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Abstract—Since inception, DNS has used a TTL-based re- One particular area, where TTL-based caching has long
plication scheme that allows the source (i.e., an authorite peen part of the standard, is DNS. With the wide adoption
domain server) to control the frequency of record eviction fom of dynamic DNS services and proliferation of CDN, many
client caches. Existing studies of DNS predominantly focusn L . ’
reducing query latency and source bandwidth, both of which authoritative domains now frequenﬂy ch_ange IP addresseés a
are optimized by increasing the cache hit rate. However, tis Other records to reflect content availability, load on theees,
causes less-frequent contacts with the source and resultshigher and routing/geographic preferences, with more such &gtivi
staleness of retrieved records. Given high data-churn rat at expected in the future [11]. While the cache hit ratichas
certain providers (e.g., dynamic DNS, CDNs) and importance been the sole metric of performance for many years [4], [5],

of consistency to their clients, we propose that cache modgel .
include the probability of freshness as an integral perfornance [13], [17], [18], [19], [20], [22], the modern Internet remes

measure. We derive this metric under general update/downiad @ different modeling objective that would balance record
processes and present a novel framework for measuring its Uze  freshness against cache efficiency. In this context, simply

using remote observation (i.e., without access to the sow®r the  maximizing the hit rate, which essentially means setting th
cache). Besides freshness, our methods can estimate theeint TTL to infinity, is not a meaningful pursuit. Instead, the

update distribution of DNS records, cache hit rate, distribtution t invol tradeoff — higher hit rafe ire it ¢
of TTL, and query arrival rate from other clients. Furthermo re, System Involves a tradeoll — higher Nit ratesequire items to

these algorithms do not require any changes to the existing Stay longer in the cache, while better freshngsantails the
infrastructure/protocols. opposite. Unfortunately, the interplay between these iosetr

has not received much attention in the past.
|. INTRODUCTION In order to keep staleness below target levels, one requires

To keep up with the explosive growth of Internet traffic@ methodology for estimating’ within the confines of the
end-to-end caches continue to be an important part of ma#yrent DNS protocol. This process, which we caimote
distributed systems, including search engines [7], [9R],[3 Measuremenimust garner hidden information that is held at
wireless mobile networks [15], [16], P2P structures [38[][] Poth the source and the cache, but without access to either.
CDNs [6], [26], DNS [8], [22], [30], data warehouses [36],This makes sampling a formidable challenge. While existing
and various web applications [12], [14], [23], [35]. If ICNStudies [2], [10], [27], [31], [39] provide a framework for
(Information-Centric Networking) [1] becomes successtine  €stimatingh and user-request ratg, these methods cannot
Internet may eventually see cache deployment even at #feasily extended to handle freshness. In fact, just presen
network layer (i.e., at each router). Therefore, modeliaghe ©f random TTLs renders these techniques impossible to use.
performance is crucial to our current and future understand We aim to fill this void below.
of data churn at origin servers, Internet core, and customer I

facilities, including such metrics as bandwidth consupti . o ) . )
data consistency (i.e., freshness), and latency. The first direction in previous studies focuses on modeling

Depending on the eviction policy, cache operation can Jd L-based caching, where hit rate has been the most
classified intocapacity-basedand TTL-based In the former COmmon metric of interest. The majority of literature [2],
case, arrival of new items into a full cache causes immedidél, [31] assumes that clients send background queriggusi
removal of elements deemed unpopular (e.g., using LRU, LF® Poisson process with some ratewhich in certain cases
CLOCK, FIFO, Random, and their variations [28]). In théPProximates user requests rather well [11]. General rehew
latter case, which is our focus in this paper, items are estictProcesses are considered in [17], [22]; however, they do not
only when their TTL expires, meaning that cache size @,dml_t closed-form expressions fér and require numerical
considered infinite. This approach is more suitable in stesa solutions to the renewal equation. The TTL is usually modiele
where objecstalenessrather than storage limitations, are oftS @ constant [2], [22], [31], although has been analyzed
primary concern and the duration an item remains cached mygglér @ more general distribution in [4], [17], [22]. In all
be controlled by the source based on the record’s churn r&@ses except [4], the time to download the object is assumed

(i.e., frequency of modification). negligible compared to the TTL.
The second direction aims to remotely sample DNS re-

*Supported by NSF grant CNS-1319984. solvers and obtain an estimate af assuming the cache
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applies constant TTLs known to the observer. This usually
requires either Poisson queries [2], [31] or hyper-exptiakn Fig. 2.
inter-request delays [27]. For arrivals with longer mematry

currently appears difficult to recoverwith high accuracy.

The last direction studies object staleness under networkfie number of such events ifo,t]. We assume thaiVy
replication. The interplay between general update/doathlojs age-measurablewhich is the weakest set of conditions
processes is covered in [24] and a number of unbiased techifider which various sample-path averages related to stden
ques for estimating the update distribution is propose@%).[ are convergent [24]. Age-measurability is a generalizatib
We review some of their results below. In the context of DNSenewaj processes that allows non_stationary dynam|m |
freshness is taken into account only by [10], which analyz@g the empirical distribution of cycle lengths converges to
the expected number of missed updates between a downlgagbrministic function. Similarly, denote by; the time of
and subsequent queries. If updates and user queries are gt queryj > 1 and assumeVg (t) = max(j : ¢; < t) is a
Poisson, [10] proposes a staleness-measurement techni@i#@wal process that has no point at zero, g« Fo(x).
that requires sources and their caches to exchange real-timgoliowing Fig. 2, suppose inter-update durations Be=
information on the observed updates/requests. Becausez)weug+1 — u; and inter-query intervals ar@; = q¢; 11 — g;. It
not assume cooperation, this is an orthogonal problem to #@n follows [24] that the collection of Vafiab|€{$]i}?il' has
one studied here. some distributior¥y; (x) and{Q;}52, has another distribution
Fo(z). A combination of Ng and Frr(x) uniquely defines
the download procesdp between the source and the cache.
A. System Operation and Notation Assuming itsk-th point is d,, we get thatNp(t) = max(k :

Assume a system with a single source, a single replica, atd< t). In Fig. 2, D), = dj11 — dj, represents inter-download
a number of clients that query the replica for a particulandadaps ofNp, dashed arrows are synchronization instances with
item owned by the source. As shown in Fig. 1, a commdhe source, and the bold-line ON/OFF process corresponds to
networking scenario covered by this model is DNS, where tig®ject presence in the cache. For all cycles lengths, weressu
source is an authoritative server for some domain, theampltheir mean is positive and finite.
is a local DNS resolver, and clients are regular end-hosts. T Hit Rate
replica operates based on the TTL provided by the source ™~
each download: is accompanied by a paramefgy > 0 that DefineT ~ Fr(x) to be a generic variable with the same
specifies how long the item must remain cached. In all repligdistribution as the TTL. Then, hit rate [4], [17], [22]
the cache provides to clients the residual delay before they E[No(T)]
must discard the object. This information is valuable ndyon = T+ B[N (T)]
during hierarchical caching (e.g., within the OS or browyser Q
but also in remote measurement, as we discuss shortly. is the fraction of queries that arrive during ON periods in
In traditional DNS, the source decidég, using some Fig. 2. The numerator of (1) is the expected number of client
internal algorithm (e.g., based on the current load on tlsgleries in[0, T, i.e., after the object has been cached, and the
available servers, routing preferences, object volgiliThis denominator adds to account for the first packet that started
makes the TTL time-varying. Additionally, existing stugig], the ON cycle.
[8], [30], [33] show that a large fraction of DNS resolvers Notice thatE[Ng(T')] increases for stochastically largér
violate the source-provided TTL. Reasons for such behavior stochastically smallef), which implies that. in (1) does
include attempts to impede cross-site scripting attack¥ajl too. Intuitively, this makes sense — longer ON periods in Fig
reduction of cache inconsistency through TTL adaptati@j.[1 2 or faster query rates yield better hit rates. The opposilésh
Therefore, the effective TTL may be highly variable not onlywhen the conditions are reversed.
due to source decisions, but also cache policies. To cover
such cases, we mod€l’;} as iid random variables with someC- Freshness
distribution Frp (). As the DNS record keeps changing, cache responses may
At the source, suppose the object sustainsittie update become outdated compared to the current state at the source.
at time u; and processVy () = max(i : u; < t) counts For the example in Fig. 2, the item provided to clients at time

Process notation.
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q; is fresh, while that a; , is stale. Let theupdate residual (a) changingE[T] (A = 1) (b) changing) (E[T] = 40)

at timet be the distance to the next update point

Ry (t) = uny )41 — t, (2)

and theupdate agebe the delay to the previous point

Fig. 4. Cache tradeoffs (Paretg T', Q with E[U] = 20 sec).

Intuitively, this result holds because larger TTL yieldsde
Ay(t) =1t —uny @), (3) frequent downloads from the source and largeproduces
) ) S ) more stale queries per synchronization event. With thegxce
which are illustrated in Fig. 3. IV is age-measurable, thegon of esoteric counter-examples, this generally meaas th
distributions of variables (2)-(3) sampled at uniform feift  freshness and hit rate are tradeoffs of each other. Toritest

converges to the equilibrium CDF [24] this point, Fig. 4(a) varie€[T] and plotsf as a function of
1 z h, where the two models come from (1) and (5). As predicted,
Gu(x) == B0 /O (1= Fy(y))dy. (4)  Jonger TTLs driveh — 1 and f — 0, reaffirming the tradeoff.

A similar picture emerges in Fig. 4(b) aschanges, except

Besides variablesA;, Ry ~ Gy(z) needed for various here f — E[min(Ry,T)]/E[T] = 1/3 as hit rateh — 1.
purposes throughout the paper, we often utilize distrimstiin

the form of (4) for other processes. In these cases, a spbsch. Large User Base

indicates the Underlying random variable that governs theWhen the local resolver sustains queries from a |arge
cycles of the process, e.gzr(x) refers to the equilibrium popuylation of users, it might be sensible to modél, as
distribution of Fr(z), while Ap,Rr ~ Gr(z) are the 3 Poisson process, which is a common assumption in the
corresponding age and residual random variables. field [2], [10], [31]. Under exponential), inter-download

Supposéreshnesy’ is the long-term fraction of queries thatgelay D becomes a convolution of ON/OFF cycle lengths,
return an object that is consistent with that at the soutds. l je. D = T + Q. Furthermore, letting\ = 1/E[Q] be the

common to use the terstalenesg29], [40] to refer tol — f.  request-arrival rate, (1) transforms into

For either quantity to be computable using the properties of

the underlying processes (i.e., without access to bothcsour b= L[T] (6)
and cache logs), it is necessary that proce$das, Ng) be 1+ AE[T]

age-independeifi24], which means that their cycle lengths notind (5) simplifies to
enter a permanent phase-lockias oo. This condition can be .
satisfied by requiring that one &y (x), Fp(z) be non-lattice f= L+ APmin(fy, T)] @)

(i.e., not defined on rational numbers). For the remainder of 1+ AE[T]

the paper, we assume that all defined processes are pairwisehe next result establishes a more useful representation of

age-independent. freshness by making it an explicit function bf
Theorem 1:Cache replies are fresh with probability Theorem 3:Under Poisson queries, freshness is given by
fo it E[Ng(min(Ry, T))] 5) f=1=h+hp, ®)
1+ E[NQ (T)] '

wherep := P(Rr < Ry).

D. Freshness-Efficiency Tradeoff Re-writing (8) asf = 1—h(1—p), it is clear that increasing
The effect of T and Q on freshness is quite a bit more), which also increases, causes freshness to go down. This

complex than on the hit rate. Simply makifigstochastically is consistent with our earlier conclusions about (5).

larger (or@ smaller) is not enough to predict the change in

f in every circumstance. The problem is that (5), unlike (1), o

has different expressions in the numerator and denomirniatorA- Preliminaries

one special case, however, we can establish the asymptoticAssume that the local resolver needs to estimate the long-

of how the TTL and query rates affect staleness. term freshnesg of a given object in its cache. The reasons
Theorem 2:1f E[T,] — oo and Fp(z) is fixed, freshness for this objective could be numerous (e.g., performance mo-

underT,, converges to 0. 1), = Q/n, whereQ ~ Fy(x), nitoring), but consider a more concrete example. Suppase th

and Frr(z) is fixed, freshness undé€},, converges from above source provides;, = 40 seconds for allk, but this leads

to E[min(Ry,T)]/E[T] asn — . to 10% freshness for the specific user proce$g at this

IV. PASSIVE MEASUREMENT
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Fig. 5. Achieving90% freshness (Paretd, T, Q with B[U} =20 sec). headers. For this scenario, [25] develops a method called

M, that is asymptotically unbiased and quickly convergent.

during downloadk. When inter-download delay®, are all
constant, the second class of methods in [25] ysks}°

to estimateGy (z) with asymptotically consistency. However,
Fig. 6. Model roadmap for passive monitoring. again, this formulation does not work for our problem since
Dy, is a complex random variable that subsurigsand the
preceding OFF period in Fig. 2, both of which are random.

cache. Assuming that the replica has enough spare bandwidtfihis leaves us with the third class of methods in [25], which
to sustain more frequent downloads, it may decide to Idfger consists of a single techniquesMhat works with{A}72
(i.e., preemptively evict records that are likely staleoimler and randonDy. It has two drawbacks — quadratic computation
to achieve a certain freshness guarantee to its clientdewhime in the number of downloads and lower accuracy
still maintaining a reasonable level of latency. Since pesc compared to the remaining methods in [25]. Therefore, our
Ng is localized to each cache, the source has no ability figst goal is to improve this technique in both aspects.
optimize T}, simultaneously for all of its replicas. C. Non-Parametric EM

We call a cachadaptive(i.e., staleness-aware) if it selects . ) o
Gr(z) such that freshnesg in (5) is maintained at some Blind-sampling methods work b)_/ estimating the unknpwn
update agedy (dy) in download points. Instead of rounding

desired threshold. For the scenario in Fig. 4, deterministi ’ - )
and90% freshness, Fig. 5(a) shows the relationship betwel}s 1© some value, as done in [24], our novel approach is

the query rate\ and TTL. Observe that more-frequent clienf® Provide the estimator withnteryal-censoredvalugs, i.e.,
requests mandate a sharp decreasBl[ifi}, while less-loaded UPPer/lower bounds oy (dy). Define~(k) = max(i < k :

conditions do the opposite. The corresponding hit rate 4 = 1) to be the last download if0, d;] that detected a

provided in Fig. 5(b) in comparison to the defadlt-second modification. Consider Fig. 7 and suppose the current t_ime is
eviction delay. If the object is requested more often thazeond- Then, the latest update at the source is always confined to
every2 minutes, the adaptive strategy exhibits lower hit ratd8€ interval(d, )1, d,)]. This immediately yields
and r(_equifes more bandwidth, but provid(_es fresher records. diy — dyry < Au(di) < diy — doyry—1.- 9)
The situation is reversed when the record is less popular. _ _

As shown in Fig. 6, parameters, N, and Fr(z) can  Suppose the lower bound in (9) Is. and the upper igi;.
be locally determined by the resolver. On the other han@inen, our technique, which we call Chamel&ooollects a
estimation off at the replica, which we caflassive sampling seduence of pair§(Ly, Ry)};_, and feeds them into a non-
requires an inference process that obtains the residuatepdParametric Expectation Maximization (EM) estimator. Our

distribution Gy (). The rest of the section focuses on this. model draws inspiration from Turnbull’'s method for intelrva
censoring [38]. First, we quantize the bounds to be a meltipl

B. Sampling Update Age of some bin size, wheré;, is roundeddownand R, up. We

Recall from Fig. 2 that the cache contacts the sourﬂéen combine upper/lower bounds into a single vector, sort

at points {d}, which form some download processp. e result ascending, eliminate duplicates, and obtainva ne

. ¥ . set(xy,...,x,), Wherem < 2n. From this, we can form
From our assumption$Ny;, Np) are age-independent, Wh'Chnon—overIapping bingB; = [1:_1, 21), wherezg = 0.

allows application of the various techniques in blind sam- . -
pling [255).pThere are three variations ofqmethods based onl‘.etpi(t) be the estimated probab|l_|ty that the target random
the capabilities of the source. In the first case, the sour\c/:%”abIe Av ~ Gu(x) belongs to binB; during stept of

explicitly provides the uPd.ate agéy (di) _from Fig. 3during  1chameleons belong to the family of ambush predators, whiehdbinto
each downloadk, e.g., using protocol fields such as HTTRhe environment and passively monitor their surroundings.

locally ' remotely derived ) .
estimated/decided | estimated | Unfortunately, this scenario does not apply to DNS.
5 [ : v As a result, the cache has to infer presence of updates by
h N, | | Fi(=) Gy(z) Fy(z) f comparing adjacent versions of downloaded records. Define a
5 5 binary procesg\; to bel if the object is detected as modified

4



the iteration, where,;(0) = 1/m for all <. Now definea;;,  Algorithm 1: Chameleon's implementation of (12).

to be an indicator variable thaB; is entirely contained in 1 Function FastEM(intervals, m)
the discretized interval from downlodd Using non-quantized 2 | P = (1/m, 1/m,..., 1/m); <initial guess
bounds, this can be expressed as s while not converged do
ounds, p 4 | p=Onelteration (intervals, p, m)
5 Function Onelteration(intervals, p, m)
o 1 B; N [Lk, Rk] # 0 10 6 Z = zeros (1, m+1); < temp storage
Gik = 0 otherwise : ( ) 7 cdf =Brefix_‘sum ([0 p_]); < CDF padded with 0 at front
8 for k = 1 to intervals.size() do
. - 9 Vk = cdf [intervals [k].R] — cdf [intervals [K].L];
belongs to[ L, Ry] during iterationt 1 Z [intervals [K].R] —= intervals [k].count / VK;
12 psum = 0O; < prefix sum of Z
13 for i=1tomdo
t) = Z aikpi(t)- (11) 14 psum += Z [i]; < total weight from all intervals
i 15 p [i] = psum/n; < normalize and save
16 return p;

Each probability is then refined using recurrence

(t—|—1 azk

(12)

must be preserved by the estimator, especially if recovery
of Fy(z) =1 — gu(x)/gu(0) is needed fromGy (z). Since

the density is commonly estimated by scaling and smoothing
the PMF, a proper solution would guaranigét) > p;1(t).
Unfortunately, (10)-(12) fail to do so. Furthermore, norfe o
the previous literature has considered this issue before.

D. Implementation To overcome the setback, we offer a new EM algorithm
that ensures proper recovery of residual (i.e., concaveFsCD
Define §; = x; — x;_1 to be the length of thé-th bin and

et g;(t) = pi(t)/d; be the corresponding estimate of density,
whereg,,+1 = 0. Suppose

until the stopping criterion is sat|sf|ed, i€p(t+1)—p@)|| <
e, wheree > 0 is a constant, ang(t) = (p1(t),...,pm(t)).
Note that this process is asymptotically accurate [38], (1)
converges td7y (z) asn — oc.

A naive version of (10)-(12) calculates alin valuesa;y
and keeps them in RAM, which is highly inefficient. In th
worst case (i.e.;n = 2n), this computation is quadratic in
both space/time. Instead, we offer Algorithm 1 whose per-
iteration CPU complexityO(n) and storage cosD(m) are qi(t) = x;(gi(t) — git1(t)) (13)
optimal. Prior to calling FastEM, assume the program hag hodels the negative derivative 9f(t), normalized such that
already determined bin boundaries, .. ., z,,) and mapped — 1 0b that if the estimated density(¢)
each pair(Ly, R;) to the appropriate bin using an arra;zZ 1d1 =1 f serve £ th f " h
of structs, i.e.intervals (k] .Landintervals[k].R. = & ecreas'ng unction af, theng(t) > 0 for all i. The
Note that duplicate tuple€lLy, Ry) are compressed such thaPppOSIte holds as well since
intervals[k] .count is the corresponding frequency. " q;(t)

After initialization, Algorithm 1 computes the CDF ofy A Z
using a prefix sum of the PMF array(Line 7). Padding with -

a front zero is needed to properly complifein Line 9. We  We next create an EM algorithm fag(t) such thaty; (t) >
then use a temporary arre§/ to accumulate all weights/V;, 0 is preserved during each iteration.

that will be distributed into the relevant bins after thegde Theorem 4:A concave EM estimator for interval-censored
over. Specifically,Z[i] stores increments that must be appliedata is given by

to the PMF in position[¢, m]. This requires adding /V;, at

the left boundary of the interval (Line 10) and subtractingti gt +1)
the right boundary (Line 11). The second loop in Lines 13-15 i=1

computes a prefix sum ¢f and stores the result, normalized te that (15) uses variables from (10) (11), which reqire
by pi(t)/n, into the same vector. further elaboration. Before the first iteration, we gef)) =

With compression of duplicate intervals, the number of ;.. "\ hich ensures a monotonic initial density, and convert
unigue boundaries supplied to Algorithm 1 is upper- bound% into vectorg(0) using (13). This requires one pass over

by min(m(m — 1)/2,n). If m < n and the runtime is o, .. pins. Then, we represent (15) as
dominated by iteration in Lines 3-4, rather than the initial

nlogn sort, Chameleon can exhibit sublinear scaling in a

(14)

(15)

limited range ofn. We show such an example below. it +1) 25 Wi( (16)
E. Concave EM where
Note thatGy(z) in (4) has a monotonically decreasing " g
density gy (z) = Gy (x) ~ 1 — Fy(z). As a result,Gy () W;(t) = Vj(t)' 17)
k

is a concave function. This is an important property that k=1



remotely estimated derived

ensures that every ON period receives at least one sample

‘ I e l point, which allows recovery of the corresponding download
instancedy, = t; + Rr(ty) — T for all query timest;. The

b |Gr(@)] |Gul=) Ful@) | | EITT ¥ problem of estimating () then becomes identical to that

% ;l in passive sampling, where Chameleon provides an excellent
f

>

™ supporting platform. Furthermore, knowledge of the starti
P and ending point of each ON interval allows access to all
OFF durations, i.edy — (dyx—1 + T'), whose average tends to
1/. Finally, the hit rate follows from (6).

C. Random TTL

The issue is significantly more complex when the TTL

Note that the entire sefiV;(¢)}2, can be computed by varies between cycles, which is our assumption from thiatpoi
calling a slightly modified function Onelteration in Algtrtm forward. The challenge stems from the observer’s uncdytain
1, where Line 15 does not have thgt)/n multiplier. Once about the location of download poidj, since only the cache
all {W;(t)} are available, an extra prefix sum over bins knows this information. This precludes direct measurement
produces (16). Finallyg(¢t + 1) is converted back tp(t + 1) of the OFF duration or application of Chameleon. We now
using (14), which requires another scan owerbins. In the formulate our framework for solving these issues.
end, per-iteration cost of our concave EM differs from thiat o Suppose the observer is a special client that sends ondy iter
Algorithm 1 by 2m, which is negligible in practice. tive queries with an objective to determigfewith asymptotic
accuracy as the observation window tends to infinity. Assume
that these requests are issued at po{sfs} such that inter-
A. Preliminaries sample delaysy = sip+1 — sk have some distributiod’s ()

We now face the issue of estimatirfgfrom a vantage point &1d Ns(t) = max(k : s, < t) is an age-measurable process.
outside the cache, which we catitive samplingThis problem Civen age-independence betwe@¥ip, Ns), the ASTA (Ar-
may be of interest to sources (e.g., CDN companies), whé¢&!s See Time Averages) property of the constructed syste
the goal is to measure what types of freshness their TTL aldg4] ensures that the fraction of sample points that return a
rithms produce at certain customer networks (e.g., Comcddched object tends &[T/ E[T + Q] asn — oo. Since
Verizon). Additionally, caches may be remotely monitored bth|3 _value directly equals, i.e., the first unknown parameter
campus networks administrators and researchers, who do of9- 8, the observer can measure the hit rate without any
have access to the logs, to characterize replication effigie 2dditional bandwidth or computational overhead.
and diagnose potential problems with bandwidth consumptio -€veraging [24], the observed TTL residudiBr(sx) };—,
staleness, and performance of deployed algorithms. converge in distribution taRr ~ Gr(r) asn — co. With

Due to the lacking cooperation from the cache, computatidfl {5k} and PoissonVg, reconstructingGr(z) should be
of f is likely intractable unlessV,, is Poisson, which we possible using arbitrary o!lstnbutlorES(a:)_, including lattice
assume in the rest of the paper. To calculate (8), we neecC@SeS (€.9., constask). Since TTL density
estimatep = P(Rr < Ry) and hit rateh, the former of which , 1— Fr(x)
requires the residual TTL distributiafir () and the residual gr(z) = Gr(x) = T E[T]

update distributiorGy; (). This is illustrated in Fig. 8, where _, . . _ .
E[T], A, and Fy(x) can be obtained with no extra overheaH1IS prpcedgre y|gld§FT(x) and E[T] - 1/g7(0) using
. nhumerical differentiation of7r(z). Recalling (6), knowledge
once the three main parameters are known. . . .
: : . . of h and E[T] produces\. Finally, assumingzy (x) is known,
Note that sampling must be performed without mtrusmg” remaining pieces fall into place. ie
into the ON/OFF process of the cache, which would skew gp - P T
Fhe r.esult. We therefor.e assume that t.he resolver.accepts p = P(Rr < Ry) :/ (1 - Gy (@) gr(z)dz (19)
iterative requests, to which it responds with an error, instead 0
of contacting the source, if the record is not currently @ach and thusf = 1 — h(1 — p). The only still-unknown parameter
For cached objects, the resolver returns their remaining, TTin Fig. 8 is Gy (z). We focus on its estimation next.

which equalsRr(t) at timet using our earlier notation.

Fig. 8. Model roadmap for active monitoring.

V. ACTIVE MEASUREMENT

(18)

D. Shark

B. Constant TTL Define s, to be the first sample point that hits theth
Previous measurement literature [2], [27], [31] is limitedN period seen by the probes and t be the preceding
to estimating\ and h under constanf”. However, even in download time. Then, the observer can lower-boudfidy
our setting with an extra distributiod;(z), the problem
becomes trivial under this condition. Assuffiés a fixed value
that is known to the observer from a-priori contacts with thehich is the end of thgk — 1)-st ON period or the pre-
source or other means. Checking the cache eVetiyne units ceding sample point, whichever happened later. Similar to

Wy = max(s)_, + Rr(sj,_;), max(s; : s; < s})), (20)
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passive sampling, supposk), is a binary process that is ‘ T o sampled] 3 T o sampled]
if a modification is detected during interva, ,,s,], i.e., o IZ% IZ%
the record is different at downloas,. We further define . | N .

v (k) = max(i < k : A, = 1) to be last sample (no later 8% | R N gy T s, T
than k) that detected an update. Note that variahigs and 0N o

~(k) from passive measurement are unavailable in the active SR IAN | 1 1 1
case, which is why they are replaced with those that can be oo morS el g 400 0,5 oo mor St Dg 40

computed by the observer, i.€\; andy/(k).

7 . . . . M b - EMe = 1075
Our main idea is to allow the estimator to utilize residuals @ M (b) non-concave EMe )
Rr(s),) togetherwith the already-recovere@r(x) to proba- Fig. 9. Passive estimation @y (x) (n = 10K samples).
bilistically determine the location of unknown downloadmte
d;.. Recalling thatAr(s)) is the age of the ON period af, it _ 10° %%&ij)of&?" e 3 T Tosred]
follows thatd; = sj, — Ar(s},). The remaining elements of this Foo@ o sos g acud 1 1 I__*éctua'
approach, which we call Sh&tKs to determine the conditional N 3538 (;Zo ° (;oafo% N e
distribution of Ar(s},) and change the EM algorithm to work g 107j% -2 @ﬂc«;————f’——;b%;;};%—c 8 1 1 1
. o & Qo N o i S AU S N S,
with random bounq@k, Rk]_. _ OO@OQ%g oo R %%f@ 10 | | :
There are two pieces of information known to the observer  |# «9 2o - 8 ; ; ;
that affect the distribution ofdr(s}). The first is residual 10— 40 Va0 0 w0 a0
update interval x+B update interval x+B

y = Rr(s),) returned by the cache and the second is uppel .
boundz = s}, — W}, from preceding samples. Conditioning on (8 non-concave EMe = 1077)

Ar < z and Ry =y, the tail distribution ofAr is Fig. 10. Passive estimation @ (z) in Chameleon = 10K samples).

(b) concave EM(e = 1075)

Fa(z;y,2) := P(Ar > x|Rr =y, Ar < 2)
_ Frly+2) - Fr(z+y) (21) VI. EXPERIMENTS
FT(y+Z)_FT(y) ’ A. Setup

where Fr(z) comes from (18). Unles§’ is memoryless To investigate the accuracy of the developed sampling

(i.e., exponential), parameter provides useful clues abouttechniques, we registered an Internet domain and developed

the possible values of age. For light-tailed distributi¢esy., a custom authoritative serve4, written in C++, that could

constant, uniform), the age is generally a decreasing ilumct answer iterative IPv4 queries from arbitrary Internet bost

of y. For heavy-tailed cases (e.g., Pareto), it is the opposit&ach DNS record (i.e., a hostname in our domain) that
Leveraging (9), Shark constrains the update age usiRgrticipated in the experiment was equipped with an update

randomupper/lower bounds processNy, which changed the returned IP at poifits }. For
passive monitoring, we created another C++ solution thaara
Ly =s), — Ar(s),) — S/V/(k) + AT(S/V/(I@)) (22) local DNS servelC, which accepted recursive/iterative queries
R = st — Ap(sh) — s'0on 1+ Ag(shr 1), 23y from IPs in our subnet and resolved them at the authoritative
bk 7(8k) = -1 7(8 (1) (23) server. Note thatd and £ were placed on different hosts.
where Az (s,) ~ Fa(x; Rr(s},), s, — Wy). Note thaty (k) = For active sampling, we needed a remote sefRethat

k implies thatL;, = 0, which leaves only two random variablesllowed recursive queries, returned non-fake answers, and

on the right side of (22)-(23). Otherwise, there are three 6pMplied with the source-provided TTL. To discover such

them, all with known parameters needed to construct (21).0ptions, we performed a port-53 UDP scan of the Internet in
For the computation, we discretize interval s}, — ;] March 2017 (oveR.8B probed IPs) and found 8M responding

and replace (21) with a PMF that assigns weights to a numBists. Out of these3.7M (47%) reported no error and.2M

of bins in that range. We then iterate over all possible way4!’) supplied correct answers from. We then selected a

to draw the three (or possibly two) age variables from thefubset of IPs from the last list, probed th.em for several days

respective distributions and compute the probabilify for 0 ensure longevity, tested fo_r TTL compliance, and scréene

each deterministic bound,,, r,]. These are fed into concavedgainst load-balancers that did not have a common cache. Out

EM, which we modify to take weights into account, i.e., us@f the surviving options, we picked one at random to7be
Finally, we added into the mix an observer process and a

n aji background-traffic generator whose purpose was to query
W;(t) = Z Vio(t) V- @4 orr depending on the scenario. The observer asked iterative
k=1 queries after random delayS;, while the generator sent
as a replacement for (17). packets from the query procesé,. With the exception of

network RTTs and various OS scheduling delays, the system
2Ram-ventilation sharks, which must continuously swim teidvoxygen funCt'(_)ned Cllose t.0 that in Fig. 2 and allowed controlled
depletion, are some of the most active animals in the world. experimentation with a known ground-truth.



TABLE | 1 : : 0.1
RUNTIME IN PASSIVEESTIMATION OF Gy (z) : : : : : :
[ - poeonoe 0.08f ------ N pooooeee- bomoonees
n Mg Naive EM _ Algorithm 1 Y SR S — oo Y e— L% Lo S
e=10-1 =101 8 T N
107 0.3 sec 9.4 sec 0.06 sec ) I B T =004 T A o
10° 58 sec 2.9 min 0.13 sec 0o — 0.02) g g+ hereseee Fageseen
10 2.2 hours 43 min 0.19 sec ; ; Ribeiins Rl ;
107 — 5.5 hours 0.70 sec % 5 10 15 20 % 10 15 20
108 _ _ 5.79 sec residual T residual T
109 - - 27.9sec (@) Gr () () gr(z)
Fig. 11. Distribution of TTL in active sampling(= 10K samples).
Unless mentioned otherwise, we kept the average delay TABLE Il
between update[U] = 20 seconds. The values df’ RELATIVE ESTIMATION ERROR OFSIMPLE PARAMETERS
dispatched from the authoritative server were uniform in — S—
: - : n ar ameleon
[1,19] seconds, which mimicked Akamai-style churn rates 7 BT >\ 7 BT >\

and TTLs. Background clients sent traffic to the cache using 10z [ 2.94% 16.8% 51.6% | 1.58% 4.18%  7.93%

a PoissonNg with rate A = 1 query/sec and the active  10° | 0.88% 5.81% 11.5% | 0.42% 1.58% 2.79%
observer utilized exponenti&l with mean4 seconds. When a 10" | 0.290% 2.40% 3.73% | 0.16% 041% 0.80%
variable X needed to be Pareto-distributed, we drew it from

F(z)=1-(14z/8)"%, wherexz > 0. We kepta = 3 and _ ) _

3 = 2F[X] throughout all experiments, whefg[X] was the CONverge quicker, althqugh ac_tlve mealsurem.ent still predu
desired mean of the variable. solid results. Another interesting fact is thatin the fourth

column is highly sensitive to errors i, which comes from
B. Passive Sampling its shape\ = h/(1 — h)/E[T).

We start by examining recovery a@¥y (x) using our im-  We next evaluate estimation accuracy @f; (). Fig. 12
plementation of the local resolvet. As shown in Fig. 9(a) shows the output of Shark, where it recovers all four classes
for ParetoU, method M, from [25] correctly identifies the of distributions with excellent accuracy. A further confation
trend of the tail, but the produced estimate is rather noigyf these findings is given by Table Ill, where Shark comes
This approach is not well suited for such small samples sizeketty close to matching the performance of Chameleon, even
n. Applying the non-concave Chameleon from (12) yields #rough the latter operates with substantially more infation.
much better result in Fig. 9(b). Its main drawback, however, Overall, concave Chameleon emerges as hands-down the
is that conversion of the residual CDF infq;(x) is often best tool for sampling update dynamics and staleness in
impossible in practice. This is illustrated by the mishmassingle-blind scenarios (i.e., only the update process is hid-
of points in Fig. 10(a). Upgrading to the concave Chameleéien) and Shark does the same double-blind (i.e., both
from (15) leads to an amazingly better outcome in Fig. 10()pdate/download processes are invisible to the observer).

Table | compares the runtime ofgyithe naive implementa-
tion of EM that directly computes (10)-(12), and our version
of Chameleon in Algorithm 1. Observe that quadratic scaling We presented a general framework for modeling freshness
of Mg quickly makes it infeasible. In fact, in the last row ofin TTL-based caching systems, proposed two novel techeique
the table it requires an extrapolat@d years to finish. The for remotely measuring this metric in the current Internet,
naive EM scales much better, although it still does not off@nd improved the performance of existing update-sampling
an appealing framework abov@0K samples. On the other algorithms. Even under random TTL, our most advanced
hand, Chameleon in the last column delivers blazingly fagtethod can recover all unknown parameters of the system (i.e
results for all input size up taB. While collecting this many hit and request rate, update/TTL distributions, and freskj
observations in passive sampling is not likely in practieeall without requiring any change to the DNS infrastructure.
that Shark generates a huge number of deterministic bounds
(i, 7] from (22)-(23). If ageAr(s),) is discretized into50
bins, a workload withl 0K random bound$L, Ry] produces [1] B. Ahigren, C. Dannewitz, C. Imbrenda, D. Kutscher, , @dOhlman,
500M intervals for concave EM. Therefore, Algorithm 1 is by GSur\_/ey ofllnformatlon-Centnc_ Networking,JEEE Communications

agazine vol. 50, no. 7, pp. 26-36, Jul. 2012.

far the only feasible way to compute the Shark estimator. [2] H. Akcan, T. Suel, and H. Bronnimann, “Geographic Webays
Estimation by Monitoring DNS Caches,” iRroc. LocWeb Apr. 2008.

VII. CONCLUSION
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