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Abstract—In this paper, we analyze the problem of network dis-
connection in the context of large-scale P2P networks and under-
stand how both static and dynamic patterns of node failure affect
the resilience of such graphs. We start by applying classical results
from random graph theory to show that a large variety of deter-
ministic and random P2P graphs almost surely (i.e., with proba-
bility � ���) remain connected under random failure if and
only if they have no isolated nodes. This simple, yet powerful, result
subsequently allows us to derive in closed-form the probability that
a P2P network develops isolated nodes, and therefore partitions,
under both types of node failure. We finish the paper by demon-
strating that our models match simulations very well and that dy-
namic P2P systems are extremely resilient under node churn as
long as the neighbor replacement delay is much smaller than the
average user lifetime.

Index Terms—Churn, dynamic resilience, graph disconnection,
P2P.

I. INTRODUCTION

D URING the recent explosion of P2P research, network re-
silience has become an important issue since forced user

disconnection and graph partitioning significantly hinder the
availability of the network to its users [17], [19], [29], [38]. The
primary interest in this line of study is to understand how dy-
namic user arrivals and abrupt departures affect the connectivity
(and sometimes other metrics) of the system. The original thrust
[19], [20], [38] in this direction focused on static node failure,
where a fully populated network experienced simultaneous node
failure with independent probability . While analytical results
on the exact probability of disconnection under static failure are
currently unavailable in the literature, prior analysis suggests
that P2P networks are highly resilient to node faults and can
survive the failure of up to 50% of the graph without significant
degradation in performance [38].

Since users in P2P networks rarely fail simultaneously [4], a
different approach [23], [26], [32] is to examine disconnection
in dynamic systems, where users continuously join and leave
the network according to some arrival/departure processes. The
only analytical results available on the dynamic resilience of
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generic P2P networks correlate the rate of churn with user no-
tification frequency [26] and examine how stabilization delays
affect the consistency of Chord’s finger table [23].

In this paper, we bridge the gap between static and dynamic
disconnection analysis and show that the problem of graph par-
titioning under both types of failure can be reduced to computa-
tion of the probability that a P2P network develops at least one
isolated1 node during failure. Under the umbrella of this uni-
fying model, we then derive a closed-form model for static re-
silience and examine the same issue in dynamic networks where
users depart the system after spending random amounts of time
online. Our results show that under -percent static failure, al-
most every sufficiently large -regular P2P graph on ver-
tices remains connected with probability:

(1)

Using degree and the commonly used failure
probability [20], [38], it immediately follows that fully
balanced Chord remains connected after half the nodes depart
with probability . Also notice that for , this
probability converges to 1 (i.e., almost every graph is connected)
as and for , it converges to 0 (i.e., almost every
graph is disconnected).

Outside of static resilience, our second result is the derivation
of disconnection probabilities for dynamic systems, which fre-
quently exhibit high levels of churn [4], [26] and are more math-
ematically elusive. To capture user behavior in such systems,
we propose a simple node-failure model in which users stay in
the system for random periods of time before deterministically
failing at the end of their lifetime. To maintain a resilient system,
we assume that each node monitors its neighbors and replaces
them upon detecting their failure. Replacement delays and
lifetimes are drawn from some (possibly heavy-tailed) distri-
butions and generally determine the resilience of the system. We
derive two models for the probability of user isolation and then
demonstrate that many proposed -regular P2P systems can sur-
vive user joins without partitioning with probability at least:

where is the ratio of the mean user lifetime to
the mean neighbor replacement delay. To understand this result,
consider the following example. Given a system with 5 million
users that join the network once a day, neighbors per
node, mean user lifetime of 0.5 hours, and 1-minute search delay

1A node is isolated when all of its neighbors are simultaneously in the failed
state.
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(i.e., ), the network survives for 1 year without discon-
necting with probability 99.99992%, for 100 years with prob-
ability 99.992%, and for 10,000 years with probability 99.2%.
This implies that, even with a modest number of neighbors, P2P
graphs remain connected for much longer than the anticipated
session duration of their users.

This paper is organized as follows. Section II examines
previous work. Section III discusses how isolated nodes affect
graph connectivity under both static and dynamic node failure.
Section IV focuses on static resilience and Section V discusses
our lifetime model. Section VI provides an exact formula
for the probability of isolation under the lifetime model and
Section VII derives an asymptotic expansion of this result. We
conclude the paper in Section VIII.

II. BACKGROUND

A. Basics

We start by defining what we mean by the probability of an
event occurring in an infinite sequence of graphs.

Definition 1: For a family of graphs , where is the
number of nodes in , property holds in almost every graph
(or almost surely) if .

We use “almost every” and “almost surely” interchangeably
throughout the paper to mean that .
The next definition explains how the strength of a graph’s “con-
nectivity” can be expressed using the number of nodes needed
to isolate each subset of the graph.

Definition 2: Consider a graph , where is the
set of nodes and is the set of edges, and some connected
subset of nodes . Define the node boundary of to be

and node expansion
of to be the smallest ratio of the boundary size to the set size
for all sets up to half the graph:

(2)

Large expansion means that each induced subset contains
few internal edges and is well connected to the remainder of the
graph . As we discuss below, if is proportional to set
size , the probability of disconnection in can be reduced
to that of node isolation.

B. Random Graph Theory

One of the first approaches to network reliability stems from
random graph theory. The issue of partitioning and disconnec-
tion of random graphs has a long history [13]. It is
well-known that, as with any other monotone property, connec-
tivity of experiences a sharp transition from “almost
never” to “almost always” at the threshold ; how-
ever, a more powerful result states that almost every random
graph , , [7], [33] is connected if
and only if it has no isolated nodes. Defining to be the
probability that a random graph remains connected under -per-
cent node or edge failure and assuming that is the number of
isolated nodes in the graph immediately after the failure, the fol-
lowing holds [7]:

(3)

C. Deterministic Graphs

After some technical manipulation, a result similar to (3) can
be shown to hold for certain deterministic networks as well. For
example, Burtin [8] and later Bollobas [6] prove that under in-
dependent uniform failure, hypercubes are almost surely con-
nected if and only if they have no isolated nodes. Intuitively,
this result means that the conditional probability that a hyper-
cube partitions along a set boundary , for some non-trivial
set , while having no isolated nodes is as . We
leverage these observations later in the paper.

Connectivity of generic deterministic graphs
under independent node failure has also received significant at-
tention in the literature [5], [16], [21]. In this line of work,
is called residual node connectivity and can be expressed as [5]:

(4)

where is the failure probability of each node and is
the number of connected induced subgraphs of with exactly
nodes. While this closed-form expansion is beneficial for simple
graphs (such as trees), computation of for a generic graph
requires the knowledge of an NP-complete metric , whose
expression is unknown even for the basic hypercube [39].

Najjar and Gaudiot [31], however, noticed that several non-
hypercube deterministic networks frequently develop discon-
nections around individual nodes rather than along boundaries
of larger sets , . This led to the following approximate
model for the probability that an -node, -regular graph parti-
tions under -percent node failure [31]:

(5)

where

(6)

Other approaches that study disconnection of hypercubes in-
clude [11], [14], [18], [24]; however, none of them provide a
practically usable model that is both accurate and simple to
evaluate.

D. P2P Resilience

Given the wide variety of recently developed P2P systems,
several techniques have been employed to evaluate the resilience
of such graphs. One commonly used method is to monitor sev-
eral performance metrics (e.g., percentage of successful queries,
graph connectivity, consistency of links) under node failure and
show how they change depending on system parameters. A sem-
inal paper in this genre written by Gummadi et al. [19] explores
the impact of different routing geometries on the static resilience
of the graph, which is defined as the ability of the graph to route
messages before the designed recovery algorithm repairs the
graph. Other papers that examine static resilience in a similar
fashion are [27], [34], and [36]. A more recent study by Chun
et al. [12] uses simulations to analyze the impact of different
types of neighbor-selection algorithms on static resilience of
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P2P graphs under both random node failures and targeted at-
tacks. The paper demonstrates that there is a distinct tradeoff
between resilience and system performance.

The second approach is more analytical in nature. Chord [38]
and Koorde [20] show that under independent uniform node
failure, -regular graphs require degree in order
to upper-bound the probability of individual node isolation by

. Massoulie et al. [17], [29] develop a new P2P system based
on random graphs and derive the probability that it remains con-
nected under -percent failure. Liben–Nowell et al. in [26] study
the dynamic nature of P2P systems in regards to joins and un-
expected departures and their impact on routing efficiency. The
authors derive a lower bound on the number of users a node must
be notified about in order for the system to avoid disconnection.
In a more recent paper, Krishnamurthy et al. [23] focus on pre-
dicting the state of each finger pointer in a Chord system under
dynamic failure conditions. They derive a probabilistic charac-
terization of each neighbor and successor pointer, which allows
them to obtain models for the percentage of failed queries in the
system under user churn.

III. UNIFYING MODEL OF DISCONNECTION

In this section, we discuss how connectivity of P2P systems
under static and dynamic node-failure patterns can be reduced
to the problem of node isolation.

A. Generic Disconnection Model

We first turn to the question of what properties a graph
must possess in order to satisfy (3) under random edge and
node failure. Interestingly, the property that makes hypercubes
(and classical random graphs) very unlikely to partition into
non-trivial subgraphs without developing isolated nodes is that
the number of edges leaving each set is a certain increasing
function of set size . Burtin [8] showed that for each con-
nected subset in a hypercube with , the size
of its edge boundary is at least:

(7)

where is the degree of the graph. Condition (7) states
that larger sets are always better connected than smaller sets
and ensures that the probability that any large subgraph discon-
nects after node failure is negligible compared to that of indi-
vidual node isolation.

We are aware of only one effort to extend this result to generic
graphs . Najjar and Gaudiot [31] noticed that several other
types of deterministic networks frequently develop disconnec-
tions around individual nodes rather than along boundaries of
larger sets , . This led to the conjecture that (3) holds
for all -connected graphs in which every set exhibits suffi-
cient boundary size .

Conjecture 1 (Najjar [31]): For any -regular, -node-con-
nected graph in which the boundary of every
connected subset with is larger than

, (3) holds under random node failure.
Note that the difference between this condition and (7) is that

the latter requires that grow as a function of set size ,
while the former is lower-bounded by a constant that does not
depend on . Even without analyzing the proofs in [8], it is not

Fig. 1. (a) Graph � . (b) Graph � . Both have � � �.

TABLE I
TWO EXAMPLES OF DISCONNECTION FOR � � �����, � � ��

difficult to see that this differences makes Conjecture 1 false.
One simple counter-example is a graph we call , which is a
fusion of cycles constructed as follows. Start with
cycles of size and assign sequential labels

to all nodes in the th cycle . Then
connect each node to other nodes in the same position
in other cycles: . An example
of is shown in Fig. 1 for and .

Notice that is -regular, -node-connected, and com-
pliant with Conjecture 1; however, its bisection width is only

nodes regardless of the size of the graph, which con-
tributes to its tendency to partition along the “weaker” dimen-
sion (i.e., along nodes for some ) as . It
can be shown that by properly selecting , a sequence of graphs

can be constructed such that converges to 1 and
to any constant in [0,1) as . We omit these results

for brevity and instead provide simulations that demonstrate a
similar result.

Before simulating , we need another metric. Denote by
the fraction of disconnection events that contain at least

one isolated node:

(8)

where as before is the number of isolated nodes after the
failure. Notice that in graphs satisfying (3), metric must
tend to 1 as .

Table I shows simulation results for and the hypercube
for and degree (100,000 iterations).

The three columns in the table contain 1) the probability that
is connected after node failure, 2) the probability that it has no
isolated vertices, and 3) metric . Notice in the table that hy-
percubes are very likely to be connected if they have no isolated
nodes and that their is close to 1. This means that when the
graph does partition, it almost certainly has at least one isolated
node. At the same time, observe in the table that condition (3)

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 17, 2008 at 23:07 from IEEE Xplore.  Restrictions apply.



1478 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 16, NO. 6, DECEMBER 2008

TABLE II
SIMULATIONS WITH DEGREE-REGULAR (FULLY BALANCED) DHTs

TABLE III
SIMULATIONS WITH DEGREE-IRREGULAR GRAPHS FOR � � �����

does not hold for . For example, for ,
while is over 0.93 and the probability that a parti-
tioned graph has at least one isolated node is only 0.065.

While necessary conditions on for (3) to hold are generally
unknown, one can formulate a simple sufficient condition as
follows.

Definition 3: A sequence of graphs is called
asymptotically strong, if their expansion is no smaller
than that of hypercubes or random graphs ,

, of the same size.
Using this definition, the following useful approximation im-

mediately follows.
Observation 1: Almost every asymptotically strong graph

can be approximated as connected under random node
failure if and only if it has no isolated nodes.

This statement is purposely generic so as to apply to a variety
of different graphs. For example, this condition holds for DHTs
that are isomorphic to or can be reduced to the hypercube, which
includes Chord [38], logarithmic CAN with [34],
randomized Chord [28], Tapestry [43], and Pastry [36]. It also
holds for graphs that have better expansion than hypercubes
(e.g., de Bruijn [27]) as long as and certain types
of unstructured networks similar to that rely on un-
constrained selection of neighbors during join.

Although traditional graph theory refers to graphs of asymp-
totically large size, extensive simulations below demonstrate the
application of (3) to P2P graphs of finite size.

B. Static Resilience

Recall that static resilience alludes to the connectivity of a
graph after each node is removed from the graph indepen-

dently with probability . We next present simulation results of
, , and for a number of degree-regular and

irregular P2P systems using 100,000 node-failure patterns for
each value of . To deal with directed graphs, we assumed that
each node’s in-degree and out-degree neighbors contributed to
its resilience and that isolation happened when a node lost all of
its in- and out-degree neighbors. Similarly, a directed P2P net-
work was considered partitioned (disconnected) when its undi-
rected version was, which is a measure of weak connectivity of
directed graphs.

For each directed P2P system, denote by its out-degree.
Table II shows the above three metrics for degree-regular fully
populated DHTs Chord [38] with and , undi-
rected CAN [34] with , de Bruin [20] with and

, and undirected Pastry [36] with . In all cases, we
only simulate the default neighbors used in routing and do not
consider auxiliary neighbor sets (e.g., Chord’s successor list or
Pastry’s leaf set). As shown in the table, is very close to

for all graphs and all values of . Further notice that
is at least 0.9966, which confirms that an overwhelming

majority of disconnections in these graphs occur with at least
one isolation.

For degree-irregular graphs, we use fully populated Sym-
phony [28], (i.e., a random graph with a fixed out-de-
gree and uniform neighbor selection) that models generic
unstructured systems, fully populated Randomized Chord [28],
and Random-Zone (RZ) Chord (i.e., Chord with a random parti-
tioning of the circle). Table III demonstrates that these systems
also follow the classical result well. Besides the fact that
is very close to , notice in Table III that the resilience
of Chord with random zone sizes is inferior to balanced Chord
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since there is more possibility for nodes with smaller-than-av-
erage degree to disconnect the graph.2 These nodes are also re-
sponsible for the deviation of in RZ Chord from 1.0, which
is a phenomenon that disappears as the number of nodes be-
comes larger (not shown for brevity).

C. Dynamic Resilience

While the use of -percent uniform node failure provides
an accurate approximation of actual network behavior in some
cases, it has been noted that it has questionable applicability
to real P2P networks [4], [26] where users join and leave the
system asynchronously based on their individual browsing
habits. One approach to modeling such systems is to assign
each joining user a random lifetime , which determines the
duration that node stays in the system before abruptly (i.e.,
without graceful notification of its neighbors) departing from
the network and represents the amount of time a user spends in
the network browsing for content and/or providing services to
other peers.

Most structured P2P systems [28], [34], [38] use DHT-spe-
cific neighbor-replacement algorithms to repair the zones of
failed nodes and maintain consistency of routing. Certain
unstructured systems [10] also explicitly perform replacement
of failed neighbors to achieve the desired level of routing and
search performance. In addition to maintaining consistency
of routing [38] and avoiding congestion in the graph [10],
neighbor replacement serves the purpose of keeping the system
resilient to disconnection. We next examine the question of how
quickly failed neighbors should be replaced and what levels of
resilience one should expect from churn-based P2P networks.

Throughout the paper, we assume that each node performs a
“search” to find new neighbors as soon as it detects the failure.
At this stage, we are not concerned with how this is accom-
plished and combine both failure detection and repair into a
generic random variable that measures the total delay re-
quired to perform these operations. Given this new paradigm
of node-failure, we now define the probability that a given
user becomes isolated during its lifetime because its neighbors
are failing at a faster rate than is able to obtain their replace-
ments from among the remaining nodes. We derive in later
parts of the paper; however, we now show how the knowledge
of this local metric can be used to study global resilience of life-
time-based P2P networks.

Define to be the random time (in terms of user joins) when
graph disconnects for the first time. Then assuming that
is asymtotically strong and each joining node is assigned a
Bernoulli random variable that determines whether the user
is isolated from the network during its lifetime, the probability
that almost every graph stays connected for more than user
joins can be computed as:

(9)

where the independence between is approximated from the
asymptotically strong nature of the graph (see below for the rea-
soning).

2More analysis of zone size distributions in DHTs can be found in [40].

TABLE IV
LIFETIME SIMULATIONS OF THE PROBABILITY � �� � �� THAT THE

NETWORK SURVIVES AT LEAST � USER JOINS (FIXED SEARCH DELAYS)

For -regular graphs, each user has the same probability of
isolation (i.e., ) and the above reduces
to:

(10)

We next verify the applicability of (10) using simulations,
where both and are computed empirically, and defer
the task of modeling until Section V. The simulations use two
types of DHTs and two distributions of lifetimes: exponential
with CDF and shifted Pareto with CDF

. The first system under study is a 12-regular fully pop-
ulated CAN with exponential lifetimes, (mean lifetime
30 minutes), users, and . The second system
is RZ Chord with Pareto lifetimes, , (mean lifetime
also 30 minutes), users, (out-degree 7), and

.
Simulation results are shown in Table IV, where both models

(9), (10) match well. Observe in the table that zone-
balanced CAN is significantly more resilient than RZ Chord
since the latter frequently develops isolation around nodes with
smaller-than-average degree. In fact, the resilience of CAN is
quite impressive as it can survive 1 million user joins with prob-
ability 0.97 using 6-minute replacement delays. A more impor-
tant result in Table IV, however, is that dynamic systems also
stay connected as long as they do not contain isolated users,
which confirms that resilience of P2P graphs under both types
of failure can be reduced to the likelihood of user isolation.

IV. STATIC ISOLATION MODEL

This section develops a simple closed-form model for
, i.e., the probability that the graph contains no

isolated nodes, under static node failure and compares this
result to simulations of . In the next section, we address
the issue of dynamic node failure and derive a model for .

A. Isolated Nodes

Assume that each node has neighbors in some graph
and again define to be a Bernoulli indicator variable of

whether node is isolated or not after each node is removed
from the system with independent probability :

isolated and alive
otherwise.

(11)

Denote by the probability that
is isolated and alive after the failure. Next, notice that

may be identically or non-identically distributed, but they are
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almost certainly dependent. However, as , this depen-
dency in asymptotically strong graphs becomes negligible and

behave as if they were independent [2], [7]. This is a con-
sequence of the fact that in P2P graphs under study, any two
nodes and have a fixed number of common neighbors (e.g.,
in Chord, it is two), which becomes negligible compared to the
total degree of each user as .

Next, let be the total number of isolated nodes
in . Applying Markov’s inequality , we
directly obtain the next lower bound on the connectivity of the
system.

Theorem 1: For asymptotically strong graphs, the following
lower bound holds almost surely:

(12)

While this bound is very tight for small and is better than
those shown in [11] for all values of , it produces negative
values for sufficiently high failure rates. To overcome this lim-
itation, an alternative approach is to notice that is in fact a
sum of a large number of Bernoulli random variables with cer-
tain well-know asymptotic properties. Due to the diminishing
dependency between as , we apply the Chen–Stein
method [2] to and next obtain a much tighter result on .

Theorem 2: For asymptotically strong graphs and prob-
ability of failure satisfying the convergence conditions of
the Chen–Stein theorem [2], the following holds: 1) random
variables behave almost identically to a collection of
independent variables with the same marginal distributions; 2)
the number of isolated vertices tends to a Poisson distribu-
tion with mean ; and 3) the probability of
having a connected graph is almost surely.

We should note that the exact condition on for this approxi-
mation to hold depends on the graph under study and the size of
the overlap between different neighbor sets. Without this knowl-
edge, a general rule of thumb is to ensure that as

. We next show how well this approximation holds in
both degree-regular and irregular P2P systems for several values
of . For degree-regular networks, Theorem 2 simplifies to a
trivial closed-form expression:

(13)

To verify (13), we compare calculated in simula-
tions over 100,000 node failure patterns to that of the model in
Table V for fully balanced Chord [38] with
and de Bruijn graphs [20] with . As the
table shows, simulations follow the model quite well for each
graph over all values of . For comparison purposes, the table
also plots Najjar’s model (5), which is surprisingly less accurate
than (13) and significantly more complex to compute.

While many ideal DHTs are degree-regular, their instances
under random node join and departure often exhibit degree
irregularity that depends on random partitioning of the DHT
space (e.g., zone-size distribution in Chord). Additional de-
gree-irregular graphs include DHTs in which the in-degree
is random (e.g., Symphony, Randomized Chord [28]) and

TABLE V
SIMULATION RESULTS AND MODEL (13) FOR TWO REGULAR GRAPHS

TABLE VI
SIMULATION RESULTS AND MODEL (14) FOR THREE IRREGULAR GRAPHS

unstructured P2P systems such as Gnutella. For such graphs,
we obtain the probability of disconnection under static failure:

(14)

where is approximated by , treating as a
random variable.

To compute this model, we first use simulations to obtain
and then utilize this value in (14). Simulations of

for Symphony [28], [7], and Randomized Chord
[28], all with degree and 16384 nodes, are shown in
Table VI, which demonstrates that the model follows simulation
results very accurately for all values of .

To our knowledge there are no results on this topic for degree-
irregular graphs with which to compare our model. As Najjar’s
result (5) is based on a complicated combinatorial argument that
only applies to -regular graphs, it cannot be easily extended to
degree-irregular networks.

B. Discussion

The results of this section have confirmed that large-scale P2P
networks generally disconnect through isolated nodes, both in
degree-regular and irregular cases. Metric in all simula-
tions remained between 0.968 and 1, where deviation from 1
was more apparent in smaller graphs and cases when the de-
gree of certain nodes was allowed to become much smaller than
average (e.g., in RZ Chord). For larger graphs (hundreds of
thousands or millions of nodes), the agreement between
and becomes stronger (simulations not shown for
brevity).
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V. CONCEPT OF DYNAMIC ISOLATION

Using lifetime-based ideas developed in Section III, the rest
of the paper deals with deriving the probability that all
neighbors of a given node are simultaneously in the failed
state before the lifetime of expires. We start by formalizing
churn-based P2P systems and explaining our assumptions.

A. Assumptions

Previous research suggests that the distribution of user life-
times in real systems is often heavy-tailed (e.g., Pareto) [9],
[37], where most users spend very little time browsing the net-
work, while a small group remains logged in for weeks at a
time providing services to other peers. Thus, to allow arbitrarily
small lifetimes, we use a shifted Pareto distribution

, , to represent heavy-tailed user
lifetimes, where scale parameter can change the mean
of the distribution without affecting its range . The mean
of this distribution is finite only if ,
which we assume holds throughout the paper.

Each existing user in a P2P system has a number of pointers
to other users in the system. As continues to stay in the system,
the identity of its neighbors may change over time as new users
arrive and leave the system. There are two types of changes in
neighbor tables—voluntary decisions by to modify its links
and abrupt departures of ’s existing neighbors. The former
type, which we call a switch, occurs when decides to replace
an existing neighbor with a new user either to improve its own
connectivity to the system or in response to some external event
(e.g., new user arrival in DHTs). The latter type of neighbor
change, which we call a recovery, happens when an existing
neighbor dies and is forced to find a replacement from among
the remaining alive nodes. It is during this search process that
is vulnerable to isolation from the graph and potentially unable
to route to some of the peers in the system.

Note that switching is a common property of DHTs where ar-
riving users split existing zones of the virtual space and assume
the responsibility for all in-degree links assigned to their new
zone. In unstructured P2P systems, switching may also occur,
for example, when a user decides to “upgrade” its neighbor
list to include better-connected or more reliable peers [10]. The
analysis below, however, only considers systems that perform
recovery, not switching. We assume throughout the rest of the
paper that each link, once assigned to a neighbor, is tied to that
user for the remainder of the user’s lifetime. Unstructured P2P
networks (e.g., Gnutella) naturally implement this policy, but
DHTs can also be modified to replace neighbors only in re-
sponse to failed links. For example, Randomized Chord [28]
does not specify rigid peering rules for outgoing finger links and
allows any user in a certain range of the DHT space to be ’s
neighbor. Thus, when new users arrive, may continue linking
to the original neighbor, which avoids switching and keeps
compliant with DHT rules.

We impose additional restrictions on the systems we study to
maintain tractability. First, we only consider those networks that
have evolved enough to allow asymptotic results from renewal
process theory to hold (this usually applies in practice since real
P2P systems continuously evolve and seldom or never restart).
We also require certain stationarity of lifetime , which means

that all users joining the system have the same lifetime dis-
tribution . Second, we assume that users always accept
incoming connections and do not impose an upper bound on
their in-degree. Third, we constrain neighbor selection during
recovery to be uniformly random within the graph, which can
be easily implemented in unstructured P2P systems and certain
DHTs that allow freedom in finger pointers (note that successor
lists are not considered in this work). Assuming system size
is large, this results in the selection process being independent3

of the potential neighbor’s lifetime or its current age .

B. Modeling Neighbors

Next, we formalize the notion of residual lifetimes and un-
derstand how to model neighbor evolution. Define to be the
remaining lifetime of node when it was selected by user to
be its neighbor during join or recovery. As before, let be
the CDF of lifetime . Assuming that is large and the system
has reached stationarity, the CDF of residual lifetimes is given
by [35]:

(15)

For exponential lifetimes, which we study in the paper for
comparison purposes, the residuals are trivially exponential
using the memoryless property of ;
however, the residuals of Pareto distributions with shape are
more heavy-tailed and exhibit shape parameter :

(16)

This means that Pareto-lifetime systems under churn are more
resilient than the corresponding exponential systems for a given
average lifetime since each user in the former case acquires
neighbors with larger remaining lifetimes than those in the latter
case. This can be explained by the fact that
is larger than for all values of and that
residual lifetimes in the Pareto case are stochastically larger
than the corresponding lifetimes.

Next, assume that each neighbor of node is
either alive at any time or is searching for its replacement.
Thus, neighbor can be considered in the on state at time if
it is alive or in the off state otherwise. This neighbor failure/
replacement procedure can be modeled as an alternating renewal
process :

neighbor alive at
otherwise.

(17)

Note that the average on delay of each process is
and the average off delay is . Using this notation, the de-
gree of node at time is equal to . De-
note by the first time at which a node is isolated, i.e., all of
its neighbors are simultaneously in the off state. Thus, the max-
imum time a node can spend in the system before it is isolated
can be written as the first hitting time of process on level 0:

(18)

3For age-dependent selection in unstructured networks, see [42].
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Finally, observe that isolation happens only if is smaller
than user lifetime , which means that isolation probability
can be expressed as , where both and are
random metrics.

The next two sections develop alternative models for and
examine their accuracy in simulations.

VI. EXACT MODEL OF DYNAMIC ISOLATION

In this section, we build a rather general model for the
probability that a node becomes isolated due to all of its
neighbors simultaneously reaching the failed state during ’s
lifetime. While closed-form derivation of for systems with
non-exponential user lifetimes is difficult, certain cases identi-
fied below can be solved with arbitrary accuracy by replacing
residual lifetimes and search delays with their hyper-exponen-
tial equivalents. The rest of this section deals with obtaining an
exact model for using continuous Markov chains, while the
next section studies its asymptotic approximation.

A. Hyper-Exponential Approximation

Recall that the hyper-exponential distribution is a mix-
ture of exponential random variables with probability density
function (PDF) in the form of [41]:

(19)

where for all and . The above dis-
tribution can be interpreted as generating exponential random
variables with probability . It is well-known that any
monotonic density function can be represented with any
desired accuracy using (19), i.e., as
[3], [15]. In the analysis below, we leverage this property of
hyper-exponentials and the fact that Pareto residual lifetime dis-
tributions are completely monotonic. While some of the prior
literature [15] has used as many as 14 exponentials to approx-
imate Pareto , our analysis suggests that as few as 3 are
usually sufficient for achieving very accurate results on (see
examples after the proofs).

Before we proceed with the derivations, it is useful to visu-
alize the meaning of hyper-exponential distributions in our life-
time model. Assume that there are different types of neigh-
bors, where residual lifetimes of peers of type are exponen-
tially distributed with rate . When requires a new neighbor,
it selects a node of type with probability . Similarly, as-
sume that there are types of searches that can be currently
in progress. A search of type is instantiated by with proba-
bility and has duration exponentially distributed with rate .
As long as neighbor residual lifetimes and search delays can
be reduced to the hyper-exponential distribution, the resulting
process can be viewed as a homogenous continuous-time
Markov chain as we show next.

Lemma 1: Given that the density function of residual life-
times and the density function of
search times , is a homoge-
neous continuous-time Markov chain.

Proof: Assuming types of neighbors and types of
search processes, each state of for a given user can be
written as:

(20)

where is the number of ’s neighbors of type , is the
number of searches in progress of type , , ,
and . Also notice that can be
represented as . Since neighbors of type are
and search processes of type are , the sojourn time in
state is exponential with rate:

(21)

Observe that when a neighbor dies, a search starts immedi-
ately and its properties are independent of those of the existing
searches or neighbor lifetimes. Conversely, when a search ends
and a new neighbor is found, the characteristics of this neighbor
are independent of any previous behavior of . This inde-
pendence allows us to easily write transition probabilities be-
tween adjacent states of . The first type of transition re-
duces by 1 in response to the failure of one of ’s neigh-
bors, which is equivalent to a jump from state:

(22)

to state:

(23)

for any suitable . For simplicity of notation, we call the
above transition . The corresponding
probability that a neighbor of type dies and a search of type
starts is .

The second type of transition increases by 1 as a result
of finding a replacement neighbor, which corresponds to a jump
from state:

(24)

to state:

(25)

for any . The corresponding notation for this transition is
. The related probability that a search

process of type ends and finds a new neighbor of type before
any other event happens is .

By recognizing that the jumps behave like a discrete-time
Markov chain and the sojourn times at each state are indepen-
dent exponential random variables, we immediately conclude
that is a homogeneous continuous-time Markov chain
with a transition rate matrix with:

otherwise,

(26)
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where and represent any suitable states in the form of (20)
that satisfy transition requirements on the right side of (26).

The next step is to specify the initial state distribution of
and derive the PDF of the first-hitting time on state
based on the transition rate matrix . While (26) initially ap-
pears complicated, placing states in
an increasing order reveals that is not much different from any
other rate matrix. For small values of , the matrix can be easily
represented in memory and manipulated in software packages
such as Matlab. For example, when , the size of

is 252 252 for and 792 792 for .4

The initial state distribution is in form of:

(27)

where each entry in the vector represents the probability that the
chain starts in state for all possible
permutations of variables and . Note, however, that the only
“valid” starting states are those in which the number of alive
neighbors is exactly and the number of searches in
progress is zero.

After rather straightforward manipulations, can be ob-
tained as follows (we omit the proof due to space limitations).

Lemma 2: Valid starting states have initial probabilities:

(28)

and all other states have initial probability 0.
Armed with this result, we next focus our attention on ob-

taining the distribution of and deriving .

B. First Hitting Time

It is convenient to treat as an absorbing Markov chain in
order to derive the PDF of the first-hitting time of on state
0. To this end, let
be the set of all absorbing states. Then, for each non-absorbing
state , its transition rate to is given by:

(29)

where is the cell of matrix corresponding to transitions
from state to . We can then write in canonical form as:

(30)

where for is a column vector representing
the transition rates to the absorbing set and is the rate ma-
trix obtained by removing the rows and columns corresponding
to states in from .

Generalizing the first hitting time from a starting state
to any absorbing state in as:

(31)

its density function can be obtained from the following lemma.

4The next section derives an asymptotic approximation to � that does not
depend on any matrix algebra; however, it is accurate only for exponential life-
times.

Lemma 3: Given that the chain starts from state ,
where is the set of absorbing states, the PDF of the
first hitting time to any state in is given by:

(32)

where is the probability
that the chain is in state at time given that it started in state

and is given in (29).
Proof: For Markov chains, it is not difficult to show that
has a continuous density function such that for

arbitrarily small :

(33)

At the same time, from last-step analysis [22] we have:

(34)

Combining (33), (34) and letting , we easily obtain
(32).

Computation of requires transition probabilities
for all , which are rather difficult to obtain in

explicit closed-form for non-trivial Markov chains such as ours.
Instead, we offer a solution in the next theorem that depends on
spectral properties of and a matrix representation of .

Theorem 3: For hyper-exponential residual lifetimes and
hyper-exponential search delays (19), the probability of isola-
tion is:

(35)

where is the initial state distribution in (28), is a matrix
of eigenvectors of , is a diagonal matrix with:

(36)

where is the CDF of user lifetimes and is the th eigen-
value of .

Proof: Assuming hyper-exponential residuals and search
delays, the probability of node isolation is simply:

(37)

Invoking (32) and expressing it in matrix form, we have:

(38)

where is a column vector and
for , are transition probability functions corre-
sponding to non-absorbing states. Next representing

using matrix exponential [35] and using
eigen-decomposition [30], we get:

(39)

where and is the th eigenvalue of
. Recalling that there are multiple valid starting states, the
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Fig. 2. Comparison of model (42) to simulations using exponential lifetimes with ��� � � ��� and � � �.

PDF of the first hitting time is simply the product of
row vector and column vector :

(40)

where is given by (28). Substituting the above into (37),
we get:

(41)

which leads to (35) after removing the constants outside the in-
tegral and renaming variables.

Using (35), rate matrix , and vector , solution to node
isolation probability can be easily computed using numerical
methods. We next carry out this task using several distributions
of user lifetimes and search delays and confirm the accuracy of
the model.

C. Verification

We start with the exponential case.
Theorem 4: For exponential lifetimes and

hyper-exponential search delays, (36) is simply:

(42)

We next test the accuracy of (42) combined with Theorem 3
in simulations over four distributions of search time for a graph
with and mean lifetime hours (additional
simulations produce similar results and are omitted for brevity).
The first distribution is Weibull with CDF and
mean , the second is exponential with
rate , the third is Pareto with , and the fourth is
again Pareto with . For the Weibull distribution and each
fixed , shape parameter is set to 0.5 to produce reason-
ably heavy-tailed search durations and scale parameter is kept
at . Both Pareto distributions are scaled using

to also keep their means equal to . For
computing the model, each distribution is fitted with a hyper-
exponential mixture model (19) using .

Fig. 2 illustrates the exemplary accuracy of (42) when com-
pared to simulation results. Notice that the model tracks all four
distributions of search delay for over five orders of magnitude
and that becomes less sensitive to the distribution of as

. We leverage this observation in the next section
and in the meantime discuss an example of how the model can

be used to predict the performance of P2P networks. Assuming
neighbors, 30-minute average lifetimes, and 36-second

search delays, . This demonstrates that P2P
networks are extremely resilient against node isolation and can
remain connected with a handful of neighbors and search delays
on the order of tens of seconds.

Our next theorem derives for Pareto lifetimes and confirms
that Pareto-based systems are more resilient than similar net-
works based on exponential lifetimes.

Theorem 5: For Pareto lifetimes
and hyper-exponential approximations for residuals and search
delays, (36) becomes:

(43)

where is the generalized exponential
integral.

Proof: Using the CDF of Pareto user lifetimes and (36), we
get:

(44)

Setting , can be reduced to:

(45)

which completes the proof.
Simulation results for Pareto lifetimes with and

for the same four distributions of search delay are
illustrated in Fig. 3. As in the case with exponential lifetimes
and arbitrary search distributions, (43) combined with Theorem
3 is extremely accurate for all values of . Consider the
same example of neighbors, 30-minute average life-
times, and 36-second search delays. In this case, Pareto
guarantees , which is an improvement in
resilience by a factor of 5.5 over the exponential case with the
same parameters.

While the results in this section are very accurate, the required
matrix calculations make it difficult to compute for a large
number of neighbors. For example, using and

, the matrix is very large at 15,504 15,504. For
this reason we next derive a simple closed-form model that ap-
proaches the accuracy of (35), (36) for small .
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Fig. 3. Comparison of model (43) to simulations using Pareto lifetimes with ��� � � ��� and � � �.

Fig. 4. Comparison of model (47) to simulations using exponential lifetimes with ��� � � ���, � � �.

VII. ASYMPTOTIC MODEL OF DYNAMIC ISOLATION

Since the previous result (35), (36) requires complex ma-
trix and integral calculations, our next task is to simplify this
model in the context of exponential lifetimes and obtain a simple
closed-form expression for that is significantly easier to both
understand and compute.

A. Exponential Lifetimes

We start by deriving the stationary distribution of .
Lemma 4 (Leonard [25]): For exponential lifetimes and ex-

ponential search delays, the stationary distribution of is
given by:

(46)

where .
We are now ready to present the main result of this section,

which follows from Lemma 4 and inequalities for rare events in
Markov chains [1], [25].

Theorem 6 (Leonard [25]): For exponential lifetimes and ex-
ponential search delays, the probability of isolation is:

(47)

where is the ratio of the mean user lifetime to
the mean search delay and is a term that decays to zero as

.
We next test the accuracy of (47) for exponential lifetimes

under different distributions of search delay and verify that as
the asymptotic model indeed converges to the exact

result (42).

B. Verification

Fig. 4 shows obtained in simulations using four distribu-
tions of search time for a graph with and mean lifetime

hours. We again use four different distributions of
search delay, but in addition to exponential and Pareto search
delays as before, we also include uniform in and con-
stant equal to for demonstration purposes that we discuss
below. Notice that the asymptotic model is less accurate for ex-
ponential search delays, but provides an almost exact match to
the constant-delay case (part (b) in the figure). Also observe that
as becomes smaller, all four cases indeed converge to (47)
and achieve isolation probability when the ex-
pected search time reduces to 1.5 minutes.

Further note that constant search delays provide the worst-
case scenario for isolation, while highly variable distributions
of are the best. This observation can be explained by the
non-negative nature of search times and the fact that for a given

higher variance of implies that more probability mass
is concentrated at values well below . We thus intuitively
obtain that random search delays can only improve the resilience
of the system compared to the worst-case scenario (i.e., con-
stant ). This can be observed in Fig. 4 where in part (b) is
the largest among the four cases. Since constant search delays
happen to produce an almost ideal match to the approximate
model, the result in (47) can be treated as an upper bound on
for all cases with exponential lifetimes.

To finish this subsection, we examine the convergence of ap-
proximation (47) to the numerical model (42) in more detail.
Table VII shows the values of produced by both models as

becomes very small. Observe in the table that both models
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Fig. 5. Upper bound (48) and simulations using Pareto lifetimes with ��� � � ��� hours and � � �.

TABLE VII
CONVERGENCE OF (47) TO (42) FOR EXPONENTIAL SEARCH DELAYS AND

EXPONENTIAL LIFETIMES WITH ��� � � ��� �� � ��

indeed converge and that the relative difference diminishes to
zero as becomes small.

C. Bounding Pareto Lifetimes

Without the use of techniques described in Section V,
mixes very slowly under Pareto lifetimes and cannot be modeled
as a Markov chain, so the derivation of for this case is very
complicated. Furthermore, the result is expected to be sensitive
to the exact value of parameters and of the Pareto distribu-
tion, which are difficult to measure and may vary from system
to system. Thus, we instead utilize the exponential metric (47)
as an upper bound on in systems with sufficiently heavy-tailed
lifetime distributions and observe that this approach requires
only an estimate of the average user lifetime . The result
below follows from the fact that heavy-tailed imply stochasti-
cally larger residual lifetimes and that (47) provides an upper
bound for all search delay distributions.

Corollary 1: For an arbitrary distribution of search delays and
any lifetime distribution with an exponential or heavier
tail, which includes Pareto, lognormal, Weibull, and Cauchy dis-
tributions, the following upper bound holds:

(48)

where is the ratio of the mean user lifetime to
the mean search delay.

For example, using 30-minute average lifetimes, 9 neighbors
per node, and 1-minute average node replacement delay, the
upper bound in (48) equals , which allows each user
in a 100-billion node network to stay connected to the graph for
his/her entire life span with probability . Using the uni-
form failure model of prior work and [38], each user
requires 37 neighbors to achieve the same regardless of the
actual dynamics of the system.

TABLE VIII
MINIMUM DEGREE NEEDED FOR A CERTAIN � IN SYSTEMS WITH PARETO

LIFETIMES WITH � � 	, � � 
 AND ��� � � ��� hours

To confirm that the upper bound (48) holds in practice, Fig. 5
shows in simulations with Pareto lifetimes with
and . Observe in the figure that Pareto systems are in fact
more resilient than those with exponential lifetimes. Also notice
that constant search delays once again provide the worst-case
resilience for a given and that the difference between the
Pareto and exponential is by a constant factor (i.e., the two
curves become parallel as ).

Even though exponential is often several times larger than
the Pareto (the exact ratio depends on shape ), it turns out
that the difference in node degree needed to achieve a certain
level of resilience is usually negligible. To illustrate this result,
Table VIII shows the minimum degree that ensures a given

for different values of search time and Pareto lifetimes
with , hours . The column “uniform

” contains degree that can be deduced from the -per-
cent failure model (for ) discussed in previous studies
[38]. Observe in the table that the exponential case in fact pro-
vides a tight upper bound on the actual minimum degree and
that the difference between the two cases is at most 1 neighbor.

D. Graph Disconnection

We now apply the newly acquired model for the probability
of isolation to (10) and examine its accuracy in simulations.
Re-writing (10), the dynamic resilience of a graph is lower-
bounded by:

(49)

where is the number of user joins before the first dis-
connection of the system. Table IX contains
obtained in simulations of 12-regular, fully populated CAN
(i.e., each failed node is replaced after time units by a new
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TABLE IX
COMPARISON OF � �� � �� IN CAN

arrival with the same hash index) with exponential lifetimes,
hours, , and user joins. The

table also includes the value computed by model (10) using
empirically measured along with the newly derived model
(49) for comparison purposes. Note that even in the case of
relatively large search delays (e.g., minutes), the
simulations still follow the model quite well and that the graph
never partitions without having at least one isolated node (i.e.,

).
To further illustrate the gravity of (49) when used as a lower

bound on the performance of lifetime-based P2P systems, con-
sider the example first mentioned in the introduction. In a -reg-
ular P2P system with for each neighbor, search delay

minute, and average lifetime hours,
the probability of isolation is . When is
applied to (49) in which 35 million users join and leave the
system each week, the probability that the network survives for
10,000 years without disconnecting is at least 99.2%. Model
(49) further implies that the mean delay between disconnections
is lower-bounded by user joins, or 1.2 million years. Rel-
atively small systems are also very resilient based on this anal-
ysis. A system with , a search delay of 30 seconds, average
lifetime hours, and 50,000 users join each day will
survive for 100 years without disconnection with probability no
less than 99.5%. These two examples show that both large and
small-scale systems can easily achieve a high level of resilience.

E. Discussion

While the models described in this paper have shown that
most current P2P systems are very resilient to node isolation and
disconnection under many practical conditions, our results can
also be exploited to develop even more resilient systems. How-
ever, the obvious solution of increasing or decreasing
will likely cause increased network overhead and reduce scala-
bility. A more cost-effective goal is to ensure that each node has
a high probability of obtaining a neighbor with a large residual
lifetime during its stay in the system. We propose intentionally
monitoring the age of each node and giving more preference
during neighbor selection to nodes with larger age, a technique
that produces neighbors with larger residual lifetimes. Prelimi-
nary simulation results indicate that of chosen neighbors
increases by several times over uniformly random selection of
neighbors.

This paper is instrumental in understanding the resilience
of P2P networks, but there are several avenues that must be
explored to fully understand how to prevent user isolation and
graph disconnection in all manner of network topologies. One

immediate goal is to study the growth of in-degree for nodes
in P2P systems, the analysis of which is complicated by the
inherent differences between DHTs and unstructured networks.
Another goal is to analyze P2P systems with non-uniform
neighbor selection techniques (e.g., age-based neighbor se-
lection), an obstacle that is likely to require entirely different
methods from those used in this paper.

VIII. CONCLUSION

This paper tackled the problem of P2P graph connectivity
under both static and dynamic node-failure by establishing that
almost every sufficiently large network remained connected if
and only if it had no isolated nodes. We used this powerful result
to derive models of graph connectivity for static and dynamic
node failure that are much more accurate than previous efforts
and are easily calculable. Our results show that most current
P2P systems are extremely resilient to disconnection when the
average lifetime of a user is at least several times larger than the
average node-replacement delay.

Future work includes extending the lifetime model to include
the in-degree of each node, analysis of DHTs that replace
neighbors when a new user joins, construction of more resilient
P2P networks under age-dependent neighbor selection, and
measurement of existing P2P networks.
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