Turbo King: Framework for Large-Scale Internet Delay Measurements

Derek Leonard

Joint work with Dmitri Loguinov

Internet Research Lab Department of Computer Science Texas A&M University, College Station, TX 77843

April 15, 2008

- Introduction
 - Related Work
- Understanding King
- Turbo King
 - Measurement Algorithm
 - Discovering Nameservers
- Evaluation
- Conclusion

Introduction I

- Distance estimation in the Internet has recently evolved into a large field
 - The goal is to estimate or measure latency (delay) between hosts
- Can be used to provide better service to endusers and construct more efficient networks
 - Increasing responsiveness for online games
 - Quickly locating the closest server in a CDN
 - Creating topologically-aware P2P networks

Introduction II

Focus of our work

- Create a method for distance estimation that requires no infrastructure to be deployed throughout the Internet
- Allow for the generation of a much larger Internet latency matrix than previous work
- Requirements
 - Produce accurate latency estimates
 - Minimize the impact of our measurements on the network

- Introduction
 - Related Work
- Understanding King
- Turbo King
 - Measurement Algorithm
 - Discovering Nameservers
- Evaluation
- Conclusion

<u>King I</u>

- King uses existing DNS infrastructure to estimate the latency between two arbitrary hosts in the Internet
 - Assumes end-hosts are within close proximity to the authoritative nameserver responsible for their IP addresses

<u>King II</u>

- Original King (O-King)
 - Main algorithm proposed by Gummadi et al.
 - Uses queries for authoritative zone data to measure the latency between two remote DNS nameservers
 - Direct King (D-King)
 - Also proposed by Gummadi *et al.*, but not fully implemented or evaluated in the literature
 - Alternative to O-King that forces a nameserver to query an arbitrary target server

- Introduction
 - Related Work
- Understanding King
- Turbo King
 - Measurement Algorithm
 - Discovering Nameservers
- Evaluation
- Conclusion

8

Understanding O-King I

- While O-King's simplicity is attractive, it has certain drawbacks
- Zones with multiple authoritative nameservers
 - Recommended by DNS RFC
- Suggested to be placed in different networks
- 33% of zones have at least one server in a different network

Understanding O-King II

DNS Forwarders

- Server that aggregates DNS queries initiated from within a network targeting external destinations
- Recursive nameservers receiving requests for zones not under their control often use forwarders to reduce their own load
- End-user not notified
- Unnoticed by O-King
- Potentially introduces • non-trivial extra latency

Understanding O-King III

- Cache pollution: insertion of DNS zone data that has not been requested by a local user into the cache of a nameserver
 - The purpose of a DNS cache is to reduce latency mainly for local users
 - Local users are those that rely principally on the nameserver to resolve queries
- O-King seed queries pollute the cache with two records for each target nameserver
- At large scale records inserted by O-King would dominate local caches
 - Would likely be viewed as intrusive by admins

Understanding D-King I

Additional Complexity

- A domain name and extra infrastructure (DNS server with dedicated IP) are required
- O-King is so simple, is D-King worth it?
- Forwarders
 - D-King does not detect or avoid forwarders
- Cache Pollution
 - D-King only requires caching records for one server
 - However, the cached records are completely useless to others

- Introduction
 - Related Work
- Understanding King
- Turbo King
 - Measurement Algorithm
 - Discovering Nameservers
- Evaluation
- Conclusion

Turbo King I

- Turbo King (T-King) basics
 - Stand-alone service
 - Accepts as arguments the IP addresses of two end-hosts A and B
 - Returns estimated latency from host A to B
- Two modes of operation
 - Passive: waits for requests before generating latency estimates
 - Active: preemptively make latency estimates to eventually obtain an entire $N \times N$ matrix

Turbo King II

- Server selection is a major difference between King and Turbo King
- Turbo King maintains a large list $S \mbox{ of } N$ names ervers
 - Currently both recursive nameservers and other authoritative nameservers
- Use BGP data to match servers from S to both A and B
 - Negates the assumption that the authoritative nameservers for end-host IP addresses are closest

- Introduction
 - Related Work
- Understanding King
- Turbo King
 - Measurement Algorithm
 - Discovering Nameservers
- Evaluation
- Conclusion

Measurement Algorithm I

- Measurement algorithm
 - Multi-threaded application with client and server operations communicating together
 - Timestamps taken for every packet sent/received by T-King
- All answers returned by DNSServer have zero TTL
 - Let d_{ij} be the delay between steps i and j

•

Measurement Algorithm II

- Local latency sample $L_i = d_{12}$
- Remote latency sample $R_i = d_{36}$
 - Latency estimate: $min\{R_i\}$ $min\{L_i\}$
- Detection and avoidance of forwarders
 - Compares IP addresses used to contact T-King
 - If different, exclude the original query IP and add the newly discovered one to *S* for later use

- Introduction
 - Related Work
- Understanding King
- Turbo King
 - Measurement Algorithm
 - Discovering Nameservers
- Evaluation
- Conclusion

Discovering Nameservers I

- Discovering Nameservers
 - T-King is most effective when its list S of nameservers is large
 - Ideally S would contain a nameserver for each /24 network in the Internet
- The current version builds *S* by exhaustively crawling the reverse DNS (IP to domain name) tree
 - Only accepts authoritative responses
 - Maximizes depth of the crawl and subsequently the number of discovered nameservers

Discovering Nameservers II

Results from the reverse DNS crawl

	T-King	ISC [18]
Month run	Nov. 2006	Jul. 2006
Duration (hours)	33.8	240
Queries/Sec	5,300 (2.3 mb/s)	751 (0.3 mb/s)
Queries Completed	649, 270, 000	N/A
IPs Discovered	439, 431, 355	439,286,364
Nameservers	216,843	89, 592
Recursive Nameservers	117,817	N/A

- Our crawler is approximately seven times faster than a previous effort and discovered 2.4 times more nameservers
- We found that 32% use a forwarder for queries

Discovering Nameservers III

Coverage of Internet by discovered servers

	All	Recursive	Total
Countries	190	174	232 [17]
AS	13,017	10,895	23,773 [16]
BGP Prefixes	48, 196	31,059	219,110 [38]
IPs covered	1,031,736,562	828,675,500	1,642,441,178
Web servers	3, 192, 918	2,659,379	3,638,433
Gnutella peers	1,734,483	1, 338, 217	3,534,300

- We found that 49% of Gnutella peers and 88% of web servers are in a BGP prefix that contains at least one nameserver in T-King
- For recursive servers, 37% of Gnutella and 73% of web servers are covered

- Introduction
 - Related Work
- Understanding King
- Turbo King
 - Measurement Algorithm
 - Discovering Nameservers
- Evaluation
- Conclusion

Evaluation I

- We took 2,450 measurements for 50 nameservers using O-King and T-King
- Ratio of O-King to T-King used to highlight the differences
- Four samples per estimate
- Conclusion: 15% of O-King estimates are more than 10% different from T-King and 8% of O-King estimates are more than 20% different

Evaluation II

- We next compare the convergence properties of T-King vs. O-King
 - Consistent samples are the goal so that an accurate estimate requires fewer samples
- To do this, we repeated the previous 2,450 latency estimates using sample sizes ranging from one to four
 - We then calculated the ratio of O-King to O-King and T-King to T-King and plotted the CDF
 - More consistent samples are centered at one on the *x*-axis

Evaluation III

- Conclusion: The original suggestion that O-King use 4 samples is sound
- Conclusion: T-King converges to a consistent estimate in only 2 samples

Evaluation IV

- The overhead associated with each method is critical when considering a large-scale measurement
 - Consider the generation of a hypothetical latency matrix of $100,000 \times 100,000$ hosts
 - Requires 10 billion estimates to complete
- Consider 4 samples per estimate for O-King, 2 samples for both D-King and T-King
- Examine both total number of queries sent and total cache pollution entries

Evaluation V

- Network overhead to complete 10 billion estimates
 - Turbo King: 70 billion queries
 - D-King: 100 billion queries (1.43 times T-King)
 - O-King: 150 billion queries (2.14 times T-King)
- Conclusion: The increased accuracy and lack of seeding required by T-King results in a significant reduction in bandwidth usage

Evaluation VI

- Cache pollution created for 10 billion estimates
 - Two entries for every nameserver entered into cache
- Total polluted entries in DNS caches
 - O-King: 48 billion entries (2.4 nameservers per zone measured from our reverse crawl)
 - D-King: 20 billion entries
 - T-King: 200,000 entries (0.0004% of O-King and 0.0001% of D-King)
- Conclusion: T-King is much more suitable for large-scale measurements in this regard

- Introduction
 - Related Work
- Understanding King
- Turbo King
 - Measurement Algorithm
 - Discovering Nameservers
- Evaluation
- Conclusion

Conclusion

- We proposed Turbo King as a framework to perform large-scale Internet latency measurements
 - More accurate than both O-King and D-King
 - Requires fewer samples than O-King
 - Much more scalable in terms of both bandwidth usage and cache pollution
- Our next step is to generate an N × N latency matrix using T-King
- Please see the paper for more details