
C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

1

Vortex: Extreme-Performance
Memory Abstractions for Data-
Intensive Applications

Carson Hanel, Arif Arman, Di Xiao, John Keech,
and Dmitri Loguinov

Internet Research Lab (IRL)
Department of Computer Science and Engineering
Texas A&M University, College Station, TX, USA 77843

March 19, 2020

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

2

Agenda
• Introduction

• Motivation

• Producer Consumer

• Partitioning and Sorting

• Experiments

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

3

Introduction
• Streaming is a commonly employed paradigm for

data-intensive computing
━ Often, traditional streaming applications and software

packages are unsuited for extreme performance, or rates
close to the speed of hardware

━ Moreover, data streaming continues to offer the same
block-based communication model of the 1950s

━ Because of this, programmers must choose between
“fast, but complex” (e.g., hand-tuned assembly), and
“simple, but slow” (e.g., Apache Hadoop) solutions for
large problems

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

4

Introduction
• Many applications in data analytics, information

retrieval, and cluster computing process massive
amounts of information

• In this paper we introduce the Vortex programming
model, which has the following goals:
━ Offer a simple abstraction for larger-than-RAM inputs
━ Squeeze maximum performance out of hardware

• Usually, these are conflicting goals, but we show
that this does not have to be the case
━ Vortex leverages access violations to create the illusion

of an infinite buffer in user space
━ It is by far the simplest to use and fastest platform for

various streaming workloads

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

5

Agenda
• Introduction

• Motivation

• Producer Consumer

• Partitioning and Sorting

• Experiments

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

6

Motivation: Coding Simplicity

Search (char* str, uint64 size, uint64 blockSize)
 strLen = strlen(str); buf = new char[blockSize];
 pos = 0; bufStart = 0;
 while (not end of data) do
 size = blockSize – 1 – pos;
 bytes = GetNextBlock(buf + pos, size);
 buf [pos + bytes] = NULL;
 if ((ptr = strstr(buf, str)) != NULL) then
 return ptr – buf + bufStart;
 bufStart += bytes + pos – (strLen – 1);
 pos = strLen – 1;
 memcpy(buf, buf + blockSize – 1 – pos, pos);

• Consider the task of finding a user-defined string
in a long (e.g., 32 TB) stream of data using strstr()
━ The stream could be originating from a disk, another

thread, or arriving in real time from the network
• Traditional block-based solution:

━ Error-prone pointer calculations
━ Memcpy() for data crossing block boundaries
━ Tedious coding practice, slow development

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

7

Motivation: Coding Simplicity
• Instead, we would like a much simpler memory

abstraction that allows treating streams as infinite:

• Ideally, this abstraction would provide:

━ Coding simplicity
━ No Memcpy() or boundaries
━ No error-prone pointer management
━ Complete transparency, including synchronization
━ Ability to make large (e.g., 32 TB) memset()/strstr() calls

Thread Producer (char* buf, uint64 len)
 memset(buf, ‘a’, len);
 buf [len] = NULL;

Thread Consumer (char* buf)
 return strstr(buf, “Hello World!”);

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

8

Motivation: Faster Iterator Abstractions
• Consider implementing a producer-consumer

pipeline between threads

━ Commonly, this is done with an iterator abstraction

━ Iterators greatly reduce programming effort

━ Error-prone block management is abstracted away

Thread Producer (Iterator* it, uint64 len)
 for (i = 0; i < len; i++) do
 it->Write(i);

Thread Consumer (Iterator* it, uint64 len)
 for (sum = 0, i = 0; i < len; i++) do
 x = it->Read(); sum += x;

Let’s look further into iterators!

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

9

Motivation: Faster Iterator Abstractions

• Iterators exhibit non-trivial overhead

━ Writer: 3 loads and 3 stores
━ Reader: 4 loads and 2 stores

• An optimal solution requires 1 load and 1 store
━ Iterators thus unnecessarily stress the L1 cache, which

can become a huge bottleneck in certain applications

Iterator::Read()
 x = bufR [posR];
 if posR == blockSize – 1 then
 empty.push (bufR);
 bufR = full.pop ();
 posR = 0;
 else
 posR++;
 return x;

Iterator::Write(int x)
 bufW [posW] = x;
 if posW == blockSize – 1 then
 full.push (bufW);
 bufW = empty.pop ();
 posW = 0;
 else
 posW++;

Iterator Internals

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

10

Motivation: Faster Iterator Abstractions
• The desired abstraction would allow memory to be

processed uninterrupted (i.e., without boundaries or
explicit synchronization)

• Benefits of this approach:

━ Requires 1 load and 1 store per item
━ Depending on CPU, may be 2-4x faster than an iterator
━ Regular pointers are abstracted as being “infinite” (i.e., not

constrained by physical RAM)
━ Could help to maximize application throughput

Thread Producer (int* buf, uint64 len)
 for (i = 0; i < len; i++) do
 buf [i] = i;

Thread Consumer (int* buf, uint64 len)
 for (sum = 0, i = 0; i < len; i++) do
 sum += buf [i];

May be larger than
RAM (e.g., 32 TB)

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

11

Motivation: Non-Counting In-Place
Partitioning
• Consider partitioning n keys across k arrays

(e.g., during radix sort)
━ The size of each output buffer is unknown a-priori,

which generally requires a counting pass to pre-
allocate buffers

━ Key movement either requires 2n + O(1) memory or
needs slow iterator abstractions

• It is desirable to eliminate these constraints and
━ Distribute the keys without the histogram pass
━ Operate in-place (i.e., using n + O(1) total memory)
━ Achieve close to optimal speed

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

12

Agenda
• Introduction

• Motivation

• Producer Consumer

• Partitioning and Sorting

• Experiments

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

13

Virtual Memory in User Space
• General idea behind Vortex

━ Access to reserved, uncommitted virtual memory
generates a page fault

━ These faults result in exceptions that can be caught by a
user-space handler

━ We can thus cause controlled, sequential-access
violations in virtual memory

━ To fix the violation, we map physical pages to the
location of the fault in the stream

━ Once the memory is available, we transparently restart
the read/write instruction that caused the fault

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

14

Vortex-A
• To avoid faulting per 4-KB page, operations

proceed in units (blocks) of size B (e.g., 1-2 MB)
━ To allow out-of-order reads, let M be the consumer

comeback, i.e., the number of blocks by which it can
return to reprocess the data

• Threads are synchronous - the producer is
invoked per-block within the fault handler

Virtual Memory Reserved to Stream Size

Operating
System

Block
0

Block
8

Block
0

Block
1

Block
2

Block
3

Block
4

Block
5

Block
6

Block
7

Consumer fault! Producer is invoked in the handler

Block
1

M=1, return block to OS

Block
2

Block
3 And so on

Block
4

Block
5

Block
6

Block
7

Block
8

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

15

Vortex-A
• Drawbacks of this model:

━ The abstraction is non-transparent to the producer
thread, and thus incoming data must still be produced in
block-sized increments rather than continuously

━ Threads are necessarily synchronous, as the producer is
only invoked once the consumer encounters a fault

━ Consumer comeback is handled by M, but producer
comeback has no such accommodation

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

16

Vortex-B
• In this model, the producer is not aware of the

existence of an underlying stream
━ Instead, the producer writes into an infinite buffer
━ Adds producer write-ahead N and comeback L control

• Threads are asynchronous
━ Achieved by tracking and limiting the consumer via guard

pages, which cause access violations
• Employs the classical bounded producer-

consumer solution to track empty and full blocks

Let’s see it in action!

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

17

Virtual Memory Reserved to Stream Size

Vortex-B
• Operation with M = 0, L = 0,

N = 2

Operating
System

Block
0

Block
8

Block
0

Block
1

Block
2

Block
3

Block
4

Block
5

Block
6

Block
7

Producer fault!

Block
1

M=0, return LRU block to OS

Block
2

Block
3

And so on

Block
4

Block
5

Block
6

Block
7

Block
8 Consumer faults on a guard page

The producer installs a guard page
and must wait for the consumer N=2

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

18

Vortex-B
• Drawbacks of this model:

━ Blocks cannot be safely consumed until they are
protected by guard pages, and thus the minimum
distance between threads is the full size of a block

━ Producer and consumer threads share a virtual buffer,
making it more difficult to isolate them (e.g., forward
consumer jumps are not supported)

━ Instead of maintaining a pre-allocated stack of blocks,
memory is obtained from and released to the OS, which
incurs a severe performance penalty

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

19

Vortex-C
• Further improves upon Vortex-B

━ Pre-allocates physical memory at the start of the
program instead of during runtime

━ Unlike the previous models, gains speed by retaining
blocks for remapping rather than freeing to the OS

• Instead of using guard pages to track the
consumer, this method uses dual-buffers
━ Threads get separate virtual-memory buffers for runtime

address space isolation
━ Blocks are quickly remapped between streams

Let’s see it in action!

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

20

Consumer fault!

Vortex-C
• Operation with M = 1, L =

1, N = 1

char* bufP Virtual Memory

char* bufC Virtual Memory

Operating
System

Block
0

Block
2

Block
3

Block
0

Block
3

Block
0

Block
2

Block
0

Block
0

Block
3

Block
1

Block
2

Block
3

Block
0

Block
1

Block
2

Block
0

Block
3

Block
1

Block
0

Block
1

Block
2

Block
3

Block
0

Block
1

Block
2

Block
1

Block
3

Producer fault!

A full block is mapped to the consumer buffer

Block
1

Block
2

Producing

Consuming

The consumed block is then remapped to the producer And so on with the Vortex

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

21

Agenda
• Introduction

• Motivation

• Producer Consumer

• Partitioning and Sorting

• Experiments

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

22

Partitioning and Sorting
• We adapt Vortex to create a novel variant of bucket

sort which utilizes:
━ Non-counting data partitioning to avoid a histogram pass
━ In-place data shuffling to stream sort with n + O(1) RAM

• To achieve non-counting data partitioning
━ Each sort bucket is reserved to the full size of input

• The result is the first in-place streaming radix sort
━ Posts a 2-4x performance improvement over prior work
━ Provides out-of-place speeds with in-place operation

• Finally, this abstraction does not require specialized
code or memory management to achieve in-place
sorting, being instead totally transparent

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

23

Agenda
• Introduction

• Motivation

• Producer Consumer

• Partitioning and Sorting

• Experiments

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

24

Experiments

Available Test Configurations
Hardware c1 c2 c3

CPU
Platform

Test drive

Intel 3930K
Sandy Bridge
24-disk RAID

Intel 4930K
Ivy Bridge

24-disk RAID

7820X
Skylake-X
M.2 SSD

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

25

Experiments

File I/O Speed (MB/s)

Framework
c1 c3 CPU RAM

Read Write Read Write

std::fstream
Win. MapViewOfFile
Linux mmap

43
69

1,892

88
147

1,170

51
1,161
1,917

140
*

641

8%
8%
3%

2 MB
32 GB
30 GB

Vortex-A
Vortex-B
Vortex-C

2,235
2,231
2,238

1,547
2,394
2,399

1,272
3,211
3,266

651
650
674

8%
8%
1%

5 MB
5 MB
5 MB

Batched Producer-Consumer Rate (GB/s)

Framework
Two core All cores RAM

c1 c2 c3 c1 c2 c3

Apache Storm
Naiad

1.7
2.7

1.4
3.1

2.4
4.4

11.1
7.4

9.5
7.9

12.8
13.1

1.6 GB
65 MB

Queue of Blocks
Vortex-B
Vortex-C

6.4
4.3

13.5

7.3
4.4

16.4

11.4
4.6
23.3

17.1
5.1

38.3

16.5
5.2
38.4

24.8
3.9

65.4

24 MB
9 MB
9 MB

Vortex-C is
1.7x faster
than mmap

Vortex-C is 5-
10x faster
than Storm

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

26

Experiments

Populating an 8 GB Vector on c3 (GB/s)

Framework
Memory

Untouched Pre-Faulted

std::vector 0.7 -

RUMA rewired vector, 4 KB pages
RUMA rewired vector, 2 MB pages

-
-

5.3
14.3

Chained Blocks
Vanishing Array (Vortex-S)

6.8
25.1

18.8
25.1

Static Buffer 8.0 28.5

Partitioning Speed of 8 GB on c3 (M keys/s)

Framework
Write

Combine

k=256

k=512

2-pass
Chained blocks
Vortex-S
Pre-allocated buckets

N
N
N
N

339
450
492
509

322
413
445
464

2-pass
chained blocks
Vortex-S
Pre-allocated buckets

Y
Y
Y
Y

364
461
607
637

344
449
523
567

Vortex-S is 3.1x faster
than an untouched
static buffer

Vortex-S reaches 88%
of static buffer speed

Applied to partitioning,
Vortex-S achieves 92-
96% static buffer speed

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

27

Experiments
Fastest In-Place Radix Sorts (M keys/sec)

Sort Type

Year

8 GB of keys 24 GB of keys

c1 c2 c3 c1 c2 c3

MSB Radix
MSB Radix
MSB Radix

2014
2017
2019

19
24
17

23
25
19

26
32
26

18
24
25

21
26
30

26
32
39

Vortex Sort 2020 71 84 127 68 80 121

Speedup Factor of Vortex-S

Compared to
8 GB 24 GB

c1 c2 c3 c1 c2 c3

Best in-place 2.9 3.3 4.0 2.7 2.7 3.1

Best out-of-place 1.6 1.4 1.9 ∞

Fastest Out-Of-Place Radix Sorts (M keys/sec)

Sort Type

Year
8 GB of keys 24 GB of keys

c1 c2 c3 c1 c2 c3

LSB Radix
LSB Radix
LSB Radix

2011
2014
2016

25
24
19

25
26
23

39
42
34

Not enough RAM

MSB Radix
MSB Radix

2017
2017

25
44

29
58

41
67

Vortex Sort 2020 71 84 127 68 80 121

Vortex is 2.9-4.0x faster
at sorting 8 GB than the
nearest in-place radix
sort competitors

Vortex is 2.7-3.1x faster
at sorting 24 GB than
the nearest in-place
radix sort competitors

Even considering out-of-
place sorts, Vortex is still
1.6-1.9x faster at sorting
8 GB, and can run sort
sizes twice as large

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

28

Thank you!
Any questions?

Contact: Carson@cse.tamu.edu

	Vortex: Extreme-Performance Memory Abstractions for Data-Intensive Applications
	Agenda
	Introduction
	Introduction
	Agenda
	Motivation: Coding Simplicity
	Motivation: Coding Simplicity
	Motivation: Faster Iterator Abstractions
	Motivation: Faster Iterator Abstractions
	Motivation: Faster Iterator Abstractions
	�Motivation: Non-Counting In-Place Partitioning
	Agenda
	Virtual Memory in User Space
	Vortex-A
	Vortex-A
	Vortex-B
	Vortex-B
	Vortex-B
	Vortex-C
	Vortex-C
	Agenda
	Partitioning and Sorting
	Agenda
	Experiments
	Experiments
	Experiments
	Experiments
	Slide Number 28

