Vortex: Extreme-Performance

Memeory Abstractions for Data-
lntensive Applications

Carson Hanel, Arif Arman, DI Xiao, John Keech,
and Dmitri Loguinov

Internet Research Lab (IRL)
Department of Computer Science and Engineering
Texas A&M University, College Station, TX, USA 77843

March 19, 2020

>
et

s

()

=

C

>

=

o

<

(V]

©

x

Q

—

)
O

-
QD

@)

)

O

)

>

Q
=

@]

O

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
c
Q2
O
)
0
)
>
Q
£
O
O

Agenda

Introduction
Motivation

Producer Consumer
Partitioning and Sorting

Experiments

Introduction

e Streaming is a commonly employed paradigm for
data-intensive computing

— Often, traditional streaming applications and software
packages are unsuited for extreme performance, or rates
close to the speed of hardware

— Moreover, data streaming continues to offer the same
block-based communication model of the 1950s

— Because of this, programmers must choose between
“fast, but complex” (e.g., hand-tuned assembly), and
“simple, but slow” (e.g., Apache Hadoop) solutions for
large problems

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
c
Q2
O
)
0
)
>
o
£
O
O

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
c
Q2
O
)
0
)
>
o
£
O
O

Introduction

« Many applications in data analytics, information

retrieval, and cluster computing process massive
amounts of information

* |n this paper we introduce the Vortex programming

model, which has the following goals:
— Offer a simple abstraction for larger-than-RAM inputs
— Squeeze maximum performance out of hardware

o Usually, these are conflicting goals, but we show
that this does not have to be the case

— Vortex leverages access violations to create the illusion
of an infinite buffer in user space

— It is by far the simplest to use and fastest platform for
various streaming workloads

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
c
Q2
O
)
0
)
>
Q
£
O
O

Agenda

Introduction

Motivation

Producer Consumer
Partitioning and Sorting

Experiments

Mativation: Coding Simplici

e Consider the task of finding a user-defined string
In a long (e.qg., 32 TB) stream of data using strstr()

— The stream could be originating from a disk, another
thread, or arriving in real time from the network

e Traditional block-based solution:

Search (char* str, uint64 size, uint64 blockSize)
strLen = strlen(str); buf = new char[blockSize];
pos = 0; bufStart = 0;
while (nhot end of data) do
/ size = blockSize — 1 — pos;)

bytes = GetNextBlock(buf + pos, size);
buf [pos + bytes] = NULL;
if ((ptr = strstr(buf, str)) = NULL) then
return ptr — buf + bufStart;
bufStart += bytes + pos — (strLen — 1);
_pos = strLen — 1;
[memcpy(buf, buf + blockSize — 1 — pos, pos)j

— Error-prone pointer calculations
— Memcpy() for data crossing block boundaries
— Tedious coding practice, slow development

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
c
Q2
O
)
0
)
>
Q
£
O
O

Mativation: Coding Simplici

e Instead, we would like a much simpler memory
abstraction that allows treating streams as infinite:

Thread Producer (char* buf, uint64 len)
memset(buf, “a’, len);
buf [len] = NULL;

Thread Consumer (char* buf)
return strstr(buf, “Hello World!”); ‘

« l|deally, this abstraction would provide:
— Coding simplicity
— No Memcpy() or boundaries
— No error-prone pointer management
— Complete transparency, including synchronization
— Ability to make large (e.g., 32°.TB) memset()/strstr() calls

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
-
Q2
O
)
0
)
>
Q
£
O
O

Motivation: Faster Iterator Abstractions

« Consider implementing a producer-consumer
pipeline between threads

Thread Producer (lIterator* it, uint64 len)
for (i = 0; i1 < len; i++) do
(it->Write(i); |

Thread Consumer (lIterator* it, uint64 len)
for (sum = 0, 1 = 0; 1 < len; 1++) do
Ix = it->Read() ;] sum += x;

— Commonly, this is done with an iterator abstraction
— Iterators greatly reduce programming effort

— Error-prone block management is abstracted away

Let’s look further into iterators!

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
c
Q2
O
)
0
)
>
Q
£
O
O

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
c
Q2
O
)
0
)
>
Q
£
O
O

Iterator::Read()

else

return Xx;

X = bufR [posR];
iT posR == blockSize — 1 then

empty.push (bufR);
bufR = full.pop Q;
posR = 0;

pOSR++;

Motivation: Faster Iterator Abstractions

lterator Internals

Iterator::Write(int x)

bufW [posW] = x;

iIT posW == blockSize — 1 then
full _.push (bufw);
bufW = empty.pop Q;
posW = O;

else
posW++;

lterators exhibit non-trivial overhead

— Writer: 3 loads and 3 stores
— Reader: 4 loads and 2 stores

An optimal solution requires 1 load and 1 store

— Iterators thus unnecessarily stress the L1 cache, which
can become a huge bottleneck in certain applications

Motivation: Faster Iterator Abstractions

 The desired abstraction would allow memory to be
processed uninterrupted (i.e., without boundaries or
explicit synchronization)

Thread Producer (int* buf, [uint64 Ien}K\\\\\\\\\
for (i = 0; 1 < len; 1++) do
(bt 111 = 1) _ May be larger than
Thread Consumer (int* buf, (uint64 Ien}‘/ RAM (e.g., 32 TB)

for (sum = 0, 1 = 0; 1 < len; 1++) do
[sum += buf [i];)

« Benefits of this approach:
— Requires 1 load and 1 store per item

— Depending on CPU, may be 2-4x faster than an iterator

— Regular pointers are abstracted as being “infinite” (i.e., not
constrained by physical RAM)

— Could help to maximize application throughput

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
-
Q2
O
)
0
)
>
Q
£
O
O

10

Mativation: Non-Counting In-Place
Partitioning

 Consider partitioning n keys across k arrays
(e.qg., during radix sort)

— The size of each output buffer is unknown a-priori,
which generally requires a counting pass to pre-
allocate buffers

— Key movement either requires 2n + O(1) memory or
needs slow iterator abstractions

e Itis desirable to eliminate these constraints and
— Distribute the keys without the histogram pass
— Operate in-place (i.e., using n + O(1) total memory)
— Achieve close to optimal speed

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
c
Q2
O
)
0
)
>
Q
£
O
O

11

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
c
Q2
O
)
0
)
>
Q
£
O
O

Agenda

Introduction

Motivation

Producer Consumer
Partitioning and Sorting

Experiments

12

Virtual Memory in User Space

e General Idea behind Vortex

— Access to reserved, uncommitted virtual memory
generates a page fault

— These faults result in exceptions that can be caught by a
user-space handler

— We can thus cause controlled, sequential-access
violations in virtual memory

— To fix the violation, we map physical pages to the
location of the fault in the stream

— Once the memory is available, we transparently restart
the read/write instruction that caused the fault

13

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
c
Q2
O
)
0
)
>
Q
£
O
O

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
c
Q2
O
)
0
)
>
Q
£
O
O

Vortex-A

« To avoid faulting per 4-KB page, operations
proceed in units (blocks) of size B (e.g., 1-2 MB)

— To allow out-of-order reads, let M be the consumer
comeback, I.e., the number of blocks by which it can
return to reprocess the data

 Threads are synchronous - the producer is
iInvoked per-block within the fault handler

And m

N
Emwuseer s ked in the handler
M=1, return block to OS

Block Block Block Block Block Block Block Block Block
0 1 2 3 4 5 6 7 8

14

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
c
Q2
O
)
0
)
>
Q
£
O
O

Vortex-A

Drawbacks of this model:

— The abstraction is non-transparent to the producer
thread, and thus incoming data must still be produced in
block-sized increments rather than continuously

— Threads are necessarily synchronous, as the producer is
only invoked once the consumer encounters a fault

— Consumer comeback is handled by M, but producer
comeback has no such accommodation

15

Vortex-B

e In this model, the producer is not aware of the
existence of an underlying stream

— Instead, the producer writes into an infinite buffer
— Adds producer write-ahead N and comeback L control
 Threads are asynchronous

— Achieved by tracking and limiting the consumer via guard
pages, which cause access violations

« Employs the classical bounded producer-
consumer solution to track empty and full blocks

Let's see it in action!

16

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
c
Q2
O
)
0
)
>
Q
£
O
O

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
c
Q2
O
)
0
)
>
o
£
O
O

Vortex-B

e Operation with M =0, L =0,
N=2

Block
Consumer faults on a guard page

N S W N S NN N N A

Oger:lrm g

VST

Producer fault! And SO OM:O, return LRU block to OS
The producer installs a guard page

and must wait for the consumer N=2

17

Vortex-B

e Drawbacks of this model:

— Blocks cannot be safely consumed until they are
protected by guard pages, and thus the minimum
distance between threads is the full size of a block

— Producer and consumer threads share a virtual buffer,
making it more difficult to isolate them (e.g., forward
consumer jumps are not supported)

— Instead of maintaining a pre-allocated stack of blocks,
memory is obtained from and released to the OS, which
Incurs a severe performance penalty

18

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
c
Q2
O
)
0
)
>
Q
£
O
O

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
c
Q2
O
)
0
)
>
Q
£
O
O

Vortex-C

 Further improves upon Vortex-B

— Pre-allocates physical memory at the start of the
program instead of during runtime

— Unlike the previous models, gains speed by retaining
blocks for remapping rather than freeing to the OS

* Instead of using guard pages to track the
consumer, this method uses dual-buffers

— Threads get separate virtual-memory buffers for runtime
address space isolation

— Blocks are quickly remapped between streams

Let's see it in action! 19

Vortex-C

e OperationwithM =1, L =

Opﬁr:l'rin g

ystem

1, N=1
Producing Block
Producer fault! 0

SN S VR Y N S N

Block “ Block Block Block Block Block Block Block Block

0 1 2 3 0 1 2 3 0

Consumer fault!

Consuming A full block is mapped to the consumer buffer

T R |

he consu V r}:ﬁock IS then remapped to the producer?

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
c
Q2
O
)
0
)
>
Q
£
O
O

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
c
Q2
O
)
0
)
>
Q
£
O
O

Agenda

Introduction

Motivation

Producer Consumer
Partitioning and Sorting

Experiments

21

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
c
Q2
O
)
0
)
>
Q
£
O
O

Partitioning and Sorting

We adapt Vortex to create a novel variant of bucket
sort which utilizes:

— Non-counting data partitioning to avoid a histogram pass
— In-place data shuffling to stream sort with n + O(1) RAM
To achieve non-counting data partitioning

— Each sort bucket is reserved to the full size of input

The result is the first in-place streaming radix sort
— Posts a 2-4x performance improvement over prior work
— Provides out-of-place speeds with in-place operation

Finally, this abstraction does not require specialized
code or memory management to achieve in-place

sorting, being instead totally transparent
22

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
c
Q2
O
)
0
)
>
Q
£
O
O

Agenda

Introduction

Motivation

Producer Consumer
Partitioning and Sorting

Experiments

23

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
-
Q2
@)
)
O
)
>
Q
=
@]
O

Experiments

Available Test Configurations

Hardware Cq C, Cg
CPU Intel 3930K Intel 4930K 7820X
Platform Sandy Bridge vy Bridge Skylake-X
Test drive 24-disk RAID 24-disk RAID M.2 SSD

24

EXxperiments

o Ca CPU RAM

Framework Read Write Read Wirite
std::fstream 43 88 51 140 8% 2 MB
Win. MapViewOfFile 69 147 1,161 * 8% 32 GB
[Linux mmap 1,892 1,170 1,917 641 3% 30GB| | “7 Vortex-C is
Vortex-A 2,235 1,547 1,272 651 8% 5 MB - 1.7 faster
Vortex-B 2,231 2,394 3,211 650 8% 5 MB
(Vortex-C 5938 2399 3266 674 1% 5MB] | « thanmmap

Batched Producer-Consumer Rate (GB/s)

>
et
s
()
=
C
>
=
o
<
(V]
@©
x
Q
—
)
O
-
Q2
@)
)
O
)
>
Q
=
@]
O

Two core All cores RAM
Framework c, c, c, c, c, c,
|Apache Storm 1.7 1.4 24 111 95 128 1.6GB J| «—
Naiad 27 31 44 74 79 131 65MB Vortex-C is 5-
Queue of Blocks 6.4 7.3 114 171 165 24.8 24 MB - 10x faster
(oriaes B e T i e o) P a0 Storm
25

Experiments

Populating an 8 GB Vector on c; (GB/s)
> Memory
= Framework
Lo Untouched Pre-Faulted
g std::vector 0.7 -
5 RUMA rewired vector, 4 KB pages - 5.3
s RUMA rewired vector, 2 MB pages - 14.3
Qa Chained Blocks 6.8 18.8 Vor%ex_§ |S 3 X f é%r
< [Vanishing Array (Vortex-S) 25.1 25.1 | [+ Yortex-S reac ﬁS /0
4l (Static Buffer 8.0 265) | tO a?a?g: ﬁﬂ eurcsgeed
Q = — static bufter
Q e
= Partitioning Speed of 8 GB on c; (M keys/s)
8 Write
cC Framework Combine k=256 k=512
% 2-pass N 339 322
9] Chained blocks N 450 413
= Vortex-S N 492 445 | < - drpren
I Pre-allocated buckets N 509 464 | App“ed to pa_rtltlonmg’
A | 2pass v S R | Vortex-S achieves 92-
- chained blocks Y 461 449 96% static buffer speed
@ Vortex-S Y 607 523 |<+—
@) Pre-allocated buckets Y 637 567 | 26

Experiments

8 GB of keys 24 GB of keys
_B\ Sort Type Year
= (o C, Cs (o c, Cs
S s SRR Vo 52 o
fall | MSB Radix 2019 17 19 26 [25 _BO\SQ nggl)ﬂ f ?ﬁﬁé
- Vortex Sort 2020 (71 84 127 6880 17T) ﬁte%?éé? 4]a(: 88(
S . ace
o3 Fastest Out-Of-Place Radix Sorts (M keys/sec) %Eﬁcgor Cgr%getltors
i 8 GB of keys 24 GB of keys
Q Sort Type Year c, c, cs c, c, ,
) LSB Radix 2011 25 25 39 _ _
B LSB Radix 2014 24 26 42 Even considering out-of-
Q LSB Radix 2016 L 23 34 Not enough RAM . .
O _ place sorts, Vortex is still
= MSB Radix 2017 25 29 41 _
ol | MSB Radix 2017 (44 58 67)« 1.6-1.9x faster at sorting
g Vortex Sort 2020 (71 84 127 g8/ 80 12 8 GB, and can run sort
D yeedup Factor of Vorte sizes twice as large
S 8 GB 24GB
o Compared to
E © B Cs Cy C, Cs |
o) Best in-place | 2.9 3.3 40| |27 2.7 3.1
O Best out-of-place [1.6 1.4 1.9]/ 0 21

>
et
4
()
=
c
>
=
o
<
(V]
@©
x
Q
—
)
O
c
Q2
O
)
0
)
>
Q
£
O
O

Thank you!
Any questions?

Contact: Carson@cse.tamu.edu

28

	Vortex: Extreme-Performance Memory Abstractions for Data-Intensive Applications
	Agenda
	Introduction
	Introduction
	Agenda
	Motivation: Coding Simplicity
	Motivation: Coding Simplicity
	Motivation: Faster Iterator Abstractions
	Motivation: Faster Iterator Abstractions
	Motivation: Faster Iterator Abstractions
	�Motivation: Non-Counting In-Place Partitioning
	Agenda
	Virtual Memory in User Space
	Vortex-A
	Vortex-A
	Vortex-B
	Vortex-B
	Vortex-B
	Vortex-C
	Vortex-C
	Agenda
	Partitioning and Sorting
	Agenda
	Experiments
	Experiments
	Experiments
	Experiments
	Slide Number 28

