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Agenda 
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• Motivation 

• Producer Consumer 
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Introduction 
• Streaming is a commonly employed paradigm for 

data-intensive computing 
━ Often, traditional streaming applications and software 

packages are unsuited for extreme performance, or rates 
close to the speed of hardware 

━ Moreover, data streaming continues to offer the same 
block-based communication model of the 1950s 

━ Because of this, programmers must choose between 
“fast, but complex” (e.g., hand-tuned assembly), and 
“simple, but slow” (e.g., Apache Hadoop) solutions for 
large problems 
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Introduction 
• Many applications in data analytics, information 

retrieval, and cluster computing process massive 
amounts of information 

• In this paper we introduce the Vortex programming 
model, which has the following goals: 
━ Offer a simple abstraction for larger-than-RAM inputs 
━ Squeeze maximum performance out of hardware 

• Usually, these are conflicting goals, but we show 
that this does not have to be the case 
━ Vortex leverages access violations to create the illusion 

of an infinite buffer in user space 
━ It is by far the simplest to use and fastest platform for 

various streaming workloads 
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Motivation: Coding Simplicity 

Search (char* str, uint64 size, uint64 blockSize)  
 strLen = strlen(str); buf = new char[blockSize]; 
 pos = 0; bufStart = 0; 
 while (not end of data) do 
  size = blockSize – 1 – pos; 
  bytes = GetNextBlock(buf + pos, size); 
  buf [pos + bytes] = NULL; 
  if ((ptr = strstr(buf, str)) != NULL) then 
   return ptr – buf + bufStart; 
  bufStart += bytes + pos – (strLen – 1); 
  pos = strLen – 1; 
  memcpy(buf, buf + blockSize – 1 – pos, pos); 

• Consider the task of finding a user-defined string 
in a long (e.g., 32 TB) stream of data using strstr() 
━ The stream could be originating from a disk, another 

thread, or arriving in real time from the network 
• Traditional block-based solution: 

 
 
 

 
━ Error-prone pointer calculations 
━ Memcpy() for data crossing block boundaries 
━ Tedious coding practice, slow development 
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Motivation: Coding Simplicity 
• Instead, we would like a much simpler memory 

abstraction that allows treating streams as infinite: 
 

 
 

 
• Ideally, this abstraction would provide: 

━ Coding simplicity 
━ No Memcpy() or boundaries 
━ No error-prone pointer management 
━ Complete transparency, including synchronization 
━ Ability to make large (e.g., 32 TB) memset()/strstr() calls 
 
 

Thread Producer (char* buf, uint64 len) 
 memset(buf, ‘a’, len); 
 buf [len] = NULL; 
 
Thread Consumer (char* buf) 
 return strstr(buf, “Hello World!”); 
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Motivation: Faster Iterator Abstractions 
• Consider implementing a producer-consumer 

pipeline between threads 

 

 

 
━ Commonly, this is done with an iterator abstraction 

━ Iterators greatly reduce programming effort 

━ Error-prone block management is abstracted away 

 

 

 

Thread Producer (Iterator* it, uint64 len) 
 for (i = 0; i < len; i++) do 
  it->Write(i); 
 
Thread Consumer (Iterator* it, uint64 len) 
 for (sum = 0, i = 0; i < len; i++) do 
  x = it->Read(); sum += x; 

Let’s look further into iterators! 
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Motivation: Faster Iterator Abstractions 
 
 
 
 

 
 
 
• Iterators exhibit non-trivial overhead 

━ Writer: 3 loads and 3 stores 
━ Reader: 4 loads and 2 stores 

• An optimal solution requires 1 load and 1 store 
━ Iterators thus unnecessarily stress the L1 cache, which 

can become a huge bottleneck in certain applications 

Iterator::Read() 
 x = bufR [posR]; 
 if posR == blockSize – 1 then 
  empty.push (bufR);  
  bufR = full.pop ();  
  posR = 0; 
       else 
        posR++; 
       return x; 

Iterator::Write(int x) 
 bufW [posW] = x; 
 if posW == blockSize – 1 then 
  full.push (bufW);  
  bufW = empty.pop ();  
  posW = 0; 
 else 
  posW++; 

Iterator Internals 
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Motivation: Faster Iterator Abstractions 
• The desired abstraction would allow memory to be 

processed uninterrupted (i.e., without boundaries or 
explicit synchronization) 
 
 
 

 
• Benefits of this approach: 

━ Requires 1 load and 1 store per item 
━ Depending on CPU, may be 2-4x faster than an iterator 
━ Regular pointers are abstracted as being “infinite” (i.e., not 

constrained by physical RAM) 
━ Could help to maximize application throughput 
 

 

Thread Producer (int* buf, uint64 len) 
 for (i = 0; i < len; i++) do 
  buf [i] = i; 
 
Thread Consumer (int* buf, uint64 len) 
 for (sum = 0, i = 0; i < len; i++) do 
  sum += buf [i]; 

May be larger than 
RAM (e.g., 32 TB) 
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Motivation: Non-Counting In-Place 
Partitioning 
• Consider partitioning n keys across k arrays 

(e.g., during radix sort)  
━ The size of each output buffer is unknown a-priori, 

which generally requires a counting pass to pre-
allocate buffers 

━ Key movement either requires 2n + O(1) memory or 
needs slow iterator abstractions 

• It is desirable to eliminate these constraints and 
━ Distribute the keys without the histogram pass 
━ Operate in-place (i.e., using n + O(1) total memory) 
━ Achieve close to optimal speed 
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Virtual Memory in User Space 
• General idea behind Vortex 

━ Access to reserved, uncommitted virtual memory 
generates a page fault 

━ These faults result in exceptions that can be caught by a 
user-space handler 

━ We can thus cause controlled, sequential-access 
violations in virtual memory 

━ To fix the violation, we map physical pages to the 
location of the fault in the stream 

━ Once the memory is available, we transparently restart 
the read/write instruction that caused the fault 
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Vortex-A 
• To avoid faulting per 4-KB page, operations 

proceed in units (blocks) of size B (e.g., 1-2 MB) 
━ To allow out-of-order reads, let M be the consumer 

comeback, i.e., the number of blocks by which it can 
return to reprocess the data 

• Threads are synchronous - the producer is 
invoked per-block within the fault handler 

 

Virtual Memory Reserved to Stream Size 
 

Operating 
System 

Block 
0 

Block 
8 

Block 
0 

Block 
1 

Block 
2 

Block 
3 

Block 
4 

Block 
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Block 
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Block 
7 

Consumer fault! Producer is invoked in the handler 

Block 
1 

M=1, return block to OS 

Block 
2 

Block 
3 And so on 

Block 
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Block 
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Block 
7 

Block 
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Vortex-A 
• Drawbacks of this model: 

━ The abstraction is non-transparent to the producer 
thread, and thus incoming data must still be produced in 
block-sized increments rather than continuously 

━ Threads are necessarily synchronous, as the producer is 
only invoked once the consumer encounters a fault 

━ Consumer comeback is handled by M, but producer 
comeback has no such accommodation 
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Vortex-B 
• In this model, the producer is not aware of the 

existence of an underlying stream 
━ Instead, the producer writes into an infinite buffer 
━ Adds producer write-ahead N and comeback L control 

• Threads are asynchronous  
━ Achieved by tracking and limiting the consumer via guard 

pages, which cause access violations 
• Employs the classical bounded producer-

consumer solution to track empty and full blocks 

Let’s see it in action! 



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity
 

17 

Virtual Memory Reserved to Stream Size 
 

Vortex-B 
• Operation with M = 0, L = 0, 

N = 2 

Operating 
System 

Block 
0 

Block 
8 

Block 
0 

Block 
1 

Block 
2 

Block 
3 

Block 
4 

Block 
5 

Block 
6 

Block 
7 

Producer fault! 

Block 
1 

M=0, return LRU block to OS 

Block 
2 

Block 
3 

And so on 

Block 
4 

Block 
5 

Block 
6 

Block 
7 

Block 
8 Consumer faults on a guard page 

The producer installs a guard page 
and must wait for the consumer N=2 
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Vortex-B 
• Drawbacks of this model: 

━ Blocks cannot be safely consumed until they are 
protected by guard pages, and thus the minimum 
distance between threads is the full size of a block 

━ Producer and consumer threads share a virtual buffer, 
making it more difficult to isolate them (e.g., forward 
consumer jumps are not supported) 

━ Instead of maintaining a pre-allocated stack of blocks, 
memory is obtained from and released to the OS, which 
incurs a severe performance penalty 
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Vortex-C 
• Further improves upon Vortex-B 

━ Pre-allocates physical memory at the start of the 
program instead of during runtime 

━ Unlike the previous models, gains speed by retaining 
blocks for remapping rather than freeing to the OS 

• Instead of using guard pages to track the 
consumer, this method uses dual-buffers 
━ Threads get separate virtual-memory buffers for runtime 

address space isolation 
━ Blocks are quickly remapped between streams 

Let’s see it in action! 
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Consumer fault! 

Vortex-C 
• Operation with M = 1, L = 

1, N = 1 

char* bufP Virtual Memory 
 

char* bufC Virtual Memory 
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Producer fault! 

A full block is mapped to the consumer buffer 

Block 
1 

Block 
2 

Producing 

Consuming 

The consumed block is then remapped to the producer And so on with the Vortex 
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Partitioning and Sorting 
• We adapt Vortex to create a novel variant of bucket 

sort which utilizes: 
━ Non-counting data partitioning to avoid a histogram pass 
━ In-place data shuffling to stream sort with n + O(1) RAM 

• To achieve non-counting data partitioning 
━ Each sort bucket is reserved to the full size of input 

• The result is the first in-place streaming radix sort 
━ Posts a 2-4x performance improvement over prior work 
━ Provides out-of-place speeds with in-place operation 

• Finally, this abstraction does not require specialized 
code or memory management to achieve in-place 
sorting, being instead totally transparent 
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Experiments 

 

 

Available Test Configurations 
Hardware c1 c2 c3 

CPU 
Platform 

Test drive 

Intel 3930K 
Sandy Bridge 
24-disk RAID 

Intel 4930K 
Ivy Bridge 

24-disk RAID 

7820X 
Skylake-X 
M.2 SSD 
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Experiments 

 

 

File I/O Speed (MB/s) 
 

Framework 
c1 c3 CPU RAM 

Read Write Read Write 

std::fstream 
Win. MapViewOfFile 
Linux mmap 

43 
69 

1,892 

88 
147 

1,170 

51 
1,161 
1,917 

140 
* 

641 

8% 
8% 
3% 

2 MB 
32 GB 
30 GB 

Vortex-A 
Vortex-B 
Vortex-C 

2,235 
2,231 
2,238 

1,547 
2,394 
2,399 

1,272 
3,211 
3,266 

651 
650 
674 

8% 
8% 
1% 

5 MB 
5 MB 
5 MB 

Batched Producer-Consumer Rate (GB/s) 
 

Framework 
Two core All cores RAM 

c1 c2 c3 c1 c2 c3 

Apache Storm 
Naiad 

1.7 
2.7 

1.4 
3.1 

2.4 
4.4 

11.1 
7.4 

9.5 
7.9 

12.8 
13.1 

1.6 GB 
65 MB 

Queue of Blocks 
Vortex-B 
Vortex-C 

6.4 
4.3 

13.5 

7.3 
4.4 

16.4 

11.4 
4.6 
23.3 

17.1 
5.1 

38.3 

16.5 
5.2 
38.4 

24.8 
3.9 

65.4 

24 MB 
9 MB 
9 MB 

Vortex-C is 
1.7x faster 
than mmap 

Vortex-C is 5-
10x faster 
than Storm 
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Experiments 

 

 

Populating an 8 GB Vector on c3 (GB/s) 
 

Framework 
Memory 

Untouched Pre-Faulted 

std::vector 0.7 - 

RUMA rewired vector, 4 KB pages 
RUMA rewired vector, 2 MB pages 

- 
- 

5.3 
14.3 

Chained Blocks 
Vanishing Array (Vortex-S) 

6.8 
25.1 

18.8 
25.1 

Static Buffer 8.0 28.5 

Partitioning Speed of 8 GB on c3 (M keys/s) 
 

Framework 
Write 

Combine 
 

k=256 
 

k=512 

2-pass 
Chained blocks 
Vortex-S 
Pre-allocated buckets 

N 
N 
N 
N 

339 
450 
492 
509 

322 
413 
445 
464 

2-pass 
chained blocks 
Vortex-S 
Pre-allocated buckets 

Y 
Y 
Y 
Y 

364 
461 
607 
637 

344 
449 
523 
567 

Vortex-S is 3.1x faster 
than an untouched 
static buffer 

Vortex-S reaches 88% 
of static buffer speed 

Applied to partitioning, 
Vortex-S achieves 92-
96% static buffer speed 
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Experiments 
Fastest In-Place Radix Sorts (M keys/sec) 

 
Sort Type 

 
Year 

8 GB of keys 24 GB of keys 

c1 c2 c3 c1 c2 c3 

MSB Radix 
MSB Radix 
MSB Radix 

2014 
2017 
2019 

19 
24 
17 

23 
25 
19 

26 
32 
26 

18 
24 
25 

21 
26 
30 

26 
32 
39 

Vortex Sort 2020 71 84 127 68 80 121 

Speedup Factor of Vortex-S 
 

Compared to 
8 GB 24 GB 

c1 c2 c3 c1 c2 c3 

Best in-place 2.9 3.3 4.0 2.7 2.7 3.1 

Best out-of-place 1.6 1.4 1.9 ∞ 

Fastest Out-Of-Place Radix Sorts (M keys/sec) 
 

Sort Type 
 

Year 
8 GB of keys 24 GB of keys 

c1 c2 c3 c1 c2 c3 

LSB Radix 
LSB Radix 
LSB Radix 

2011 
2014 
2016 

25 
24 
19 

25 
26 
23 

39 
42 
34 

 
 

Not enough RAM 

MSB Radix 
MSB Radix 

2017 
2017 

25 
44 

29 
58 

41 
67 

Vortex Sort 2020 71 84 127 68 80 121 

Vortex is 2.9-4.0x faster 
at sorting 8 GB than the 
nearest in-place radix 
sort competitors  

Vortex is 2.7-3.1x faster 
at sorting 24 GB than 
the nearest in-place 
radix sort competitors 

Even considering out-of-
place sorts, Vortex is still 
1.6-1.9x faster at sorting 
8 GB, and can run sort 
sizes twice as large 
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Thank you! 
Any questions? 

Contact: Carson@cse.tamu.edu 
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