.html
 Doing DNS... done in 4 ms, found 148.163.139.245
 * Connecting on page... done in 2 ms
 Loading... failed with 10054 on recv

URL: http://128.194.135.25?viewcart.php/
 Parsing URL... host 128.194.135.25, port 80, request /?viewcart.php/
 Doing DNS... done in 4 ms, found 128.194.135.11
 * Connecting on page... failed with 10060

URL: http://s22.irl.cs.tamu.edu:990/view?test=1
 Parsing URL... host s22.irl.cs.tamu.edu, port 990, request /view?test=1
 Doing DNS... failed with 11001

URL: http://ftp.gnu.org:21
 Parsing URL... host ftp.gnu.org, port 21, request /
 Doing DNS... done in 96 ms, found 209.51.188.20
 * Connecting on page... done in 31 ms
 Loading... failed with timeout

URL: http://xyz.com:/
 Parsing URL... failed with invalid port

URL: http://xyz.com:0
 Parsing URL... failed with invalid port

URL: ftp://yahoo.com
 Parsing URL... failed with invalid scheme

2.2. General Guidelines

Efficient coding and well-structured programming is expected. You may lose points for copy-
pasting the same function (with minor changes) over and over again, for writing poorly designed
or convoluted code, not checking for errors in every API you call, and allowing buffer overflows,
access violations, debug-assertion failures, heap corruption, synchronization bugs, memory
leaks, or any conditions that lead to a crash. Furthermore, your program must be robust against
unexpected responses from the Internet and deadlocks.

Basic operation of Winsock is covered in class, with supporting examples provided in the sample
homework project on the course website. Additional caveats are discussed next.

2.3. Receive Loop

Reading from sockets is accomplished using this general algorithm that resizes the buffer as
needed:

class Socket {

 3

SOCKET sock; // socket handle
 char *buf; // current buffer
 int allocatedSize; // bytes allocated for buf
 int curPos; // current position in buffer
 ... // extra stuff as needed
};

Socket::Socket ()
{

// create this buffer once, then possibly reuse for multiple connections in Part 3
buf = ... // either new char [INITIAL_BUF_SIZE] or malloc (INITIAL_BUF_SIZE)
allocatedSize = INITIAL_BUF_SIZE;

}

bool Socket::Read (void)
{

// set timeout to 10 seconds
while (true)
{

// wait to see if socket has any data (see MSDN)
if ((ret = select (0, &fd, ..., timeout)) > 0)
{

// new data available; now read the next segment
int bytes = recv (sock, buf + curPos, allocatedSize – curPos, ...);

if (errors)

// print WSAGetLastError()
break;

if (connection closed)
 // NULL-terminate buffer
 return true; // normal completion

curPos += bytes; // adjust where the next recv goes

if (allocatedSize – curPos < THRESHOLD)
 // resize buffer; you can use realloc(), HeapReAlloc(), or

// memcpy the buffer into a bigger array
}
else if (timeout)

 // report timeout
 break;

else
 // print WSAGetLastError()
 break;
}

return false;

}

The above fragment checks the socket to see if there is any data before attempting a receive.
Without this, you may experience deadlocks inside recv() when the remote host neither pro-
vides any data nor closes the connection. Since select() modifies the parameters you pass to it,
you must reinsert sock into fd_set each time you call select(). This is accomplished with
macros FD_ZERO and FD_SET. For more details, see

http://msdn.microsoft.com/en-us/library/ms740141(VS.85).aspx

A cleaner alternative to traditional Unix-style select() is WSAEventSelect() or the IOCP
framework. The former lets you register an event that gets signaled when the socket has data in
it. This allows your code to wait for multiple events and implement simple timeout-based socket
disconnection. The latter is much more complicated and should be attempted only if the rest of
the homework appears too simple:

 4

http://msdn.microsoft.com/en-us/library/ms740141(VS.85).aspx

http://msdn.microsoft.com/en-us/library/windows/desktop/aa365198(v=vs.85).aspx

2.4. Required HTTP Fields

The format of GET requests was shown in class. At minimum, you need to transmit the request
line and the host string with the name of the server. For example:

GET /some/page/index.php?status=15 HTTP/1.0
Host: tamu.edu

However, this request may keep the connection open for some non-compliant servers, which
makes it difficult to detect the end of transfer. You therefore may want to explicitly request that
the server close the connection:

GET /some/page/index.php?status=15 HTTP/1.0
Host: tamu.edu
Connection: close

It is also common courtesy to specify your user-agent to keep webmasters aware of visiting
browsers and robots. In fact, some websites (e.g., akamai.com) refuse to provide a response
unless the user-agent is present in the request header:

GET /some/page/index.php?status=15 HTTP/1.0
User-agent: myTAMUcrawler/1.0
Host: tamu.edu
Connection: close

You should invent your own string in the format of crawlerName/x.y, where x.y can evolve
from 1.1 to 1.3 as you progress through the parts of this homework.

2.5. Parser

The sample parser solution (from the course website) contains four library (.lib) files, which need
to be copied into your project’s folder with .cpp files. Do not add lib files into the project in Vis-
ual Studio. You additionally need HTMLParserBase.h, which should be included into precom-
piled headers (pch.h or stdafx.h). There is also no need to add .lib files into linker input
since HTMLParserBase.h already does this using #pragma directives. There are four different
libraries that cover all possible combinations of Debug/Release/win32/x64, where the proper file
is automatically determined by HTMLParserBase.h.

You may also run into an issue with Release mode when the newest Visual Studio refuses to in-
clude HTML parser libraries because they're from an earlier version of the compiler. The solu-
tion is to disable whole program optimization (Project Properties  C/C++  Optimization).

2.6. Helpful Functions, Tools, and Commands

You can use C-string functions strchr and strstr to quickly find substrings in a buffer. Com-
parison is usually performed using strcmp/stricmp or strncmp/strnicmp. It is recommended
to use printf as it greatly reduces the amount of typing in this homework compared to cout.
You can also use sprintf to assemble the various parts of a request.

 5

http://msdn.microsoft.com/en-us/library/windows/desktop/aa365198(v=vs.85).aspx

Oftentimes, it is convenient to declare a fixed-size buffer that is large enough to accept even the
longest link. To help with this, HTMLParserBase.h defines two constants MAX_HOST_LEN and
MAX_REQUEST_LEN that upper-bound the examples we consider valid for this homework. If the
user provides a string that violates either bound, you should reject it. An explicit check is re-
quired, especially in Part 3 where some of the crawled URLs are known to violate the maximum
allowed host length.

Usage of gethostbyname for DNS lookups, printout of IPs via inet_ntoa, and connection to a
server are provided in the sample solution.

For debugging responses, use an HTTP sniffer, e.g., http://websniffer.com,
http://testuri.org/sniffer, or browser add-ons. If you need to see the contents of your outgoing
packets, use http://www.wireshark.org/. For information about your network configuration, run
ipconfig at the command prompt (to see the DNS servers, use ipconfig /all). To manually
perform DNS lookups, try nslookup host or nslookup IP.

 6

http://websniffer.com/
http://testuri.org/sniffer
http://www.wireshark.org/

 7

463/612 Homework 1 Grade Sheet (Part 1)

Name: ______________________________

Function Points Break

down
Item Deduction

Input 1 1 No usage info if incorrect arguments
1 Incorrect GET syntax
1 No hostname in request

Request 3

1 No user-agent in request
1 No dynamic buffer resizing
2 Fails to receive/parse large files

Receive loop 4

1 No select()
3 Incorrect host/port/request
1 Incorrect DNS info
1 No timing of connect()
1 No timing of recv()
1 Incorrect page size
1 Incorrect HTTP status
1 Incorrect number of links

Output 10

1 Incorrect HTTP header shown
1 Does not handle invalid port/scheme
1 Does not notify of DNS failure
1 Does not notify of connect failure
1 Does not notify of recv timeout/failure
1 Does not notify of non-HTTP reply

Errors 6

1 Parses non-2xx pages
Other 1 1 Missing files for compilation

Additional deductions are possible for memory leaks and crashing.

Total points: ________________

	2. Problem Description
	2.1. Code (25 pts)
	2.2. General Guidelines
	2.3. Receive Loop
	2.4. Required HTTP Fields
	2.5. Parser
	2.6. Helpful Functions, Tools, and Commands

