
Origami: A High-Performance Mergesort Framework
Arif Arman

Texas A&M University

College Station, TX

arman@tamu.edu

Dmitri Loguinov

Texas A&M University

College Station, TX

dmitri@cs.tamu.edu

ABSTRACT
Mergesort is a popular algorithm for sorting real-world work-

loads as it is immune to data skewness, suitable for paralleliza-

tion using vectorized intrinsics, and relatively simple to multi-

thread. In this paper, we introduce Origami, an in-memory merge-

sort framework that is optimized for scalar, as well as all current

SIMD (single-instructionmultiple-data) CPU architectures. For each

vector-extension set (e.g., SSE, AVX2, AVX-512), we present an in-

register sorter for small sequences that is up to 8× faster than prior

methods and a branchless streaming merger that achieves up to a

1.5× speed-up over the naive merge. In addition, we introduce a

cache-residing quad-merge tree to avoid bottlenecking on memory

bandwidth and a parallel partitioning scheme to maximize thread-

level concurrency.We develop an end-to-end sort with these compo-

nents and produce a highly utilized mergesort pipeline by reducing

the synchronization overhead between threads. Single-threaded

Origami performs up to 2× faster than the closest competitor and

achieves a nearly perfect speed-up in multi-core environments.

PVLDB Reference Format:
Arif Arman and Dmitri Loguinov. Origami: A High-Performance Mergesort

Framework. PVLDB, 15(2): 259-271, 2022.

doi:10.14778/3489496.3489507

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/arif-arman/origami-sort.

1 INTRODUCTION
Over the years, mergesort has emerged as a highly appealing plat-

form for tackling real-world sorting tasks, with many benefits and

features. Its first important characteristic is distribution insensitiv-
ity, i.e., constant speed on all inputs. Among the alternatives, some

of the methods (e.g., most-significant byte first (MSB) radix sort

[25]) perform quite poorly unless the keys are uniform. Others (e.g.,

quicksort, samplesort, combsort) have certain worst-case inputs

that degrade the sort by either worsening its asymptotic complexity

or inflating the constants in the𝑂 (𝑛 log𝑛) upper bound [3], [4], [5],
[22], [29], [31], neither of which is desirable. The second benefit

of mergesort is the support for streaming operation, i.e., sequential
processing of input/output data, which is a highly useful feature for

certain large-scale applications that involve external-memory (i.e.,

disk) and/or distributed (i.e., network) computation. With PCIe 5.0

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 2 ISSN 2150-8097.

doi:10.14778/3489496.3489507

I/O rates reaching 64 GB/s, faster in-memory sorters will soon be in

demand. Third, mergesort is well-suited for multi-core paralleliza-

tion because it admits low-overhead load-balancing of tasks across

threads, even under non-uniform keys, and trading of memory

traffic for cache hits as the amount of parallelism increases. The al-

ternatives are usually harder to scale without taking a performance

hit. A prime example is least-significant byte first (LSB) radix sort

[25], where rewriting the entire dataset in RAM during each pass

causes it to saturate memory bandwidth with just 2-4 threads. Fi-

nally, research into mergesort usually yields new optimized kernels

for small inputs, which helps speed up applications that deal with

short chunks of data (e.g., neighbor lists in graph algorithms).

Many mergesort variants have been proposed in the last two

decades with the goal to maximize data/thread-level parallelism

[6], [14], [15], [17], [18], [26], [27], [30], [32], [33]; however, they

leave room for improvements in terms of speed and usability. First,

none of the papers examine how to optimize each individual phase

of the sort pipeline. With many partial benchmarks and disjoint

techniques, it is unclear which of them can be improved, by how

much, and where the bottlenecks are. Additionally, the majority of

available code is either single-threaded or, if parallel, bottlenecks

on memory bandwidth, which sheds little light on the best per-

formance of mergesort in multi-core environments. Second, the

existing frameworks do not offer a unifying mergesort solution that

is simultaneously optimized for scalar, SSE, AVX2, and AVX-512

architectures. In fact, some of them [30], [32], [33] inherently work

only in the extended instruction set of AVX-512, with back-porting

either impossible or requiring a expensive set of substitute instruc-

tions. Depending on CPU availability and user preferences (e.g.,

lower power consumption), it may be desirable to have access to

the fastest sort in each category rather than the fastest overall.

To address these issues, we introduce a highly optimized, distribu-

tion-insensitive, parallel mergesort framework that we call Origami.
We first formalize operation of mergesort using a four-phase compu-

tational model and examine how to achieve maximum speed during

each step of the sort. This leads to a number of novel algorithms,

improvements, and corresponding benchmarks. We then develop

our end-to-end sort by efficiently connecting these optimized com-

ponents together and generalizing the underlying algorithms to

work for scalar, SSE, AVX2, and AVX-512 CPU architectures. Results

show that the Origami framework is by far the fastest mergesort

on both small and large input sequences, reaching a 1.5-2× speed-

up over the best existing methods. After parallelization, it gains a

nearly perfect scaling in multi-core settings.

2 PIPELINE OVERVIEW
Suppose a sort algorithm operates on fixed-size items, which are

either keys or key-value pairs, depending on the application. The

following notation will be useful for the rest of the discussion:

259

https://doi.org/10.14778/3489496.3489507
https://github.com/arif-arman/origami-sort
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3489496.3489507
https://www.acm.org/publications/policies/artifact-review-and-badging-current


N : Number of items to sort

C: Number of items fitting into L2 cache (typically 2
16 − 2

18
)

T : Number of threads (typically double the core count)

W: Number of items per SIMD register (typically 4-16)

R: Number of SIMD registers per core (typically 16 or 32)

B: Size of each item in bits (typically 32, 64, or 128)

Mergesort can be broken down into four phases, which we call

𝑃1 − 𝑃4. For better cache utilization, which in turn increases per-

formance, merge-based sorts [6], [14], [27] usually divide the input

into blocks of size C and sort them individually in the cache to

produce N/C sorted lists. A series of 𝑘-way merge operations on

these blocks, where 𝑘 ≥ 2, then yields the final sorted list. In the rest

of this section, we briefly overview this pipeline, examine the oper-

ation of each phase, highlight the limitations of existing methods,

and explain our contributions.

(𝑃1) Tiny sorters. Define phase 𝑃1 to be a process that converts each
input block into a sequence of sorted runs of length 𝑚 ≥ 2, i.e.,

items in each range [𝑖𝑚, (𝑖 + 1)𝑚) are organized in ascending order,

where 𝑖 = 0, 1, . . . , C/𝑚 − 1. While mergesort is quite inefficient for

small values of𝑚 (e.g., below 128), much faster alternatives, which

we call tiny sorters, exist (e.g., insertion sort [24], sorting networks

[2], [23], and various SIMD generalizations [6], [14]).

Letting 𝑆1 (𝑚) be the speed at which 𝑃1 executes, we show that

the runtime of the full sort is determined by the cost function

𝑓 (𝑚) = 𝑆𝑚𝑒𝑟𝑔𝑒/𝑆1 (𝑚) − log
2
𝑚, where 𝑆𝑚𝑒𝑟𝑔𝑒 is the speed of the bi-

nary merge. Prior work typically operates at a fixed point𝑚 = W
and does not explore avenues for minimizing 𝑓 (𝑚). In contrast,

Origami offers novel algorithms that expand𝑚 to the entire range

[W,RW] and significantly increase 𝑆1 (𝑚) compared to existing

approaches, both of which leads to lower 𝑓 (𝑚) and much faster

overall runtime. This is achieved by saturating all R available reg-

isters with data, representing them as an R ×W matrix, and de-

veloping new SIMD-friendly methods for sorting such rectangular

structures entirely within the CPU.

(𝑃2) In-cache merge. At the end of 𝑃1, every run of 𝑚 keys in a

block is sorted. A sequence of log
2
(C/𝑚) binary merges, which

comprises phase 𝑃2, then sorts all C items in the block. While many

efforts exist for moving pointers along two sorted arrays during

merging (e.g., branching [6], [14], [15], [17], [18], [26], [27], branch-

less [30], partially branchless [16], SIMD-aided [33]), the issue of

how to further increase performance of this step has remained open

for many years. To this end, we develop a new merge technique

that is not only faster than all prior solutions, but also applicable to

both scalar and vectorized architectures. It relies on a novel design

for advancing stream pointers using conditional move instructions

and interleaved comparisons from multiple merge pairs to lower

the latency caused by instruction/data dependency.

(𝑃3) Out-of-cache independent merge. Each thread begins the next

phase, which we call 𝑃3, with owning several sorted sequences of C
items each. It then independently merges them until reaching some

threshold after which coordination with other threads becomes nec-

essary. Because the data no longer fits in the cache, binary merges

are not suitable for this step as they operate at speed that can easily

exceed RAM bandwidth, especially across T threads. Much of the

prior work [14], [26], [30], [32], [33] ignores this issue and produces

poor performance in this phase. The remaining efforts [15], [17]

perform a 𝑘-way merge in 𝑃3, which reduces memory traffic by a

factor of log
2
𝑘 , but their performance is often suboptimal. Specifi-

cally, [15] always uses 𝑘 = 4 without regard to memory bandwidth

and [17] requires an insertion sort that may result inN2
complexity

for non-inform keys.

In Origami, we develop a new 𝑘-way merge tree that relies on

our algorithms in 𝑃2. Unlike previous literature [6], [17], where

each node performs a binary merge, our approach executes op-

timized 4-way merges at each step to achieve better throughput.

In contrast to expensive circular queues in [6], [18], [27], we use

simpler data structures that exhibit lower management cost. And

most importantly, Origami computes the optimal value of 𝑘 based

on the memory bandwidth achievable across T threads instead of

hardcoding an ad-hoc constant (e.g., 𝑘 = 4 in [15], 𝑘 = 32 in [17]).

(𝑃4) Out-of-cache cooperative merge. In this phase, which we call

𝑃4, multiple threads work together to merge the final 𝑘 lists. Note

that some papers, e.g., [6], [18], [27], omit phase 𝑃3 and directly

execute 𝑃4 on 𝑘 = N/𝐶 sorted buffers, which suffers from hefty

synchronization cost. Additionally, some of the techniques [14],

progressively shrink the number of working threads as the com-

putation goes forward and others [30], [32], [33] continue running

binary merges, which results in suboptimal multi-core utilization.

The remainingmethods [15], [17] split the merge size across threads

evenly; however, they do not parallelize the partitioning step, fail to

perfectly load-balance stragglers, and run into performance issues

when the final number of sorted streams (i.e., T ) is insufficient to

prevent memory bottlenecks.

Origami overcomes these problems by multi-threading the array

split, load-balancing across threads even when equal-size jobs con-

sume different amounts of time (e.g., due to OS scheduling delays,

difference in key distribution), and using our 𝑘-way merge tree

from 𝑃3, which keeps memory traffic just below RAM bandwidth.

3 TINY SORTERS (𝑃1)
3.1 Principles
Traditional mergesort [8][p. 13] performs log

2
N binary merges

starting from sorted runs of size 1. In practice, however, it is better

to first presort the items in small groups using a different algorithm

and then execute binary merges on these chunks. Over the years,

sorting networks [2] have proven to be the fastest option for such

tiny sorts. Recall that a sorting network is a sequence of min-max
operations, each of which we call a swap.

Definition 1 (swap). Given two (possibly vector) registers 𝑥 and
𝑦, the swap(x,y) macro performs the following operations

tmp = min(x, y); y = max(x, y); x = tmp;

Normally, a sorting network would run over scalar variables

(e.g., integers, doubles), but modern computers can do better. With

their ubiquitous support of SIMD (single-instruction multiple-data)

operations, commonly known as streaming or advanced vector ex-
tensions (i.e., SSE, AVX, AVX2, AVX-512), a single register can hold

multiple scalar values. For example, AVX2 has 256-bit registers

that can fit W = 8 integers or W = 4 doubles. A single vector

instruction, which we indicate by prefix _mm_, can then apply a

260



store W sorted runs

sort columns transpose

load keys

W

W

(a) prior work

store one sorted run

matrix-column merge

sort columns

R

load keys

... ...

..

..

matrix-row merge

transpose

W

(b) Origami

Figure 1: Approaches to sorting short lists (W = 4).

particular operation (e.g., min/max) to allW values at once. As a

result, these architectures can performW scalar swaps with only a

pair of _mm_min, _mm_max intrinsics. For a more in-depth overview,

see [6], [17], [27].

For maximum speed (i.e., to avoid of branch mispredictions) both

min/max functions in swapmust be branchless. In scalar code, this is
achieved using the cmov (conditional move) Assembly instruction or

the ternary operator ? in C/C++. For example, tmp = x < y ? x : y
implements the min. For SIMD, all vectorized min/max intrinsics

are automatically branchless. An added benefit of sorting networks

and branchless code is their insensitivity to key distribution, i.e.,

similar speed on all inputs, which is a desirable characteristic for

real-life workloads that are frequently skewed/non-uniform.

With this in mind, we can stack multiple SIMD registers and

vertically sortW columns in parallel, which is a common technique

we call csort.

Definition 2 (csort). Given an 𝑟 × 𝑐 matrixM, csort orders
each column of M using a vectorized sorting network of size 𝑟 .

Define 𝑚 to be the length of sorted runs generated by 𝑃1. As

shown in Figure 1(a), where the shade of each cell indicates its rela-

tive numeric value (i.e., darker is larger), the best existing methods

[6], [27], [14], [33] loadW2
items inW SIMD registers and view

them as aW ×W matrix. Next, they sort the items independently

within each column with csort, transpose the matrix, and obtain

W sorted lists of W items each. Other approaches exist, but they

are less efficient. In particular, [30] uses only four registers, [32]

only two, and [15], [17] only one.

There are several limitations to the method in Figure 1(a). First,

it uses just W out of R available registers. With R either 16 (i.e.,

SSE) or 32 (i.e., AVX2, AVX-512), this leaves 50−94% of the registers

unused depending on item size B. Second, this technique loadsW2

keys per iteration, but outputs sorted runs of dismal size𝑚 = W.

To sort allW2
keys, another log

2
W merge passes are needed in

the cache. In contrast, Origami 𝑃1 stuffs data into all R registers,

sorts the whole rectangular R ×W matrix using a variety of new

algorithms, including a faster transpose, and outputs runs of𝑚 =

RW items. This is illustrated in Figure 1(b) and detailed next.

3.2 Matrix-Column Merge
Origami begins 𝑃1 by loading RW input items into R registers

and sorting columns of the corresponding matrix using csort. The
complexity of this step is given by the length of the underlying

sorting network (e.g., 19 invocations of swap for R = 8). The next

6 30

14 33

19 45

28 48

10 46

20 49

29 50

34 53

M0 M1

(a) initial

6 30

14 33

19 45

28 48

10 46

20 49

29 50

34 53

M0 M1

(b) shuffle #1

6 30

10 33

14 46

20 49

19 45

28 48

29 50

34 53

M0 M1

(c) cswap #1, shuffle #2

6 14

10 20

46 30

49 33

19 29

28 34

50 45

53 48

(d) cswap #2, shuffle #3

6 14

10 19

50 20

53 28

29 45

30 46

33 48

34 49

(e) cswap #3

6 20

10 28

14 29

19 30

33 48

34 49

45 50

46 53

(f) final

Figure 2: Operation of mcmerge on 4 × 2 matrices.

objective is to continue sorting this matrix in column-major order,

by which we mean the following.

Definition 3. An 𝑟 × 𝑐 matrix𝑀 is considered sorted in column-

major order if values within each column are non-decreasing and no
larger than those in the next column, i.e., 𝑀 (𝑖, 𝑗) ≤ 𝑀 (𝑖 + 1, 𝑗) and
𝑀 (𝑟, 𝑗) ≤ 𝑀 (1, 𝑗 + 1) for all valid indexes 𝑖, 𝑗 .

An example is shown in Figure 2(a), where both 4 × 2 matrices

𝑀0, 𝑀1 satisfy this definition. We can view the result of the initial

csort as producing W matrices sorted in column-major order,

each R × 1 in size. From this point forward, a sequence of spe-

cialized operations, which we call matrix-column merge (mcmerge),
lead to progressively larger matrixes sorted in column-major or-

der. This design considering two key characteristics of SIMD: (i)

multiple columns can be manipulated with one instruction; and

(ii) re-arranging keys across columns and registers is expensive.

Therefore, it is advantageous to keep the items in column-major

order and delay the transpose as long as possible.

Definition 4 (mcmerge). Given two 𝑟 ×𝑐 matrices𝑀0, 𝑀1 sorted
in column-major order, mcmerge reorders the keys such thatmax(𝑀0)
≤ min(𝑀1) and both matrices remain sorted in column-major order.

This algorithm is rather complex; we thus relegate its details

and mapping to the various instruction sets to the code [1]. Its

essence boils down to the following. Suppose we split 𝑀0 into

𝑟/2 × 1 partial columns 𝑣1, . . . , 𝑣2𝑐 such that max(𝑣 𝑗 ) ≤ min(𝑣 𝑗+1).
Note that each 𝑣 𝑗 is internally sorted. Applying the same operation

to𝑀1, we get additional columns 𝑣2𝑐+1, . . . , 𝑣4𝑐 . In Figure 2(a), 𝑣0 =

(6, 14), 𝑣1 = (19, 28), . . . , 𝑣7 = (50, 53). We now use an odd-even

merge network over these 4𝑐 elements, coupled with vectorized

swap operations, to order the entire sequence of columns such that

max(𝑣 𝑗 ) ≤ min(𝑣 𝑗+1) holds for all 𝑗 ∈ [1, 4𝑐].
This is illustrated in Figure 2, which runs mcmerge over two 4×2

matrices to produce a 4 × 4 result sorted in column-major order.

Part (b) of the figure performs the initial shuffle to exchange 𝑣1
with 𝑣5 and 𝑣4 with 𝑣7, which facilities a vertical merge given next.

261



Definition 5 (cswap). Given a 𝑟 × 𝑐 matrix𝑀 , where 𝑟 is even
and its half-columns are sorted, i.e., 𝑀 (𝑖, 𝑗) ≤ 𝑀 (𝑖 + 1, 𝑗) for 𝑖 ∈
[1, 𝑟/2 − 1] ∪ [𝑟/2 + 1, 𝑟 − 1], 𝑗 ∈ [1, 𝑐], cswap applies a vectorized
merge network of size 𝑟 to make the columns of𝑀 fully sorted.

Figure 2(c) shows the effect of running a single cswap over the
result in (b). After the next shuffle, i.e., 𝑣2 ↔ 𝑣4, 𝑣6 ↔ 𝑣8, and

another cswap, we obtain the result in (d). The next shuffle is the

most complicated, i.e., 𝑣2 → 𝑣8, 𝑣3 → 𝑣4, 𝑣4 → 𝑣6, 𝑣5 → 𝑣3, 𝑣6 →
𝑣2, 𝑣7 → 𝑣5, 𝑣8 → 𝑣7, but, after another cswap, it produces the
correct partial columns in (e), but in the wrong locations. After

another round of shuffling, we obtain the final result in (f).

It should be noted that the number of steps required for mcmerge
is the depth (i.e., number of parallel layers) of the underlying merge

network of size 4𝑐 , where each step contains one cswap and one

or more shuffles. For 𝑐 = 2 in Figure 2, we have a size-8 merge

network with 3 layers. Furthermore, the number of regular swaps
contained in each cswap is the length of its size-𝑟 merge network

(i.e., 3 for 𝑟 = 4 in the figure). Thus, larger 𝑟 or 𝑐 make the process

slower. However, whenW > 2𝑐 , vectorization allows mcmerge to
apply simultaneous operations on allW/(2𝑐) pairs of matrices. For

example,W = 16 performs the transformations in Figure 2 on four
pairs of 4 × 2 matrices at no extra cost.

For back-to-back mcmerges, the last reordering (e)→(f) can be

omitted; instead, the sorted half-columns can be used in their cur-

rent locations if the merge network of the following mcmerge is

adjusted accordingly. It may also appear that (e)→(f) is unavoidable

at the final mcmerge; however, for R ≥ W, it can also be omitted

by simply renumbering the registers after the transpose.

Origami uses 𝑟 = R, applying mcmerge repeatedly with 𝑐 =

1, 2, 4, . . . At some point before reaching W/2, 𝑐 becomes large

enough that an alternative mechanism can continue merging faster

than mcmerge. This is related to the growing depth of size-4𝑐 merge

networks and the corresponding shuffle cost. At that point, it is

better to perform a transpose to convert the matrix into row-major

order and switch to another algorithm, which we explain next.

3.3 Matrix-Row Merge
Our second method, which we call matrix-row merge (mrmerge),
is similar in spirit to mcmerge, except it maintains sorted keys in

row-major order rather than column-major.

Definition 6 (mrmerge). Given two 𝑟/2 × 𝑐 matrices 𝑀0, 𝑀1

sorted in row-major order, mcmerge reorders the keys such thatmax(𝑀0)
≤ min(𝑀1) and both matrices remain sorted in row-major order.

This algorithm is derived from modulo merge sorting networks

[21] and its generalization for keys stored in a grid [7]. At a high

level, mrmerge performs the following steps:

(1) Reverse each row of the second matrix𝑀1;

(2) Stack the matrices on top of each other and run cswap;
(3) Sort each row of the resulting 𝑟 × 𝑐 matrix𝑀 .

To understand this better, consider Figure 3 which uses trans-

posed versions of𝑀0, 𝑀1 from Figure 2(a), i.e., input consists of 2×4
matrices. This would be equivalent to Origami stopping mcmerge
after 𝑐 = 1. In Figure 3(a), we reverse the rows of𝑀1 and run cswap
on the stacked matrix to obtain the result in (b). After this, it is guar-

anteed that the largest key in row 𝑗 is no bigger than the smallest

34 29 20 10

53 50 49 46

6 14 19 28

30 33 45 48
M0

M1

(a) reverse bottom rows

34 33 45 46

53 50 49 48

6 14 19 10

30 29 20 28

(b) cswap

33 34 45 46

48 49 50 53

6 10 14 19

20 28 29 30

(c) sort rows

Figure 3: Operation of mrmerge on 2 × 4 matrices.

key in row 𝑗 + 1. What is left at this point is to simply sort the rows.

For SSE and AVX2, this is accomplished by transposing the full ma-

trix𝑀 , running csort, and transposing it back. For AVX-512, it is

faster to use its new masking instructions, which are not supported

on earlier platforms, and perform the sort in place leveraging the

observation that each row is a bitonic sequence. At the end of this

step, all R registers are stored to memory and the process repeats

with the next RW items.

It should be noted that mrmerge is not significantly affected by

the increasing complexity of the merge networks as 𝑟 or 𝑐 increase,

which results in excellent scalability to large matrix sizes. How-

ever, it has a non-negligible minimum cost (e.g., two transposes)

that makes it inefficient for short sequences. This is in contrast to

mcmerge, where the overhead is low to begin with but increases

rapidly as the network becomes more complex. It is therefore bene-

ficial to switch between them at some critical threshold, which we

determine experimentally later in the paper.

3.4 Matrix Transpose
Column-wise SIMD operations leave sorted lists scattered in differ-

ent registers in column-major order. This organization must usually

be fixed with a matrix transpose before the data can be written back

to memory. An SIMD transpose is performed with log
2
W levels

of diagonal exchanges, where at level 𝑗 = 0, 1, . . . rows (𝑖, 𝑖 + 2
𝑗 )

exchange 2
𝑗B bits. Present work [6], [14], [26], [33] achieves this

through a pair of shuffle or permute instrinsics for each diagonal

exchange. However, this puts pressure on port 5 in Intel CPUs and

becomes a performance bottleneck [9]. To avoid this, we replace

some of the shuffles with blend instructions, which are executed

in ports 0, 1, and 5. This yields better IPC (instructions per cycle)

performance, which is especially useful during multiple indepen-

dent exchanges where the CPU’s out-of-order execution engine can

issue instructions to different ports. The following code segment

shows how we can achieve this for diagonally exchanging 64 bits.

We refer to these as transpose_v0 and v1 respectively.

// transpose_v0: two shuffles
_v0 = _mm256_shuffle_ps(v0, v1, 0x44);
_v1 = _mm256_shuffle_ps(v0, v1, 0xEE);

// transpose_v1: one shuffle and two blends
v = _mm256_shuffle_ps(v0, v1, 0x4E);
_v0 = _mm256_blend_ps(v0, v, 0xCC);
_v1 = _mm256_blend_ps(v1, v, 0x33);

262



3.5 Optimal Run Length
Note that Origami is flexible enough to allow a variety of run

lengths𝑚 ∈ [W,RW]. At what point𝑚 should the algorithm be

operating? As given in the next result, this depends on the speed

𝑆1 (𝑚) at which it can produce sorted runs during 𝑃1 and the in-

cache merge speed 𝑆𝑚𝑒𝑟𝑔𝑒 of phase 𝑃2.

Theorem 3.1. The optimal value of𝑚 for 𝑃1 minimizes

𝑓 (𝑚) = 𝑆𝑚𝑒𝑟𝑔𝑒/𝑆1 (𝑚) − log
2
𝑚. (1)

There is tradeoff in the cost function 𝑓 (𝑚) – larger𝑚 increases

the log term being subtracted, but also reduces the speed 𝑆1 (𝑚).
And thus the sweet spot usually lies somewhere in the middle.

4 IN-CACHE MERGE (𝑃2)
4.1 Merge Kernel
The main building block of merge-based sorts is the binary merge,

which we call bmerge. Its purpose is to combine two large (i.e.,

significantly longer than W) sorted sequences into one. With non-

trivial input sizes (e.g., over 1 GB), there can be 20-30 passes of

bmerge over the data. Therefore, its speed plays an important role

in the overall performance of the sort. The main difference between

bmerge in phase 𝑃2 (in-cache) and 𝑃3 (out-of-cache) is whether the

algorithm needs to keep memory traffic below some threshold.

One component of bmerge is its kernel, i.e., an algorithm that

merges two sorted registers.

Definition 7 (rswap). Given two sorted SIMD registers 𝑥 and
𝑦, rswap(x,y) rearranges the items such that both registers are still
sorted and max(𝑥) ≤ min(𝑦).

Note that if 𝑥 is loaded from an input stream 𝐴 and 𝑦 from

another stream 𝐵, rswap shuffles the data such that the smallestW
items out of 2W end up in 𝑥 , which is then written to the output.

In more general cases, illustrated in Algorithm 1, we can load 𝑘 ≥ 1

registers from each of 𝐴, 𝐵 and run a sequence of rswaps from any

merge network (e.g., odd-even, bitonic) of size 2𝑘 . This produces

a sorted sequence of 2𝑘W items, whose lower half 𝑟0, . . . , 𝑟𝑘−1 is
stored to the output 𝐶 and the upper half 𝑟𝑘 , . . . , 𝑟2𝑘−1 is retained
for the next iteration. We then reload the emptied registers from

the stream with smaller values at the front, advance its pointer, and

repeat until one of the two streams is exhausted.

For scalar keys, rswap is identical to the regular swap. For wider
registers, existing work uses SIMD merge kernels based on either

the bitonic [6], [14], [18], [27], [33] or odd-even network [15]; how-

ever, their speed leaves room for improvement. The fastest prior

kernel, which comes from [17], uses a series of rotate and swap
operations; however, it works only for SSE. We extend this method

to AVX2/AVX-512 and compare it against mrmerge. The former re-

quiresW stages compared to log
2
W+ 1 in the latter. But rotates

are cheaper than transpose, which usually makes this method faster.

For AVX-512, however, larger register width produces a significant

difference between W and log
2
W + 1. In addition, introduction

of mask_min and mask_max intrinsics in AVX-512 gives more flex-

ibility in data movement across registers and enables faster sort

compared to older extension sets [32]. In the benchmark section, we

evaluate which method is faster and deploy the winner in Origami.

Algorithm 1: Outline of generalized bmerge

Function bmerge (Item *A, *endA, *B, *endB, *C)
load registers 𝑟0, . . . , 𝑟𝑘−1 from 𝐴; 𝐴 += 𝑘W;

load registers 𝑟𝑘 , . . . , 𝑟2𝑘−1 from 𝐵; 𝐵 += 𝑘W;

while 𝐴 ≠ 𝑒𝑛𝑑𝐴 and 𝐵 ≠ 𝑒𝑛𝑑𝐵 do
rswaps from a merge network of size 2𝑘 ;

store 𝑟0, . . . , 𝑟𝑘−1 to𝐶 ; 𝐶 += 𝑘W;

reload 𝑟0, . . . , 𝑟𝑘−1 from either 𝐴 or 𝐵;

move 𝐴 or 𝐵 forward by 𝑘W;

end
merge keys left in registers and the unfinished list;

4.2 Advancing Pointers
Performance of Algorithm 1 depends on rswap and the last two lines
of the loop (i.e., deciding which stream to load from and moving the

pointers). When 𝑘W is small, pointer management plays a pivotal

role in determining the speed. The majority of work in the SIMD

literature [6], [14], [16], [27], [32] relies on a branching comparison

to decide which of the two pointers to advance:

if (∗𝐴 < ∗𝐵) { reload 𝑟0, . . . , 𝑟𝑘−1 from 𝐴; 𝐴 += 𝑘W; }
else { reload 𝑟0, . . . , 𝑟𝑘−1 from 𝐵; 𝐵 += 𝑘W; }

This version, which we call bmerge_v0, sometimes leads to a sig-

nificant misprediction penalty and bottlenecks the sort. Other alter-

natives [15], [17] dismiss mergesort for in-cache operation in favor

of combsort (i.e., an extension of bubble sort), which runs in qua-

dratic time for certain inputs [4]. Finally, the remaining papers [30],

[33] use expensive intrinsics (e.g., scatter, gather, mask_cmp) that
are not only slower than our approach below, but also inapplicable

to certain instruction sets (e.g., scalar, SSE).

For non-SIMD sorts, there were several attempts at developing a

branchless bmerge. For example, [12] argues that the compiler will

generate cmov (conditional move) instructions for short if state-

ments, but this is usually not the case in practice. Other techniques

include [13], which replaces the branch with a binary flag and mul-

tiplication, and [16], which runs a hybrid set-intersection algorithm

that removes difficult-to-predict branches in favor of those that

are easy to predict. These methods are usually 40-50% faster than

the branching version; however, Origami develops an even faster,

purely branchless bmerge as we explain next.

The first improvement to bmerge_v0 is to attempt replacing the

if block with a sequence of ternary operators to force the compiler

to generate cmov instructions during load. We call this version

bmerge_v1:

flag = ∗𝐴 < ∗𝐵;
𝑟𝑖 = flag ? load(𝐴 + 𝑖W) : load(𝐵 + 𝑖W); 𝑖 ∈ [0, 𝑘 − 1]
𝐴 += flag ? 𝑘W : 0; 𝐵 += flag ? 0 : 𝑘W;

While this works fine for scalar with 𝑘 = 1, the compiler gets

confused for 𝑘 > 1 and opts for a branch instead of multiple cmovs.
It also computes the flag three times, which may be related to its

inability to hold both incremented pointers in registers. On top of

that, SIMD _mm_load intrinsics do not support conditional moves,

which leads to branches as well. The first and third issues can be

mitigated by using cmovs to control the pointer to where the data is

263



Algorithm 2: Origami bmerge

Function bmerge_v3 (Item *A, *endA, *B, *endB, *C)
load 𝑟0, . . . , 𝑟2𝑘−1 as in Algorithm 1;

loadFrom = 𝐴 + 𝑘W; opposite = 𝐵 + 𝑘W;

while loadFrom ≠ endA and loadFrom ≠ endB do
rswaps from a merge network of size 2𝑘 ;

store 𝑟0, . . . , 𝑟𝑘−1 to𝐶 ; 𝐶 += 𝑘W;

flag = *loadFrom < *opposite;

tmp = flag ? loadFrom : opposite;

opposite = flag ? opposite : loadFrom;

loadFrom = tmp;

load 𝑟0, . . . , 𝑟𝑘−1 from loadFrom; loadFrom += 𝑘W;

end
merge keys left in registers and the unfinished list

coming from. This version, which we call bmerge_v2, is completely

branchless:

src = flag ? 𝐴 : 𝐵;
𝑟𝑖 = load(src + 𝑖W); 𝑖 ∈ [0, 𝑘 − 1]
𝐴 += flag ? 𝑘W : 0; 𝐵 += flag ? 0 : 𝑘W;

While this algorithm is 50% faster than v0, the compiler still has

a redundant computation of the flag. To overcome this issue, we in-

troduce our final method in Algorithm 2, which we call bmerge_v3.
It runs two pointers loadFrom and opposite, where the former

always points to the array from which the next load will take place

and the latter points to the current position in the other array. The

pointers are swapped based on the flag using one mov instruction
and two cmovs, which increases efficiency and yields a 25% faster

merge than v2 and 86% faster than v0. In addition, Algorithm 2 is

distribution-insensitive since the branchless merge removes spec-

ulation from the control flow and runs at a nearly constant speed

for all inputs.

Even though the vectorizedmerge network in Algorithm 2 allows

multiple rswaps to proceed in parallel, it still periodically runs

into pipeline stalls when there is dependency between adjacent

operations in themerge network. To push performance even further,

it is beneficial to run multiple independent merge networks to take

advantage of the CPU’s instruction-level parallelism. To this end,

Origami unrolls bmerge to simultaneously read several pairs of

input lists in a single thread. This interleaves the instructions of the

rswaps and reduces the duration of the stall cycles in the pipeline,

which for AVX2 increases performance by 77-94%.

4.3 Scalar Merge Optimizations
We can speed up the scalar bmerge further by reducing the num-

ber of swaps needed by the merge network. Assume that regis-

ters 𝑟0, . . . , 𝑟𝑘−1 are loaded from 𝐴 and 𝑟𝑘 , . . . , 𝑟2𝑘−1 from 𝐵. A

2𝑘-size merge network will aim to reorder the keys such that

𝑟0 ≤ . . . ≤ 𝑟
2𝑘−1, i.e., it sorts the entire collection of 2𝑘 items.

Since each iteration of the loop stores the smallest 𝑘 keys to the

output, the lower half of this sequence must be sorted; however,

the upper half can remain in some partially sorted state that allows

the next iteration to properly extract the smallest 𝑘 items. For 𝑘

that is a power of 2, it turns out that we can skip any swaps that
involve the second half, i.e., registers 𝑟𝑘 , . . . , 𝑟2𝑘−1, which can be

proven using the zero-one principle [19]. This novel result allows

Origami to reduce the number of swaps from 9 to 8 for 𝑘 = 4 and

from 25 to 20 for 𝑘 = 8. Note that this optimization does not work

for vector registers since multiple keys reside in each 𝑟𝑖 .

5 OUT-OF-CACHE MERGE
Merging lists that do not fit in the cache requires consideration of

memory-bandwidth limitations. In addition, proper load balancing

is needed to maximize thread-level parallelism. In this section, we

discuss the design decisions in Origami for out-of-cache merge

using single and multiple threads.

5.1 Independent Merge (𝑃3)
Phase 𝑃2 finishes when each thread obtains a number of sorted

lists of L2-cache-size C. Assuming the number of these streams is

still significant, we can continue merging them separately in each

thread, which constitutes phase 𝑃3. An out-of-cache merge involves

loading items from main memory, running rswap over them, and

storing the result back to RAM. The maximum achievable speed

for this step is that of memcpy, which we define as the rate at which

T threads can concurrently copy large chunks of memory (e.g.,

100 MB) without any synchronization. For example, Skylake-X i7

CPUs with DDR4-3200 quad-channel memory max out at 37 GB/sec.

Our vectorized bmerge_v3 can exhaust this bandwidth with just 3

threads, even though this CPU family comes with many more cores

(i.e., between 6 and 18). For older computers with lower RAM clocks

and those with dual-channel memory, the saturation point may

be approached even with a single Origami thread, which severely

limits the overall performance on these systems.

The majority of prior SIMD mergesorts [14], [26], [30], [32], [33]

ignore this issue and continue with binary merges in 𝑃3. The main

other alternative is to run a multi-way merge to get around this

bottleneck. Observe that a 𝑘-way merge reduces the number of

out-of-cache passes over the data from log
2
(N/C) to log𝑘 (N/C).

This reduces memory-bandwidth demand by a factor of log
2
𝑘 . One

technique [6] is to use a merge tree that resides in the L3 cache

and implements an N/C-way merge through a series of binary

merges at each node. Each internal node stores partial merge results

in a circular-buffer queue. A node is marked ready if both of its

children’s queues contain a threshold number of keys. Threads draw

elements from a global pool of ready nodes and process their merges

in parallel. Besides requiring inter-thread synchronization and inter-

core data traffic, which we would like to avoid in 𝑃3, this method

fails to utilize dedicated core caches (i.e., L2) and uses relatively

slow queues at each node. Another approach [17] uses a 32-way

merge tree that fits into the L2 cache and fixed 4-KB intermediate

buffers instead of queues. It encodes the stream from which the

key originated in the upper 5 bits of each item and runs insertion

sort to break ties, which leads to not only extensive overhead in

coding/decoding the index bits, but also quadratic complexity on

certain inputs.

In Origami, we develop an L2-cache-residing 𝑘-way merge tree,

which we call mtree. Unlike prior work, where 𝑘 is fixed, our ap-

proach uses it as a tuning parameter that can be adapted to the

characteristics of the architecture on which the sort is running. To

facilitate faster operation, each node in mtree performs a 4-way

264
















