Estimation of DNS Source and Cache Dynamics under Interval-Censored Age Sampling

Di Xiao, Xiaoyong Li, Daren B.H. Cline, Dmitri Loguinov

Internet Research Lab

Department of Computer Science and Engineering

Texas A&M University

April 18, 2018

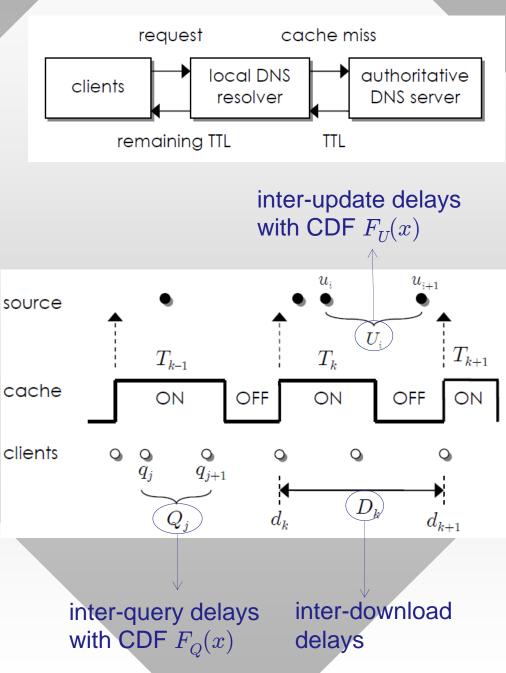
- Introduction
- Notation
- Models
- Passive Measurement (Chameleon)
- Active Measurement (Shark)
- Experiments

Introduction

- Caches are important parts of many distributed systems in today's Internet
 - Search engines
 - Wireless mobile networks
 - P2P structures
 - CDNs
- Two common eviction policies
 - Capacity-based: unpopular elements get removed
 - TTL-based: elements are evicted only upon expiration
- TTL-based policy is more suitable when object staleness is of primary concern

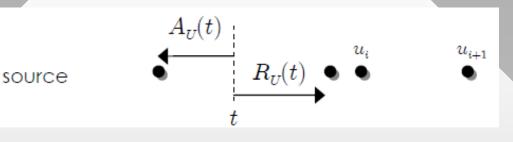
Introduction

- DNS has long used TTL-based policy
 - However, staleness of records was never considered
- Instead, hit rate h was the sole metric of performance for many years
 - With wide adoption of dynamic DNS and CDNs, many authoritative domains frequently change IP addresses
 - Simply maximizing h, essentially setting TTL to infinity, is not a meaning pursuit
- The tradeoff between h and freshness f may be of interest in certain applications
 - Unfortunately, this interplay has not been studied


Introduction

- Besides modeling *f*, it is important to develop methods for estimating this value
 - Applications may aim to minimize staleness for a given hit rate, or maximize h for a given f
 - Researchers and network admins might be interested in measuring performance of existing systems to which they have no direct access
 - Approaches to sampling f
 - Passive: observer is internal to the cache, but external to the source
 - Active: observer is external to both

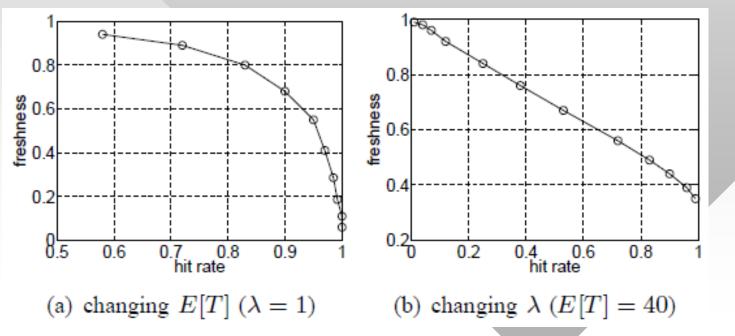
- Introduction
- Notation
- Models
- Passive Measurement (Chameleon)
- Active Measurement (Shark)
- Experiments


Notation

- Source experiences random updates via process N_U
- Clients query resolver source via process N_Q
- TTLs are iid and follow distribution $F_T(x)$
- Interplay between N_Q and $F_T(x)$ defines download process N_D

- Introduction
- Notation
- Models
- Passive Measurement (Chameleon)
- Active Measurement (Shark)
- Experiments

- Define update age $A_U(t)$ and update residual $R_U(t)$
 - For $t \to \infty$, they have the residual distribution of $F_U(x)$
 - We call this function $G_U(x)$
 - Neither $A_U(t)$ nor $R_U(t)$ is directly measurable!
- Assuming $T \sim F_T(x)$ is a random TTL, hit rate was already shown in previous work as


$$h = \frac{E[N_Q(T)]}{1 + E[N_Q(T)]}$$

• <u>Theorem</u>: Assuming $R_U \sim G_U(x)$ is a random update residual, cache replies are fresh with probability

$$f = \frac{1 + E[N_Q(\min(R_U, T)]]}{1 + E[N_Q(T)]}$$

<u>Models</u>

- <u>Theorem</u>: Increasing $E[T] \to \infty$ produces $h \to 1$ and $f \to 0$. Making Q stochastically smaller yields $h \to 1$ and $f \to E[\min(R_U,T)]/E[T]$ from above
- Tradeoff between h and f
 - Simulation with Pareto U, T, Q with E[U] = 20 sec

10

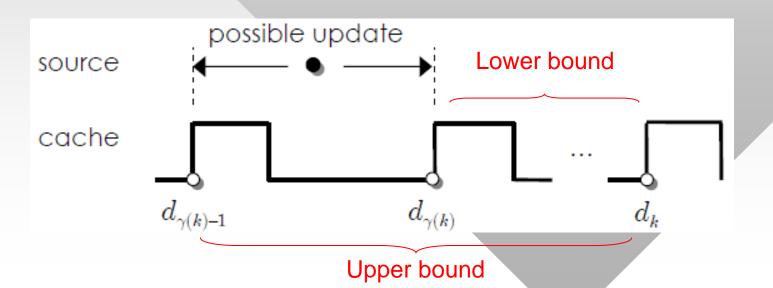
Models

- It is common to assume queries arrive from a large number of users and N_Q is Poisson, where $h = \frac{\lambda E[T]}{1 + \lambda E[T]} \qquad f = \frac{1 + \lambda E[\min(R_U, T)]}{1 + \lambda E[T]}$
- Let $G_T(x)$ be the residual distribution of $F_T(x)$ and $R_T \sim G_T(x)$ is a random residual TTL
- <u>Theorem</u>: Under Poisson queries, freshness is given by f = 1 h(1 p), where $p := P(R_T < R_U)$
- Note that f requires h and p, the latter of which is significantly more difficult to estimate as it needs the distribution of both R_U and R_T
 - Since $G_T(x)$ is relatively easy to obtain, the main focus of the paper is on sampling $G_U(x)$ and $F_U(x)$

11

<u>Roadmap</u>

- Passive measurement is the cache estimating f with access to all information except $G_U(x)$
 - E.g., an adaptive cache that trades spare bandwidth to maintain *f* at some desired threshold
- Active measurement is an observer estimating f only knowing residual TTLs $R_T(t)$
 - E.g., network administrators / researchers study replication efficiency and diagnose potential problems with bandwidth consumption or staleness
- Either way, it is useful to also recover $F_U(x)$ to characterize the source


- Introduction
- Notation
- Models
- Passive Measurement (Chameleon)
- Active Measurement (Shark)
- Experiments

Passive Measurement

- The major challenge is to remotely estimate $G_U(x)$ assuming random inter-download delay
- Best previous method is M_6 from [Li 2015]
- Drawbacks of M_6
 - Slow convergence speed
 - Quadratic computation time
 - Non-concave estimator
- Our method Chameleon improves in all aspects

Passive Measurement

- It produces upper/lower bounds on $A_U(d_k)$
 - Based on detecting modification of records by comparing them at download points d_k and d_{k-1}
 - Generates one bound at each download point d_k
- Example: Suppose $d_{\mathbf{y}(k)}$ is the last point before d_k that detected a modification to the record

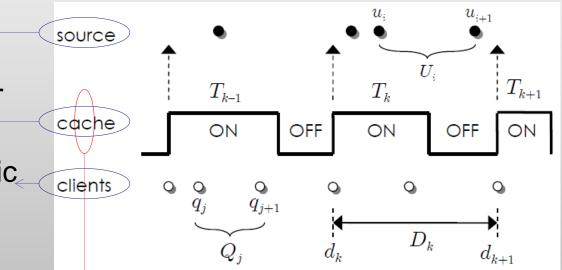
EM (Expectation Maximization) Estimator

- Problem maps to *interval-censored* observation
 - Naïve method inspired by [Turnbull 1976], which is asymptotically accurate as $n \rightarrow \infty$
 - However, complexity is $O(n^2)$ per iteration
- We propose an O(n) time/space algorithm
- Further notice that $G_U(x)$ is a concave function
 - Which prior methods in this field cannot guarantee
- We thus propose a new concave EM estimator
 - Requires little additional CPU cost
 - Allows recovery of $F_U(x)$ from $G_U(x)$

- Introduction
- Notation
- Models
- Passive Measurement (Chameleon)
- Active Measurement (Shark)
- Experiments

Active Measurement

- Without access to the cache, the observer needs to send probes to local resolver and remotely estimate all metrics
 - No previous work has studied this problem
 - Probes are iterative queries that don't pollute the cache
- Sampling points
 - A process N_S at points $\{s_k\}$ with iid sample delays S_k that follow distribution $F_S(x)$
- Two scenarios for TTL
 - Constant T: problem reduces to passive measurement
 - Random T: our focus next


Active Measurement

- Main challenge is we cannot see download points d_k , which makes passive techniques inapplicable
- We thus propose a new algorithm Shark
 - For each sample point s_k , we derive probabilistic bounds on d_k , which allows interval-censoring of update age $A_U(d_k)$
- We then modify our concave EM to operate with probabilistic intervals
 - This usually requires a huge number of samples to be processed; however, our EM is fast enough to handle billions of points on commodity machines

- Introduction
- Notation
- Models
- Passive Measurement (Chameleon)
- Active Measurement (Shark)
- Experiments

Experiment Setup

- Passive scenario
 - An authoritative server A
 - A local DNS server that resolves at A<sup>
 </sup>
 - A background traffic generator from process N_Q

- Active scenario
 - We randomly selected a recursive server R from our port-53 UDP scan of the Internet, making sure it was stable and compliant with source-provided TTLs
 - Added an observer that sends probes to R

- Performance of our fast EM (Algorithm 1)
 - Scales no worse than linearly in n
 - Handles 1 billion
 observations in 30 sec

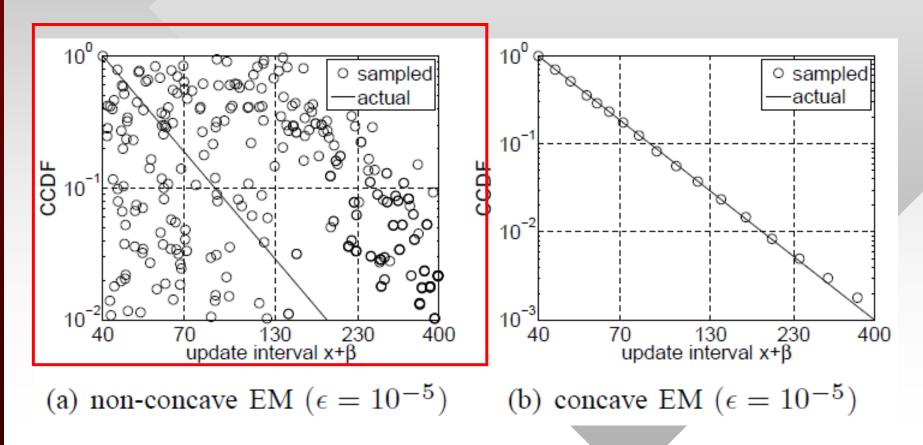
Estimation of simple parameters				

- Both Chameleon and Shark are asymptotically accurate

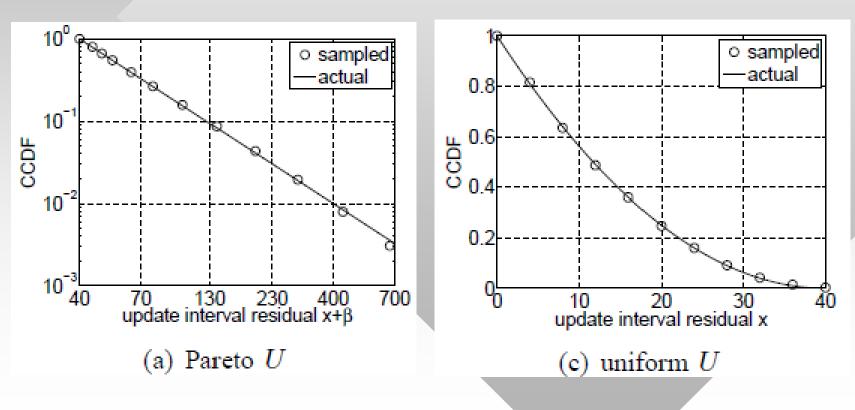
TABLE II RELATIVE ESTIMATION ERROR OF SIMPLE PARAMETERS


n	Shark			Chameleon		
	h	E[T]	λ	h	E[T]	λ
10^{2}	2.94%	16.8%	51.6%	1.58%	4.18%	7.93%
10^{3}	0.88%	5.81%	11.5%	0.42%	1.58%	2.79%
10^{4}	0.29%	2.40%	3.73%	0.16%	0.41%	0.80%

RUNTIME IN PASSIVE ESTIMATION OF $G_U(x)$						
n	M_6	Naive EM	Algorithm 1			
		$\epsilon = 10^{-4}$	$\epsilon = 10^{-4}$			
10^{4}	0.3 sec	9.4 sec	0.06 sec			
10^{5}	58 sec	2.9 min	0.13 sec			
10^{6}	2.2 hours	43 min	0.19 sec			
10^{7}	_	5.5 hours	0.70 sec			
10^{8}	_	_	5.79 sec			
10^{9}	_	_	27.9 sec			


TABLE I

IN DACCIVE POTIMATION OF C


- Passive recovery of $G_U(x)$ with 10K samples
 - Pareto $F_U(x)$ with $\alpha = 3$ and E[U] = 20 sec
 - M_6 is poorly suited for such small sample size

- Passive recovery of $F_U(x)$ with 10K samples
 - Non-concave EM produce a bunch of random points that cannot be a CDF function

- Active recovery of $G_U(x)$ with 10K samples
 - Pareto and uniform $F_U(x)$ with E[U] = 20 sec

- Estimation of complex parameters
 - Although Chameleon operates with more information, Shark comes pretty close to matching its accuracy

n	Pareto U					
	Sha	rk	Chame	eleon		
	p	f	p	f		
10^{2}	6.5%	5.8%	6.3%	5.6%		
10^{3}	1.9%	1.8%	1.9%	1.7%		
10^{4}	0.5%	0.4%	0.7%	0.6%		

Uniform U					
Shark			Chame	eleon	
p	f		p	f	
5.0%	4.8%		4.0%	3.4%	
1.7%	1.5%		1.2%	1.1%	
0.5%	0.4%		0.5%	0.5%	

Thank you!

Questions?