Topology-Based Spam Avoidance in Large-Scale Web Crawls

Clint Sparkman

Joint work with Hsin-Tsang Lee and Dmitri Loguinov

Internet Research Lab
Department of Computer Science and Engineering
Texas A&M University
Agenda

- Introduction
- Dataset and Ranking Algorithms
- Manual Analysis
- Automated Analysis
- Supporters Estimation
- Conclusions
Introduction

• Competition for high placement in search results has led to unethical Internet practices designed to deceive (spam) search engines in order to manipulate their ranking

• Web spam not only adversely impacts the quality of search results, but also impedes web exploration for a variety of research purposes

• Web crawlers must detect and avoid “undesirable” content in real-time
IRLbot

- High performance web crawler developed at the TAMU Internet Research Lab
- Able to perform several billion page web crawls with a single server
- Prioritizes queued pages using real-time snapshots of the Pay-Level Domain (PLD) graph
Pay-Level Domains

- PLDs must be purchased/acquired at a TLD or cc-TLD registrar
- PLD graphs offer some inherent advantages over other structures such as page-level or host-level graphs
 - More difficult and costly to manipulate, since PLDs must be registered, compared to links or hosts that can be trivially generated with scripts
 - Dramatically smaller graph that requires less processing and enables more efficient ranking during large crawls
Prioritization

- Crawlers need methods to budget their finite resources to spend most of their time exploring valuable parts of the Internet.
- Prioritized web crawlers should be able to differentiate between domains that should be massively crawled and those that should not.
- Two performance measures in achieving this classification:
 - Accuracy: ability to avoid over-allocating resources to low-quality domains.
 - Overhead: amount of processing required.
Agenda

• Introduction
• Dataset and Ranking Algorithms
• Manual Analysis
• Automated Analysis
• Supporters Estimation
• Conclusions
Dataset

- IRLbot web crawl collected from June-Aug 2007
- Successfully downloaded 6.3B 200-OK HTML pages
- Webgraph has 41B nodes and 310B edges
- Host graph has 641M nodes and 6.8B edges
- PLD graph has 89M nodes and 1.8B edges
Ranking Algorithms

• In-degree (IN) – Sum of in-links

• Supporters (SUPP) – Let $d(i, j)$ be the shortest distance from i to j along the directed graph G

\[
SUPP(j) = \sum_{i=1}^{n} 1_{d(i,j)=2}
\]

• PageRank – Models a random walker on G, where the walker traverses an out-link with probability $\alpha = 0.85$ or teleports to a random node with probability $1 - \alpha$

• Weighted In-degree (WIN) -

\[
WIN(j) = \sum_{i:(i,j) \in E} \frac{1}{d_{out}(i)}
\]
Agenda

• Introduction
• Dataset and Ranking Algorithms
• Manual Analysis
• Automated Analysis
• Supporters Estimation
• Conclusions
Manual Spam Evaluation

- There is no common algorithm to measure ranking results in spam avoidance applications.
- Previous work manually classified a small random sample of the graph as good/bad. Competing rankings are divided into K buckets and compared based on the buckets where the spam is found.
- Our approach: manually scrutinize the top-1K PLDs in each prioritized ranking.

- No consensus on the definition of spam
 - Is pornography spam?

- We use a *subjective* approach using the following criteria
 - Attempts to perform malicious activities upon visit (malware or virus)
 - Overwhelming presence of links whose primary purpose is to generate revenue from click-throughs
 - No immediate useful content can be discerned in the PLD
Google Toolbar Rank (GTR)

- Google offers a toolbar for web browsers that, among other things, offers a quantitative value from 0-10

- Some pages have no GTR
 - Page has not been crawled
 - No longer exists
 - Purposefully removed from the index

- No ranking analysis has previously involved GTR values
Top-ranked PLDs

<table>
<thead>
<tr>
<th>IN</th>
<th>GTR</th>
<th>PLD</th>
<th>GTR</th>
<th>PLD</th>
<th>GTR</th>
<th>PLD</th>
<th>GTR</th>
<th>PLD</th>
<th>GTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>microsoft.com</td>
<td>9</td>
<td>microsoft.com</td>
<td>9</td>
<td>microsoft.com</td>
<td>9</td>
<td>google.com</td>
<td>9</td>
<td>google.com</td>
<td>9</td>
</tr>
<tr>
<td>google.com</td>
<td>10</td>
<td>adobe.com</td>
<td>10</td>
<td>information.com (S)</td>
<td>5</td>
<td>yahoo.com</td>
<td>9</td>
<td>adobe.com</td>
<td>10</td>
</tr>
<tr>
<td>yahoo.com</td>
<td>9</td>
<td>google.com</td>
<td>10</td>
<td>google.com</td>
<td>10</td>
<td>yahoo.com</td>
<td>9</td>
<td>macromedia.com</td>
<td>10</td>
</tr>
<tr>
<td>adobe.com</td>
<td>10</td>
<td>information.com (S)</td>
<td>5</td>
<td>google.com</td>
<td>10</td>
<td>macromedia.com</td>
<td>10</td>
<td>wikipedia.org</td>
<td>9</td>
</tr>
<tr>
<td>blogspot.com</td>
<td>9</td>
<td>macromedia.com</td>
<td>10</td>
<td>macromedia.com</td>
<td>10</td>
<td>w3.org</td>
<td>10</td>
<td>w3.org</td>
<td>10</td>
</tr>
<tr>
<td>wikipedia.org</td>
<td>9</td>
<td>video.google.com</td>
<td>9</td>
<td>video.google.com</td>
<td>9</td>
<td>macromedia.com</td>
<td>10</td>
<td>apple.com</td>
<td>9</td>
</tr>
<tr>
<td>w3.org</td>
<td>10</td>
<td>sedoparking.com (S)</td>
<td>–</td>
<td>sedoparking.com (S)</td>
<td>–</td>
<td>w3.org</td>
<td>10</td>
<td>geocities.com</td>
<td>9</td>
</tr>
<tr>
<td>geocities.com</td>
<td>9</td>
<td>google.syndication.com</td>
<td>–</td>
<td>miibei.gov.cn</td>
<td>9</td>
<td>msn.com</td>
<td>8</td>
<td>w3.org</td>
<td>9</td>
</tr>
<tr>
<td>msn.com</td>
<td>8</td>
<td>w3.org</td>
<td>10</td>
<td>miibei.gov.cn</td>
<td>9</td>
<td>msn.com</td>
<td>8</td>
<td>w3.org</td>
<td>9</td>
</tr>
<tr>
<td>amazon.com</td>
<td>9</td>
<td>amazon.com</td>
<td>9</td>
<td>ndparking.de (Q)</td>
<td>–</td>
<td>geocities.com</td>
<td>9</td>
<td>sourceforge.net</td>
<td>9</td>
</tr>
<tr>
<td>aol.com</td>
<td>9</td>
<td>youtube.com</td>
<td>9</td>
<td>statcounter.com</td>
<td>9</td>
<td>youtube.com</td>
<td>9</td>
<td>bbc.co.uk</td>
<td>9</td>
</tr>
<tr>
<td>myspace.com</td>
<td>9</td>
<td>myspace.com</td>
<td>9</td>
<td>searchnut.com (S)</td>
<td>4</td>
<td>myspace.com</td>
<td>9</td>
<td>netscape.com</td>
<td>8</td>
</tr>
<tr>
<td>macromedia.com</td>
<td>10</td>
<td>macromedia.com</td>
<td>10</td>
<td>macromedia.com</td>
<td>10</td>
<td>macromedia.com</td>
<td>10</td>
<td>wikipedia.org</td>
<td>9</td>
</tr>
<tr>
<td>youtube.com</td>
<td>9</td>
<td>youtube.com</td>
<td>9</td>
<td>youtube.com</td>
<td>9</td>
<td>bbc.co.uk</td>
<td>9</td>
<td>netscape.com</td>
<td>8</td>
</tr>
<tr>
<td>tripod.com</td>
<td>7</td>
<td>tripod.com</td>
<td>3</td>
<td>tripod.com</td>
<td>4</td>
<td>tripod.com</td>
<td>3</td>
<td>tripod.com</td>
<td>4</td>
</tr>
</tbody>
</table>

- IN and SUPP PLDs are much more reputable (large, well-known domains) and contain no spam.
- PageRank and WIN promote spam/questionable domains to the top of their ranked lists.
Spam Avoidance

• Compare the amount of spam found in the top-1K for each
• PageRank and WIN similar performance - 49 and 39 spam sited in top-1K
• IN allows 9 in the top-1K, the first in pos 25
• SUPP allows only 1, linksynergy.com in pos 718
GTR and Spam

- Examine how well GTR predicts spam
- 2,100 PLDs manually examined (aggregate of all top-1K lists)
- No GTR-0 sites were well-known, reputable sites
- Almost no spam (0.6%) occurs at GTR 5 or higher
Agenda

• Introduction
• Dataset and Ranking Algorithms
• Manual Analysis
• Automated Analysis
• Supporters Estimation
• Conclusions
Average GTR

- Graph plots a running average of the GTRs
- Compares how well each algorithm places the most valuable PLDs at the top of the list
- IN has a sharp drop after 4K. Many GTR-0 PLDs related to worldnews.com
GTR-0

- Cumulative distribution of PLDs with GTR 0
- SUPP does not allow a GTR-0 PLD until pos 1,422
- IN initially does very well. Only 1 in top 1K, pos 843, but worldnews.com sites quickly add around 2K
- Both PageRank and WIN allow GTR-0 PLDs high in their rankings (32 and 35)
No GTR

- Cumulative distribution of PLDs with no GTR
- SUPP is the clear winner with 1\(^{st}\) in pos 469
- PageRank and WIN are very similar. Both allow 4 PLDs with no GTR in their top-15
- IN only allows 2 in top-100, but has the most in top-10K
Blacklisted PLDs

- Cumulative distribution of PLDs on SpamAssassin’s blacklist and considered to be related to email spam
- SUPP is the clear winner, with the 1st PLD in position 4,459, and only 7 in the top-10K
High GTR

• To understand if any good domains ended up in the bottom of our lists, we examine the 470 PLDs with GTR 9 or 10 that appear in SUPP’s ranking past 10K

• All fall within the following 4 categories
 — Redirects to famous domains for either misspelled or unknown domains, or country versions of main site
 — Mirrors that do not redirect to main site, but look identical
 — .gov or .edu sites that Google commonly inflates
 — GTR anomalies that have been since corrected
Depth of Supporters

- Next explore if SUPP at depth 2 is the best choice for Internet graphs
- We found SUPP at depth 3 to be a poor indication of PLD reputation
 - Due to the rapid explosion of supporters for popular PLDs and the lack of nodes to reach at depth 3
 - google.com
 - Highly ranked by all algorithms
 - 15.5M level-2 supporters vs 6.2M level-3 supporters
 - hotsitekey.info
 - Ranked on position 192,056 by SUPP₂
 - Manages 15.6M level-3 supporters
Agenda

- Introduction
- Dataset and Ranking Algorithms
- Manual Analysis
- Automated Analysis
- Supporters Estimation
- Conclusions
Estimating Supporters

- Easy to see that SUPP produces the best ranked PLD lists
- Calculating SUPP directly does not scale well to large graphs due to the enormous amount of processing to perform a limited BFS search from each node
- Good news: a high-performance crawler only requires a *fast, accurate, and scalable* technique for estimating supporters at the top of the list
Quick Visit Supporters

- Quick Visit Supporters (QVS) simply counts the number of link traversals during BFS

\[QVS(j) = \sum_{i:(i,j) \in E} d_{in}(i) \]

- High error due to duplicate node counts
Bit Vector Estimate

- Nodes iteratively receive bit strings from their neighbors and apply a bitwise OR against their own bit string
- Length of bit vector determines accuracy.
 - 64-bit vectors used in comparison
- Requires $\log_2(S_{max})$ rounds to terminate, where S_{max} is the maximum SUPP count
 - 25 rounds for IRLbot’s PLD graph
 - Can adapt to only 2 rounds if we only need to estimate the top-1K or 3 rounds for top-10K
Top Supporters Estimate (TSE)

• Scan the out-graph and retain in RAM a p-fraction of all nodes z along with their adjacency lists $\{w_j\}$
 — Produces an unbiased random sample of all supporters z that x will later count

• Sequentially read the in-degree graph, and examine each node x with its neighbors $\{y_i\}$
 — If $x \neq z$ and $x \notin \{w_j\}$, any overlap between $\{y_i\}$ and $\{w_j\}$ indicates z is a supporter of x at level 2

• Scale the supporter count for x by $1/p$
Estimation Error

- Error is calculated against the true SUPP count
- Plot is by true SUPP rank
- Quick Visit has enormous error (> 1,000%) for the top PLDs
- Bit Vector error averages 6.5% in this range
- VSE error averages ~ 1% for $p = 10^{-4}$ to 0.1% for $p = 10^{-2}$
Comparison – RAM only

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Hits</th>
<th>Ops</th>
<th>Time</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPP₂</td>
<td>4.9T</td>
<td>1.9T</td>
<td>70 hrs</td>
<td>–</td>
</tr>
<tr>
<td>TSE ((p = 10^{-2}))</td>
<td>49B</td>
<td>19B</td>
<td>11 min</td>
<td>381</td>
</tr>
<tr>
<td>Bit Vector ((r = 2))</td>
<td>7.1B</td>
<td>11B</td>
<td>3.8 min</td>
<td>1,113</td>
</tr>
<tr>
<td>TSE ((p = 10^{-3}))</td>
<td>4.9B</td>
<td>1.9B</td>
<td>70 sec</td>
<td>3,600</td>
</tr>
<tr>
<td>Quick Visit</td>
<td>1.8B</td>
<td>1.8B</td>
<td>55 sec</td>
<td>4,581</td>
</tr>
<tr>
<td>TSE ((p = 10^{-4}))</td>
<td>490M</td>
<td>190M</td>
<td>7.5 sec</td>
<td>33,600</td>
</tr>
</tbody>
</table>

- Table shows the theoretical number of random RAM hits and various CPU operations
- Time is actual running time on Quad-CPU server with enough RAM to hold entire PLD graph
- Speedup factor is compared to SUPP
External Memory Techniques

- SUPP-A: loads sequential chunks of the in-graph and then re-scans the entire in-graph.
- SUPP-B: simultaneously reads in/out graphs and writes out all pairs \((x, z)\) where \(z\) is \(x\)'s level-2 supporter. A \(k\)-way merge is performed to eliminate duplicates.
- Quick Visit: reads the file twice and stores the last vectors of in-degree counts and hashes.
- VSE: reads in/out graphs but does not require that all supporters counts fit in RAM.
External Memory Comparison

- I/O complexity using 15.8GB PLD graph with 8-byte hashes
- SUPP-A (8GB RAM) reads the graph 2,000 times!
- SUPP-B scales better with reads, but requires an enormous amount of disk to write to
- TSE has constant I/O, and RAM is determined by p (accuracy)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Disk read</th>
<th>Disk write</th>
<th>RAM</th>
<th>Phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPP$_2$-A</td>
<td>32 TB</td>
<td>–</td>
<td>8 GB</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>130 TB</td>
<td>–</td>
<td>2 GB</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2.6 PB</td>
<td>–</td>
<td>100 MB</td>
<td>–</td>
</tr>
<tr>
<td>SUPP$_2$-B</td>
<td>49 TB</td>
<td>49 TB</td>
<td>8 GB</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>98 TB</td>
<td>98 TB</td>
<td>2 GB</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>147 TB</td>
<td>147 TB</td>
<td>100 MB</td>
<td>3</td>
</tr>
<tr>
<td>Bit Vector ($r = 2$)</td>
<td>63 GB</td>
<td>–</td>
<td>1.9 GB</td>
<td>–</td>
</tr>
<tr>
<td>Quick Visit</td>
<td>31.4 GB</td>
<td>–</td>
<td>2.1 GB</td>
<td>–</td>
</tr>
<tr>
<td>TSE ($p = 10^{-2}$)</td>
<td>31.4 GB</td>
<td>–</td>
<td>157 MB</td>
<td>–</td>
</tr>
<tr>
<td>TSE ($p = 10^{-3}$)</td>
<td>31.4 GB</td>
<td>–</td>
<td>16 MB</td>
<td>–</td>
</tr>
<tr>
<td>TSE ($p = 10^{-4}$)</td>
<td>31.4 GB</td>
<td>–</td>
<td>1.6 MB</td>
<td>–</td>
</tr>
</tbody>
</table>
Agenda

- Introduction
- Dataset and Ranking Algorithms
- Manual Analysis
- Automated Analysis
- Supporters Estimation
- Conclusions
Conclusions

- This paper compared various agnostic algorithms for ranking the web at the PLD level
- Leveraged manual analysis and Google Toolbar Rankings for automated analysis
- SUPP decisively outperformed the other techniques but was infeasible in practice
- Top Supporters Estimate is a fast, accurate, and scalable estimator for the top-ranked PLDs