
Retransmission Schemes for Streaming Internet
Multimedia: Evaluation Model and Performance Analysis

Dmitri Loguinov

Computer Science Department
City University of New York

New York, NY 10016
csdsl@cs.ccny.cuny.edu

Hayder Radha
Dept. of Electrical & Computer Engineering

Michigan State University
East Lansing, MI 48824
radha@egr.msu.edu

ABSTRACT
This paper presents a trace-driven simulation study of two classes
of retransmission timeout (RTO) estimators in the context of real-
time streaming over the Internet. We explore the viability of em-
ploying retransmission timeouts in NACK-based (i.e., rate-based)
streaming applications to support multiple retransmission attempts
per lost packet. The first part of our simulation is based on trace
data collected during a number of real-time streaming tests be-
tween dialup clients in all 50 states in the U.S. (including 653
major U.S. cities) and a backbone video server. The second part
of the study is based on streaming tests over DSL and ISDN ac-
cess links. First, we define a generic performance measure for
assessing the accuracy of hypothetical RTO estimators based on
the samples of the round-trip delay (RTT) recorded in the trace
data. Second, using this performance measure, we evaluate the
class of TCP-like estimators and find the optimal estimator given
our performance measure. Third, we introduce a new class of
estimators based on delay jitter and show that they significantly
outperform TCP-like estimators in NACK-based applications with
low-frequency RTT sampling. Finally, we show that high-
frequency sampling of the RTT completely changes the situation
and makes the class of TCP-like estimators as accurate as the
class of delay-jitter estimators.

1. INTRODUCTION
Many Internet transport protocols rely on retransmission to
recover lost packets. Reliable protocols (such as TCP) util-
ize a well-established sender-initiated retransmission
scheme that employs retransmission timeouts (RTO) and
duplicate acknowledgements (ACKs) to detect lost packets
[9]. RTO estimation in the context of retransmission refers
to the problem of predicting the next value of the round-trip
delay (RTT) based on the previous samples of the RTT.
RTO estimation is usually a more complicated problem
than simply predicting the most likely value of the next
RTT. For example, an RTO estimator that always underes-

timates the next RTT by 10% is significantly worse than
the one that always overestimates the next RTT by 10%.
Although both estimators are within 10% of the correct
value, the former estimator generates 100% duplicate pack-
ets, while the latter one avoids all duplicate packets with
only 10% unnecessary waiting.

Even though Jacobson’s RTO estimator [9] is readily ac-
cepted by many TCP-like protocols, the problem of esti-
mating the RTO in streaming protocols has not been ad-
dressed before. Current streaming protocols [22] deployed
in the Internet rely on NACK-based flow control and usu-
ally do not implement congestion control, and the question
of whether TCP’s RTO estimator is suitable for such proto-
cols remains an open issue. This paper sheds new light on
the problem of RTO estimation in NACK-based protocols
and shows the performance of several classes of RTO esti-
mators in realistic Internet streaming scenarios.

Traditionally, NACK-based protocols sample the RTT only
at times of packet loss (see below for details of how this is
done). Even though there is nothing that inherently stops
NACK-based protocols from sampling the RTT at a higher
rate, our study for the most part follows the assumptions of
the existing NACK-based applications [22] (i.e., the re-
ceiver sends messages to the server only upon packet loss
and the RTT is measured only for the retransmitted pack-
ets).

As a result of our investigation, we found that TCP’s RTO
was an inadequate predictor of future values of the RTT
when used in a NACK-based protocol over paths with low-
frequency RTT sampling (i.e., low packet loss). We further
found that along such paths, the accuracy of estimation
could be substantially improved if the client used delay
jitter in its computation of the RTO. On the other hand,
when the RTT sampling rate was increased, TCP’s RTO
performed very well and the benefits of delay jitter were
much less significant. Since an application typically does
not know its future packet loss rates, we find that NACK-
based protocols, augmented with high-frequency (i.e., in
the order of once per RTT) sampling of the round-trip de-
lay, will perform very well regardless of the end-to-end
characteristics of a particular path (for example, high-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ACM Computer Communication Review, vol. 32, no. 2, April 2002.
Copyright 2002 ACM 0146-4833…$5.00

1

mailto:csdsl@cs.ccny.cuny.edu
mailto:radha@egr.msu.edu

frequency RTT sampling in real-time streaming can be
implemented by using congestion control messages and
once-per-RTT receiver-based feedback [13]).

In addition, this paper presents a generalized (i.e., suitable
for many real-time applications) NACK-based, real-time
retransmission model for multimedia streaming over the
Internet and assess the effectiveness of various RTO esti-
mators in the context of Internet streaming and our re-
transmission model. While the primary goal of our study is
to develop a better retransmission mechanism for real-time
applications, our retransmission model and new perform-
ance measure introduced in this paper are generic enough
to apply to TCP as well.

Our characterization of RTO estimators is based on a rea-
sonably large number of real-time streaming tests con-
ducted between dialup clients from all 50 states in the U.S.
and a backbone server during a seven-month period. We
believe that this setup accurately reflects the current situa-
tion with real-time streaming in the Internet since the ma-
jority (i.e., 87-89%) of households in the U.S. still connect
to the Internet through dialup modems [5], [8].

A good RTO estimator is the basis of any retransmission
scheme. An application utilizing an RTO estimator that
consistently underestimates the round-trip delay generates
a large number of duplicate packets. The effect of duplicate
packets ranges from being simply wasteful to actually caus-
ing serious network congestion. Note that in NACK-based
applications, the receiver (i.e., the client) is responsible for
estimating the RTO and the server is no longer in charge of
deciding when to initiate a particular retransmission. This is
illustrated in Figure 1 (left), in which the client sends three
NACKs in response to a single lost packet and produces
two duplicate packets due to insufficient RTO.

On the other hand, overestimation of the RTT defers the
generation of subsequent retransmission requests and leads
to lower throughput performance in TCP and causes an
increased number of underflow events (which are generated
by packets arriving after their decoding deadlines) in real-
time applications. In either case, the amount of overestima-
tion can be measured by the duration of unnecessary wait-
ing for timeouts (i.e., waiting longer than the RTT of the
lost retransmission). This is illustrated in Figure 1 (right).
In the figure, the first retransmission is lost as well, and the

generation of the second NACK is significantly delayed
because the RTO is higher than the network RTT.

Server

Client

NACK

lost

RTO

NACK

RTO

NACK

RTT

Server

Client

NACK

lost

RTT

RTO

NACK

lost

Therefore, the performance (i.e., accuracy) of an RTO es-
timator is fully described by two parameters (quantified
later in this paper) – the number of duplicate packets and
the amount of unnecessary timeout waiting. These two pa-
rameters cannot be minimized at the same time, since they
represent a basic trade-off of any RTO estimator (i.e., de-
creasing one parameter will increase the other). To study
the performance of RTO estimators, we define a weighted
sum of these two parameters and study a multidimensional
optimization problem in order to find the tuning parameters
that make an RTO estimator optimal within its class. The
minimization problem is not straightforward because the
function to be minimized is non-continuous, has unknown
(and often non-existent) derivatives, and contains a large
number of local minima.

Figure 1. Underestimation results in duplicate packets (left)
and overestimation results in unnecessary waiting (right).

The paper is organized as follows. Section 2 provides the
background on the problem of estimating retransmission
timeouts and discusses some of the related work. Section 3
describes the methodology of our experiment. Section 4
introduces a novel performance measure that is used to
judge the accuracy of hypothetical RTO estimators
throughout this paper. Section 5 studies the class of TCP-
like RTO estimators and models their performance. Section
6 discusses a new class of jitter-based RTO estimators and
shows their superior performance in our modem datasets.
Section 7 studies the performance of RTO estimators along
high-speed Internet paths with high-frequency RTT sam-
pling and shows that these paths require a different estima-
tor. Section 8 concludes the paper.

2. BACKGROUND AND RELATED WORK
Recall that TCP’s RTO estimation consists of three algo-
rithms. The first algorithm, smoothed RTT estimator
(SRTT), is an exponentially-weighted moving average
(EWMA) of the past RTT samples [1], [9], [19]:

 , (1)

≥⋅+⋅−
=

=
− 1,)1(

0,

1

0

iRTTSRTT
iRTT

SRTT
ii

i αα

where RTTi is the i-th sample of the round-trip delay pro-
duced at time ti and α (set by default to 1/8) is a smoothing
factor that can be varied to give more or less weight to the
history of RTT samples. In the original RFC 793 [20], the
RTO was obtained by multiplying the latest value of the
SRTT by a fixed factor between 1.3 and 2.0. In the late
1980s, Jacobson [9] found that the RFC 793 RTO estimator
produced an excessive amount of duplicate packets when
employed over the Internet and proposed that the second
algorithm, smoothed RTT variance estimator (SVAR), be
added to TCP’s retransmission scheme [1], [9], [19]:

2

 , (2)

≥⋅+⋅−
=

=
− 1,)1(

0,2/

1

0

iVARSVAR
iRTT

SVAR
ii

i ββ

National
dial-up ISP

UUNET
(MCI)

Internet

server

T1 link

client

Philips
Research,

USA

modem
link

where β (set by default to ¼) is an EWMA smoothing fac-
tor and VARi is the absolute deviation of the i-th RTT sam-
ple from the previous smoothed average: VARi = |SRTTi–1 –
 RTTi|. Current implementations of TCP compute the RTO
by multiplying the smoothed variance by four and adding it
to the smoothed round-trip delay [1], [19]:

Figure 2. The setup of the modem experiment.
 RTO(t) = n⋅SRTTi + k⋅SVARi, (3) Among other reliable protocols with non-Jacobson RTO

estimation, Keshav et al. [11] employed sender-based re-
transmission timeouts equal to twice the SRTT (i.e., the
RFC 793 estimator), and Gupta et al. [7] used a NACK-
based retransmission scheme, in which receiver timeouts
and detection of lost packets were based on inter-packet
arrival delay jitter.

where t is the time at which the RTO is computed, n = 1,
k = 4, and i = max i: ti ≤ t.

The third algorithm involved in retransmission, exponential
timer backoff, refers to Jacobson’s algorithm [9] that expo-
nentially increases the timeout value each time the same
packet is retransmitted by the sender. Exponential timer
backoff does not increase the accuracy of an RTO estima-
tor, but rather conceals the negative effects of
underestimating the actual RTT.1 Since this paper focuses
on tuning the accuracy of RTO estimators, we consider the
timer backoff algorithm to be an orthogonal issue, to which
we will not pay much attention. Furthermore, real-time
applications have the ability to utilize a different technique
that conceals RTT underestimation, which involves setting
a deterministic limit on the number of retransmission at-
tempts for each lost packet based on real-time decoding
deadlines.

The situation with RTO estimation in real-time streaming
applications is somewhat different – the majority of real-
time protocols either use TCP’s RTO or rely on novel RTO
estimation methods whose performance in the real Internet
is unknown. Papadopoulos et al. [16] proposed a real-time
retransmission scheme in which the receiver used the value
of the SRTT in (1) to decide which packets were eligible
for the first retransmission and employed special packet
headers to support subsequent retransmissions. The benefit
of avoiding timeouts was offset by the inability of the pro-
posed scheme to overcome NACK loss. Rhee [23] em-
ployed a retransmission scheme in which the sender used
three frame durations (instead of an estimate of the RTT)
to decide on subsequent retransmissions of the same
packet. A similar sender-based retransmission scheme was
proposed by Gong et al. [6], with the exception that the
sender used an undisclosed estimate of the RTT to decide
when the same packet was eligible for a repeated
retransmission.

Rigorous tuning of TCP’s retransmission mechanism has
not been attempted in the past (possibly with the exception
of [1]), and the study of TCP’s RTO over diverse Internet
paths is limited to [17], [18], in which Paxson found that
40% of retransmissions in the studied TCP implementa-
tions were redundant.2

Recently, Allman and Paxson [1] conducted a trace-driven
simulation study based on TCP traffic to investigate the
performance of hypothetical TCP-like RTO estimators (3)
for several values of α, β, and k (n was kept at 1). The au-
thors compared the performance of eight estimators by
varying (α,β) and keeping k fixed at 4 and examined eight
additional estimators by running k through eight integer
values and keeping (α,β) fixed at their default values. The
paper further concluded that no TCP-like RTO estimator
could perform significantly better in the future versions of
TCP than Jacobson’s de-facto standard [9] and that even
varying parameter n in (3) would not make the estimator
substantially better.

3. METHODOLOGY

3.1. Experiment
Our evaluation study of RTO estimators is based on ex-
perimental data collected in a large-scale real-time stream-
ing experiment over the Internet during November 1999 –
May 2000. Aiming to create a setup the reflects the current
use of real-time streaming in the Internet by the majority of
home users [22], we implemented an MPEG-4 real-time
streaming client-server architecture with NACK-based re-
transmission and used it to sample the RTT process along
diverse paths in the dialup Internet.

To achieve an extensive coverage of dialup points in the
U.S., we selected three major national dialup ISPs (which
we call ISPa, ISPb, and ISPc), each with at least five hun-
dred V.90 (i.e., 56 kb/s) dialup numbers in the U.S. and
several million active subscribers. We further designed an

1 Another method of reducing the number of duplicate packets in TCP is
to use a minimum of 1 second in (3), as suggested in a recent IETF docu-
ment [19].
2 Note that not all redundant retransmissions were due to an insufficient
RTO.

3

The second method of measuring the RTT was used by the
client to obtain additional samples of the round-trip delay
in cases when network packet loss was too low. The
method involved periodically sending simulated retrans-
mission requests to the server if packet loss was below a
certain threshold. In response to these simulated NACKs,
the server included the usual overhead3 of fetching the
needed packets from the storage and sending them to the
client. Note that even though we call these retransmissions
“simulated,” the round-trip delays they generated were
100% real and the use of these RTTs in updating the RTO
estimator was fully justified. During the experiment, the
client activated simulated NACKs, spaced 30 seconds
apart, if packet loss was below 1%.

22

6
6

6 4

19

3

7
16

5

5 4

3

4

512

16

8
24

14

13

7

13
7 11 13

21

12

20

238
13

9

2229 22
25

24

8

3

5

4

25

27

14

24

Legend
(total 653)

20 to 29 (14)
14 to 20 (6)
9 to 14 (10)
6 to 9 (9)
1 to 6 (12)

Figure 3. The number of cities per state that participated in
the streaming experiment.

experiment in which hypothetical Internet users of all 50
states dialed a local access number to reach the Internet and
streamed video sequences from our backbone server. Al-
though the clients were physically located in our lab in the
state of New York, they dialed long-distance phone num-
bers (see Figure 2) and connected to the Internet through a
subset of the ISPs’ 1813 different V.90 access points lo-
cated in 1188 U.S. cities. A detailed description of the ex-
periment can be found in [12].

Note that all NACKs were sent using UDP, which made
them susceptible to packet loss as well. Further discussion
of the sampled RTTs, heavy-tailed distributions of the
RTT, and various “sanity checks” can be found in [12].

4. PERFORMANCE

4.1. Retransmission Model
In real-time streaming, RTO estimation is necessary when
the client supports multiple retransmission attempts per lost
packet. After studying our traces, we found that 95.7% of
all lost packets, which were recovered before their dead-
line, required a single retransmission attempt, 3.8% two
attempts, 0.4% three attempts, and 0.1% four attempts.
These results are important for two reasons.

We used two 10-minute QCIF (176x144) MPEG-4 se-
quences coded at video bitrates of 14 and 25 kb/s. The cor-
responding IP bitrates (i.e., including IP, UDP, and our
streaming headers) were 16.0 and 27.4 kb/s, respectively.

During the experiment, the clients performed over 34 thou-
sand long-distance phone calls and received 85 million
packets (27.1 GBytes of video data) from the server. The
majority of end-to-end paths between the server and the
clients contained between 10 and 13 hops (with 6 minimum
and 22 maximum). Moreover, server packets in our ex-
periment traversed 5,266 distinct Internet routers, passing
through 1003 dialup access points in 653 major U.S. cities
(see Figure 3) [12].

First, 4.3% of all lost packets in our experiment could not
be recovered with a single retransmission attempt. Even
though it does not seem like a large number, our experi-
ments with MPEG-4 indicate that there is no “acceptable”
number of underflow events that a user of a real-time video
application can feel completely comfortable with, and
therefore, we believe that each lost packet must be re-
covered with as much reasonable persistence as possible.

3.2. RTT Measurement
Furthermore, since the average packet loss during the ex-
periment was only 0.5% [12], the majority of retransmitted
packets were able to successfully arrive to the client. How-
ever, in environments with a much lower end-to-end delay
and/or higher packet loss4, the percentage of packets recov-
ered with a single retransmission attempt will be much
lower than 95.7%. Besides the obvious higher probability
of losing a retransmission or a NACK (due to higher packet
loss), the RTT in such environments is likely to be much
lower than the startup delay, which naturally allows more
retransmission attempts per lost packet before the packet’s
deadline. Therefore, the existence of paths with lower de-

In order to maintain an RTO estimator, the receiver in a
real-time session must periodically measure the round-trip
delay. In our experiment, the client obtained RTT meas-
urements by utilizing the following two methods. The first
method used packet loss to measure the round-trip delay –
each successfully recovered packet provided a sample of
the RTT (i.e., the RTT was the duration between sending a
NACK and receiving the corresponding retransmission). In
order to avoid the ambiguity of which retransmission of the
same packet actually returned to the client, the header of
each NACK request and each retransmitted packet con-
tained an extra field specifying the retransmission attempt
for that particular packet. Thus, the client was able to pair
retransmitted packets with the exact times when the corre-
sponding NACKs were sent to the server (i.e., Karn’s [10]
retransmission ambiguity problem was avoided).

3 Server logs showed that the overhead was below 10 ms for all retrans-
mitted packets.
4 For example, in certain DSL experiments with higher average packet
loss, only 70% of the lost packets were recovered using one retransmis-
sion attempt.

4

lays and higher packet loss provides a strong justification
for using more than one per-packet retransmission attempt
in future streaming applications.

t ime

NACK for
packet k
is sent

NACK for
packet k+1 is

sent

Packet k is
recovered

Packet k+1
is recovered

RTO RTO

t req(k) t req(k+1) t k t k+1

rt tk
rt t k+1

RTO = RTO(treq(k))

…

Second, our trace data show that if a lost packet in our ex-
periment was successfully recovered before its deadline,
the recovery was performed in no more than four attempts.
The latter observation is used in our retransmission model
(described later in this section) to limit the number of per-
packet retransmission attempts (which we call Rmax) to four.
Note that this limit applies only to the collected traces and
is not an inherent restriction of our model.

Ideally, an RTO estimator should be able to predict the
exact value of the next round-trip delay. However, in real-
ity, it is quite unlikely that any RTO estimator would be
able to do that. Hence, there will be times when the estima-
tor will predict smaller, as well as larger values than the
next RTT. To quantify the deviation of the RTO estimate
from the real value of the RTT, we utilize the following
methodology.

Figure 4. Operation of an RTO estimator given our trace
data.

Imagine that we sequentially number all successfully re-
covered packets in the trace (excluding simulated retrans-
missions) and let rttk be the value of the round-trip delay
produced by the k-th successfully recovered packet at time
tk (see Figure 4). Note that we distinguish rttk from RTTi,
where the latter notation includes RTT samples generated
by simulated retransmissions, and former one does not.

In Figure 4, the effective RTO for recovered packet k is
computed at the time of the retransmission request, i.e., at
time treq(k) = tk – rttk. Therefore, assuming that RTO(t) is
the value of the retransmission timeout at time t and assum-
ing that the client uses the latest value of the RTO for each
subsequent retransmission of a particular lost packet, it
makes sense to examine how well the value of the RTO at
the time of the request, RTO(treq(k)), predicts the real value
of the round-trip delay rttk. Hence, the accuracy of an RTO
estimator in predicting the RTT of lost packets based on
our trace data can be established by computing the timeout
waiting factor wk for each successfully recovered packet k
in the trace:

k

kk
k rtt

rtttRTO
w

)(−
= . (4)

Note that although our model does not use RTT samples
measured by simulated retransmissions in computing wk’s
(because they do not represent an actual loss), it uses them
in updating the RTO estimator.

Since the exact effect of overestimation and underestima-
tion of the RTT depends on whether the first retransmission
of a particular packet was lost or not (and in some cases on
whether subsequent retransmissions were lost or not), we
simplify the problem and study the performance of RTO
estimators assuming the worst case: values of wk less than 1

always indicate that the estimator would have tried (if not
limited by Rmax) to produce rttk / RTO(tk – rttk) = 1/wk
duplicate packets given our trace data (i.e., assuming that
all retransmissions arrived to the client), and values of wk
greater than 1 always indicate that the estimator would
have waited longer than necessary before detecting that a
subsequent retransmission was needed (i.e., assuming that
the first retransmission initiated at time treq(k) was lost). In
Figure 4, given our assumptions, the RTO estimator gener-
ates four (i.e., 1/wk) duplicate packets while recovering
packet k.

The negative effects of duplicate packets (i.e., wasted band-
width and aggravation of congestion) are understood fairly
well. On the other hand, the exact effect of unnecessary
timeout waiting in real-time applications depends on a
particular video stream (i.e., the decoding delay of each
frame), video coding scheme (i.e., the type of motion
compensation, scalability, and transform used), individual
lost packets (i.e., which frames they belong to), and the
video startup delay.

Nevertheless, we can make a generic observation that RTO
estimators with higher timeout overwaiting factors wk suf-
fer a lower probability of recovering a lost packet and con-
sequently incur more underflow events. To keep our results
universal and applicable to any video stream, we chose not
to convert wk’s into the probability of an underflow event
(or any other performance metric related to the video qual-
ity), and instead, study the tradeoff between a generic aver-
age timeout overwaiting factor w and the percentage of
duplicate packets d:

 ∑
≥+

=
1

1

kw
kw

N
w , (5)

 ∑
<

=

1
,1min1

kw
max

k
R

wN
d , (6)

5

where N+ is the number of times the RTO overestimated the
next RTT (i.e., the number of times wk was greater than or
equal to 1) and N is the total number of lost packets. Pa-
rameter w is always above 1 and represents the average
factor by which the RTO overestimates the RTT. Parameter
d is the percentage of duplicate packets (relative to the
number of lost packets) generated by the RTO estimator
assuming that all requested retransmissions successfully
arrived to the client.

D1

D2

D4

D3

d

w

m 1d + w = C1

m 2d + w = C3D5

m 1d + w = C2

D

In addition, we should note that the use of exponential
backoff 5 instead of Rmax provides similar, but numerically
different results. However, in order to properly study the
tradeoff between exponential backoff and Rmax, our model
must take into account retransmission attempts beyond the
first one and study the probability of an underflow event in
that context (i.e., the model must include a video coding
scheme, video sequence, particular lost packets, and an
actual startup delay). We consider such analysis to be be-
yond the scope of this paper.

Figure 5. Comparison between RTO performance vector
points (d,w).

Finally, we should point out that all RTO estimators under
consideration in this paper depend on a vector of tuning
parameters a = (a1, …, an). For example, the class of TCP-
like RTO estimators in (3) can be viewed as a function of
four tuning parameters α, β, k, and n. Therefore, the goal of
the minimization problem that we define in the next section
is to select such vector a that optimizes the performance of
a particular RTO estimator RTO(a; t). By the word per-
formance throughout this paper, we mean tuple (d,w) de-
fined in (5) and (6).

4.2. Optimality and Performance
As we mentioned before, the problem of estimating the
RTT is different from simply minimizing the deviation of
the predicted value RTO(a; tk – rttk) from the observed
value rttk. If that were the case, we would have to solve a
well-defined least-squares minimization problem (i.e., the
maximum likelihood estimator):

 . (7) ()∑ −−
k

kkkaa
rttrtttRTO

n

2

)...,,(
);(min

1

a

The main problem with the maximum likelihood estimator
(MLE) lies in the fact that the MLE cannot distinguish be-
tween over and underestimation of the RTT, which allows
the MLE to assign equal cost to estimators that produce a
substantially different number of duplicate packets.

Instead, we introduce two performance functions H(a) and
G(a) and use them to judge the accuracy of RTO estimators
in the following way. We consider tuning parameter aopt of
an RTO estimator to be “optimal” within tuning domain S

of the estimator (aopt∈S), if aopt minimizes the correspond-
ing performance function (i.e., either H or G) within do-
main S. Later in this section, we will show that given the
classes of RTO estimators studied in this paper and given
our experimental data, the two performance measures (i.e.,
functions) produce equivalent results. Note that “optimal-
ity” is meaningful only within a given class of estimators,
its tuning domain S, and the trace data used in the simula-
tion.

In the first formulation, our goal is to minimize an RTO
performance vector-function H(a) = (d(a),w(a)):

 ()(),(min)(min aaaH
aa

wd
SS ∈∈

)= . (8)

For the minimization problem in (8) to make sense, we
must also define vector comparison operators greater than
and less than. The following are a natural choice:

() ())()()()(),(),(212121212211 wwddwwddwdwd <∧≤∨≤∧<⇔< , (9)
() ())()()()(),(),(212121212211 wwddwwddwdwd >∧≥∨≥∧>⇔> , (10)

and otherwise we consider tuples (d1,w1) and (d2,w2) to be
equivalent. Figure 5 illustrates the above operators for a
given RTO estimator and provides a graphical mapping
between the performance of an RTO estimator and points
on a 2-D plane. The shaded convex area in Figure 5 is the
range of a hypothetical RTO estimator, where the range is
produced by varying tuning parameter a within the estima-
tor’s tuning domain S (i.e., the convex area consists of
points H(a), ∀a∈S). Given a particular point D = (d,w) in
the range, points to the left and down from D (e.g., D1)
clearly represent a better estimator; points to the right and
up from D (i.e., D3) represent a worse estimator; and points
in the other two quadrants may or may not be better (i.e.,
D2 and D4).

In order to help us understand which performance points in
Figure 5 are optimal, we define the optimal RTO curve to
be such points in the (d,w) space, produced by the RTO
estimator, that are less than or equal to any other point
produced by the RTO estimator, i.e., all points (dopt,wopt) =
H(aopt), aopt∈S, such that ∀a∈S: H(aopt) ≤ H(a). In Figure

5 In which case, (6) should read ∑
<

+=

1
2 11log1

kw kwN
d .

6

5, the optimal RTO curve is shown in bold along the left
bottom side of the shaded area. Hence, finding the set of
tuning parameters a that map to the optimal RTO curve is
equivalent to solving the minimization problem in (8).

0

5

10

15

20

25

0 5 10 15 20 25

duplicate packets d (percent)

ov
er

w
ai

tin
g

fa
ct

or
 w

RTO3 RTO2 RTO4-opt TCP 793

In the second formulation, we can state the problem of
finding a better RTO estimator as that of minimizing a
weighted sum of the percentage of duplicate packets d and
the average overwaiting factor w (similar methods are fre-
quently used in rate-distortion theory). The problem in the
new formulation is easier to solve since it involves the
minimization of a scalar function instead of a vector func-
tion. In addition, our reformulation allows us to decide on
the exact relationship between equivalent points (i.e., in
cases when neither (9) nor (10) holds) by assigning proper
weight to one of the parameters in the (d,w) tuple.

Figure 6. Performance of TCP-like estimators.

Hence, we define a weighted RTO performance function
G(a, M) as following:

 , (11) ∞<≤+⋅= MwdMMG 0),()(),(aaa

where M is a weight, which assigns desired importance to
duplicate packets d (large M) or overwaiting factor w
(small M). As we will see below, by running M through a
range of values and optimizing G(a, M) for each weight M,
we can build the optimal RTO curve; however, the actual
values of M used to build the curve are not important.

Note that using performance function G we can unambigu-
ously establish a relationship between equivalent points in
the (d,w) space, given a certain weight M (i.e., points a
with smaller G(a, M) are better). Specifically, for each
weight M and for any constant C > 0, there exists a per-
formance equivalence line Md + w = C, along which all
points (d,w) are equal given the performance function in
(11); points below the line are better (i.e., they belong to
lines with smaller C); and points above the line are worse.
In Figure 5, two parallel lines are drawn for M = m1 using
two different values of the constant (C2 < C1). Given
weight m1, point D2 is now equal (not just equivalent) to D,
point D1 is still better, point D3 is still worse, while point
D4 is now also worse.

In addition, not only is point D1 better than D given
performance function G(a, M) and weight m1, but D1 is also
the “optimal” point of the RTO estimator in Figure 5 for
weight m1, i.e., point D1 minimizes function (11) for weight
m1 within tuning domain S. In other words, to graphically
minimize function G(a, M) for any weight M, one needs to
slide the performance equivalence line Md + w as far left
and down as possible, while maintaining the contact with
the range of the RTO estimator.

Notice how point D1 found by minimizing function
G(a, M) lies on the optimal RTO curve earlier defined us-
ing the performance measure in (8). We can further gener-
alize this observation by saying that if the optimal RTO

curve is given by a convex continuous function similar to
the one in Figure 5, all points that optimize the weighted
performance function G(a, M) will lie on the optimal RTO
curve (and vice versa).

Consequently, using intuition, we can attempt to build the
entire optimal RTO curve out of points Dopt(M) = (dopt(M),
wopt(M)), where dopt(M) and wopt(M) are the result of mini-
mizing G(a, M) for a particular weight M. For example,
from Figure 5, we can conclude that optimal point Dopt(m1)
is given by D1 and optimal point Dopt(m2) is given by D5.
Hence, by varying M in Dopt(M) between zero (flat per-
formance equivalence line) and infinity (vertical perform-
ance equivalence line) we can produce (ideally) any point
along the optimal RTO curve.

Note that we view the above retransmission model and both
performance measures as an important contribution of this
work. These techniques can be used to study the perform-
ance of RTO estimators in other datasets and even in ACK-
based protocols (with properly taking into account expo-
nential timer backoff as shown in section 4.1). The rest of
the paper describes how our model and performance func-
tions can be applied to the traces of our wide-scale Internet
experiment [12] and discusses the important lessons
learned.

Now we are ready to plot the values of vector function
H(a) for different values of the tuning parameter
a = (a1, …, an) in different RTO estimators, as well as iden-
tify the optimal points and understand which values of pa-
rameter a give us the best performance. Throughout the rest
of the paper, in order to conserve space, we show the re-
sults derived from streaming traces through ISPa (129,656
RTT samples). Streaming data collected through the other
two ISPs produce similar results.

5. TCP-LIKE ESTIMATORS
5.1. Performance
We start our analysis of RTO estimators with a generalized
TCP-like RTO estimator given in (3). We call this estima-
tor RTO4, because its tuning parameter a consists of four

7

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7 8 9 10

duplicate packets d (percent)

ov
er

w
ai

tin
g

fa
ct

or
 w

RTO4- Exhaustive Search RTO4 - Simplex

1

10

100

0.1 1 10
duplicate packets d (percent)

ov
er

w
ai

tin
g

fa
ct

or
 w

Figure 8. Log-log plot of the optimal (Simplex) RTO4 curve.

variables: a = (α, β, k, n). Recall that aTCP = (0.125, 0.25,
4, 1) corresponds to Jacobson’s RTO [9] and a793 =
(0.125, 0, 0, 2) corresponds to the RFC 793 RTO [20].

In order to properly understand which parameters in (3)
contribute to the improvements in the performance of the
TCP-like estimator, we define two reduced RTO estimators
depending on which tuning parameters (α, β, k, n) are al-
lowed to vary. In the first reduced estimator, which we call
RTO2, we use only (α,β) to tune its performance, i.e., a =
(α, β, 4, 1). In the second reduced estimator, which we call
RTO3, we additionally allow k to vary, i.e., a = (α, β, k, 1).

Figure 6 shows the optimal RTO4 curve and the range of
values H(a) produced by both reduced estimators. The
ranges of RTO2 (900 points) and RTO3 (29,000 points)
were obtained by conducting a uniform exhaustive search
of the corresponding tuning domain S, and the optimal
RTO4 curve was obtained by extracting the minimum val-
ues of H(a) after a similar exhaustive search through more
than 1 million points. In addition, Figure 6 shows the per-
formance of Jacobson’s RTO estimator, H(aTCP) =
(12.63%, 4.12), by a square and the performance of the
RFC 793 RTO estimator, H(a793) = (15.34%, 2.84), by a
diamond. Clearly, Jacobson’s and the RFC 793 RTO esti-
mators are equivalent, since neither one is located below
and to the left of the other.

The performance of RTO estimators in Figure 6 certainly
gets better with the increase in the number of free tuning
variables. For a given average overwaiting factor w = 4.12,
RTO2 and RTO3 both achieve optimality in the same point
and offer only a slight improvement in the number of dupli-
cate packets over TCP RTO – 11.15% compared to
12.63%. RTO4, however, offers a more substantial im-
provement, generating only d = 7.84% duplicate packets.

Furthermore, Figure 6 shows that the optimal RTO4 curve
(built by the exhaustive search) is convex and fairly con-
tinuous until approximately 20% duplicate packets. Conse-
quently, we can build another optimal RTO4 curve using
scalar weighted performance function G(a) and compare

the results with those in Figure 6. A scalar function such as
G(a) allows us to use various numerical multidimensional
minimization methods, which usually do not work with
vector functions. In addition, we find that numerical opti-
mization methods produce points along the optimal RTO
curve with more accuracy than the exhaustive search (given
a reasonable amount of time) and with fewer computations
of functions d(a) and w(a) (i.e., faster).

Figure 7. Points built by Downhill Simplex and the exhaustive
search in the optimal RTO4 curve.

To verify that weighted performance function G(a) does in
fact produce the same optimal RTO4 curve, we focused on
the following minimization problem for a range of values
of weight M:

 ()()(min),(min aaa
aa

wdMMG
SS

+⋅)=
∈∈

 (12)

The fact that function G(a, M) has unknown (and non-
existent) partial derivatives ∂G(a, M)/∂ak suggests that we
are limited to numerical optimization methods that do not
use derivatives. After applying the Downhill Simplex
Method in Multidimensions (due to Nelder and Mead [15])
and quadratically convergent Powell’s method [2], we
found that the former method performed significantly better
and arrived at (local) minima in fewer iterations. To im-
prove the found minima, we discovered that restarting the
Simplex method in random locations in the N-dimensional
space ten times per weight M produced very good results.

Figure 7 shows the points built by the Downhill Simplex
method for the RTO4 estimator (each point corresponds to a
different weight M) and the corresponding optimal RTO4
curve previously derived from the exhaustive search. As
the figure shows, points built by Downhill Simplex are no
worse (and often slightly better) than those found in the
exhaustive search.

Interestingly, the optimal curves in Figure 7 resemble
power functions in the form of:

 wopt = C(dopt)–p, p > 0. (13)

To investigate this observation further, Figure 8 replots the
points of the Downhill Simplex curve from Figure 7 on a

8

log-log scale with a straight line fitted to the points. A
straight line provides an excellent fit (with correlation 0.99)
and suggests that the optimal RTO curve could be modeled
as a power function (13) with C = 1.022 and p = 0.55.

Assuming that the relationship between w and d in the op-
timal RTO4 curve is a power function (13), we can now
analytically compute optimal points (dopt,wopt) that mini-
mize function G(a) for a given weight M. Rewriting (11)
using the function from (13), taking the first derivative, and
equating it to zero we get:

 () 0)(1 =−=+
∂
∂

=
∂
∂ −−− p

opt
p

optopt
optopt

CpdMCdMd
dd

G a . (14)

Solving (14) for dopt and using (13) one more time, we can
express the optimal values of both the number of duplicate
packets dopt and the average overwaiting factor wopt as a
function of weight M:

1

1
+

=

p
opt M

Cpd and
1

1
+

=

p
opt M

Cp
p

Mw . (15)

5.2. Tuning Parameters
In this section, we provide a reverse mapping from optimal
performance points H(a) in Figure 7 to points a in tuning
domain S (i.e., describe how to construct optimal RTO4
estimators). While analyzing RTO2, we noticed that for
each given β, larger values of α produced fewer duplicate
packets, as well as that for each fixed value of α, smaller
values of β similarly produced fewer duplicate packets. To
further study this phenomenon, we examined the correla-
tion between the RTO2 estimates and the corresponding
future round-trip delays rttk for different values of (α,β).
Interestingly, the highest correlation was reached in point
(1.0, 0.044), which suggests that an RTO estimator with
(α,β) fixed at (1,0) should provide estimates with a rea-
sonably high correlation with the future RTT, as well as

that it could be possible to achieve the values of the optimal
RTO4 curve by just varying parameters n and k in RTO4.

1

10

100

0.1 1 10
duplicate packets d (percent)

ov
er

w
ai

tin
g

fa
ct

or
 w

RTO4(1,0) RTO4(1,0,0) RTO4 simplex

To investigate this hypothesis, we constructed another re-
duced estimator called RTO4(1,0), which is produced by
RTO4 at input points (1, 0, k, n). The results of an exhaus-
tive search of the reduced tuning domain (k, n) for RTO4(1,0)
are plotted in Figure 9 (lightly shaded area). As the figure
shows, the optimal RTO4 curve (shown as squares in Figure
9) touches the range of RTO4(1,0), which means that the re-
duced estimator can achieve the points along the optimal
RTO4 curve while keeping α and β constant. This fact im-
plies that it is not necessary to maintain a smoothed RTT
average to achieve optimality within our datasets, because
α = 1.0 means that the SRTT always equals the latest RTT
sample.

Figure 9. RTO4-Simplex and two reduced RTO4 estimators on
a log-log scale.

The next logical step is to question the need for SVAR in
RTO4 since SVAR turns out to be a constant when β equals
zero. In the same Figure 9, we plotted an additional optimal
curve for estimator RTO4(1,0,0), which represents RTO4 at
input points (1, 0, 0, n). As the figure shows, all values of
the RTO4(1,0,0) estimator lie next to the optimal curve as
opposed to many sub-optimal points produced by RTO4(1,0).
At the end of this section, we discuss the explanation of
why smoothing of RTT samples does not increase the accu-
racy of RTO4, but first show how to construct an RTO4(1,0,0)
estimator with a given performance.

A straight line fitted to the RTO4(1,0,0) curve in Figure 9 pro-
duces a power function (13) with C = 1.07 and p = 0.546.
Further investigation discovered that there is a strong linear
dependency between the optimal value of nopt in RTO4(1,0,0)
and the optimal value of the average overwaiting factor
wopt:

 nopt = mwopt + b, (16)

where m = 0.86 and b = –0.13. Since we already know the
dependency between wopt and dopt in (13), we can derive the
relationship between nopt and dopt in RTO4(1,0,0):

 nopt = mC(dopt)–p + b. (17)

Consequently, (17) can be used to build optimal RTO4(1,0,0)
estimators given any desired value of duplicate packets dopt.
For example, if an application specifies that the maximum
number of duplicate packets it is willing to tolerate is dopt =
2%, using (13), the optimal overwaiting factor wopt is 9.12
(the corresponding weight M is 248) and using (17), the
optimal RTO estimator is given by RTO4(1,0,0) with nopt =
7.31.

5.3. Discussion
This is the point when we must address a major conceptual
difference between ACK and NACK-based retransmission
schemes, as well as point out several properties of our ex-

9

periment. The difference between ACK and NACK-based
protocols lies in the fact that NACK-based applications
obtain RTT samples only upon packet loss, while ACK-
based applications consistently obtain RTT samples on a
per-packet basis. Consequently, the distance between RTT
samples in a NACK-based application is often large and
fluctuates widely (i.e., between tens of milliseconds and
tens of seconds). Given a low average packet loss of 0.5%
during our Internet experiment, the average distance be-
tween consecutive RTT samples in our datasets was 15.7
seconds.

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10

duplicate packets d (percent)

ov
er

w
ai

tin
g

fa
ct

or
 w

RTO4-simplex RTOJ-simplex w = 4.12

Hence, we observed that NACK-based protocols in the
presence of low packet loss greatly undersample the RTT
process, and further smoothing of already rare RTT sam-
ples with EWMA formulas produces a very sluggish and
slow-responding moving average. Such moving average in
the form of (1) and (2) can rarely keep up with the actual
RTT and turns out to be a poor predictor of the future val-
ues of the round-trip delay. This observation represents the
first major conclusion of our study – NACK-based proto-
cols in our experiment combined with low-frequency RTT
sampling (i.e., low packet loss) required a different RTO
estimation method than the classical Jacobson’s RTO; spe-
cifically, smoothed averaging of RTT samples proved to be
hurtful, and the latest RTT sample turned out to be the best
predictor of the future RTTs.

Figure 10. Jitter-based RTO estimators compared with the
RTO4 estimator.

6. JITTER-BASED ESTIMATORS
6.1. Structure and Performance
The second class of RTO estimators, which we call RTOJ,
is derived from RTO4(1,0,0) by adding to it a smoothed vari-
ance of the inter-packet arrival delay (quantified later in
this section). As we will show below, RTOJ reduces the
number of duplicate packets in our trace data compared to
RTO4 by up to 60%.

The receiver in a real-time protocol usually has access to a
large number of delay jitter samples between the times
when it measures the RTT. It would only be logical to util-
ize tens or hundreds of delay jitter samples between re-
transmissions to fine-tune RTO estimation. This fine-tuning
is receiver-oriented and is not available to TCP senders
(which they do not need since TCP obtains a substantial
amount of RTT samples through its ACK-based operation).
In fact, TCP’s ability to derive an RTT sample from (al-
most) each ACK gave it an advantage that may now be
available to NACK-based protocols in the form of delay
jitter.

Before we describe our computation of delay jitter, we
must introduce the notion of a packet burst. In practice,
many real-time streaming servers are implemented to trans-
mit their data in bursts of packets [14], [21] instead of
sending one packet every so many milliseconds. Although
the latter is considered to be an ideal way of sending video

traffic by many researchers (e.g., [4]), in practice, there are
limitations that do not allow us to follow this ideal model
[12].

In our server, we implemented bursty streaming with the
burst duration Db (i.e., the distance between the first pack-
ets in successive bursts) varying between 340 and 500 ms
depending on the streaming bitrate (for comparison, Real-
Audio servers use Db = 1,800 ms [14]). Each packet in our
real-time application carried a burst identifier, which al-
lowed the receiver to distinguish between packets from
different bursts. After analyzing the traces, we found that
inter-burst delay jitter had more correlation with the future
RTT than inter-packet delay jitter (we speculate that one of
the reasons for this was that more cross traffic was able to
queue between the bursts than between individual packets).

To be more specific, suppose for each burst j, the last
packet of the burst arrived to the client at time tlast(j), and
the first packet of the burst arrived at time tfirst(j). Conse-
quently, the inter-burst delay for burst j is defined as:

 ∆j = tfirst(j) – tlast(k), j ≥ 1 (18)

where burst k is the last burst received before burst j (unless
there is packet loss, k = j – 1). For each burst, using
EWMA formulas similar to those in TCP, we compute
smoothed inter-burst delay S∆j and smoothed inter-burst
delay variance SVAR∆j:

 (19)

≥∆⋅+∆⋅−
=∆

=∆
− 2,)1(

1,

111

1

jS
j

S
jj

j αα

and

≥∆⋅+∆⋅−
=∆

=∆
− 2,)1(

1,2/

111

1

jVARSVAR
j

SVAR
jj

j ββ
, (20)

where α1 and β1 are exponential weights, and VAR∆j is the
absolute deviation of ∆j from its smoothed version S∆j–1. In
our experience, S∆j is usually proportional to burst duration

10

Db and thus, cannot be used the same way in real-time ap-
plications with different burst durations. On the other hand,
smoothed variance SVAR∆j is fairly independent of the
burst duration and reflects the variation in the amount of
cross traffic in router queues along the path from the server
to the client.

Given our definition of delay variation in (20), suppose that
ti is the time when our trace recorded the i-th RTT sample
(including simulated retransmissions), then the effective
jitter-based RTO at time t is:

 RTOJ (t) = n⋅RTTi + m⋅SVAR∆j, (21)

where i = max i: ti ≤ t and j = max j: tfirst(j) ≤ t.

Figure 10 compares the performance of the RTOJ estimator
with that of RTO4 (both optimal curves were built using the
Downhill Simplex method). Given a particular value of the
average overwaiting factor w, RTOJ offers a 45-60% im-
provement over RTO4 in terms of duplicate packets. Recall
that for an average overwaiting factor w = 4.12, Jacobson’s
RTO estimator produced 12.63% duplicate packets and
RTO4 achieved 7.84%. At the same time, RTOJ is now able
to improve this value to 3.25%.

6.2. Tuning Parameters
RTOJ contains four tuning variables a = (α1, β1, m, n), just
like the RTO4 estimator. This time, however, the perform-
ance of the estimator does not strongly depend on the first
two variables. Several values in the proximity of α1 = 0.5
give optimal performance. For β1, the optimal performance
is achieved at β1 = 0.125, which is helpful if SVAR∆j is to
be computed using only integer arithmetics. Just as in the
RTO4(1,0,0) estimator, (α1,β1) can be fixed at their optimal
values and the optimal RTOJ curve can be entirely built
using n and m.

To further reduce the number of free variables in jitter-
based estimators, we examined the relationship between

nopt and mopt in the optimal RTOJ curve shown in Figure 10.
Although the relationship is somewhat random, there is an
obvious linear trend, which fitted with a straight line (with
correlation ρ = 0.88) establishes that function

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10

duplicate packets d (percent)

ov
er

w
ai

tin
g

fa
ct

or
 w

RTOJ-427 RTOJ-simplex

Savvis
Communications

CUNY
backbone

Internet
server

client
1.04 mb/ s

SDSL

CCNY
backbone

T3

T3

Figure 12. The setup of the high-speed experiment.

Figure 11. Reduced jitter-based estimator compared with
the optimal RTOJ estimator.

 mopt = 4.2792⋅nopt – 2.6646 (22)

describes the optimal parameters n and m reasonably well.
Consequently, we created a reduced estimator, which we
call RTOJ427, by always keeping m as a function of n shown
in (22) and compared its performance (by running n
through a range of values) to that of RTOJ in Figure 11. As
the figure shows, the reduced estimator RTOJ427 reaches the
corresponding optimal RTOJ curve with high accuracy.

Similar power functions (13) and (17) apply to the optimal
RTOJ and RTOJ427 curves. Table 1 summarizes the values
of constants in both equations (13) and (17).

Table 1. Summary of constants in various power laws

Part I. Power function for optimal RTO curves: wopt = C(dopt)–p.
RTO estimator C p correlation
RTO4 1.02 0.5500 0.9994
RTO4(1,0,0) 1.07 0.5456 0.9991
RTOJ 0.50 0.6158 0.9997
RTOJ427 0.53 0.6098 0.9991
Part II. Power function for optimal parameter n: nopt = C1(dopt)–p + C2.

Reduced estimator C1 C2 p
RTO4(1,0,0) 0.88 –0.13 0.5456
RTOJ427 0.20 0.31 0.6098

Using the same example from section 5, for dopt = 2%, we
find that wopt is 5.75 in RTOJ427 (compared to 9.12 in
RTO4(1,0,0)). Given parameters in the second half of Table 1,
the value of nopt in RTOJ427 is 2.47 (compared to 7.31 in
RTO4(1,0,0)), and the value of mopt using (22) is 7.91. As we
can see, the superior performance of the RTOJ427 estimator
over RTO4 and RTO4(1,0,0) is achieved by placing lower
weight on RTT samples and deriving more information
about the network from the more frequent delay jitter sam-
ples.

Hence, we can summarize our second major conclusion as
following – during the experiment, a NACK-based RTO
estimator running over paths with low-frequency RTT sam-
pling (over 10 seconds between samples) could be signifi-

11

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7

duplicate packets d (percent)

ov
er

w
ai

tin
g

fa
ct

or
 w

RTO4-Simplex RTO4(1,0,0) RTO-J

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5 6 7

duplicate packets d (percent)

ov
er

w
ai

tin
g

fa
ct

or
 w

RTO4-Simplex RTO4(0.125,0,0)

Figure 13. Performance of RTO4, RTOJ and RTO4(1,0,0) in the
CUNY dataset.

Figure 14. Performance of RTO4 and RTO4(0.125,0,0) in the
CUNY dataset.

cantly improved by adding smoothed delay jitter to the
scaled value of the latest RTT.

7. HIGH-FREQUENCY SAMPLING
The final question left to resolve is whether the perform-
ance of RTO4 and RTOJ is different in environments with
high-frequency RTT sampling. In NACK-based protocols,
high-frequency RTT sampling comes either from high
packet loss rates or from frequent congestion control mes-
sages exchanged between the client and the server (in the
latter case, the frequency of sampling is approximately
equal to one sample per RTT [4]).

This section investigates the performance of RTO4 and
RTOJ in several environments with high-frequency RTT
sampling and verifies whether the conclusions reached in
previous sections hold for such Internet paths. We only
show the results based on trace data collected along a sin-
gle Internet path; however, the observations made in this
section were also verified along multiple other paths with
relatively high packet loss, as well as in a congestion-
controlled streaming application with once-per-RTT sam-
pling of the round-trip delay.

In this section, we apply trace-driven simulation to the
datasets collected between a symmetric DSL (SDSL) client
and a video server placed at the City College of New York
(CCNY) during December 2000. This setup is shown in
Figure 12. The CCNY backbone connected to the Internet
through the CUNY (City University of New York) back-
bone via a series of T3 links. The client’s dedicated SDSL
circuit operated at 1.04 mb/s in both directions. The end-to-
end path between the client and the server contained 15
routers from five Autonomous Systems (AS). During the
experiment, we used a video stream coded at the video bi-
trate of 80 kb/s (86 kb/s IP bitrate). The collected dataset
contains traces of 55 million packets, or 26 GBytes of data,
obtained during the period of three weeks.

One interesting property of this end-to-end path is that the
CUNY border router dropped a large fraction of packets
during this experiment, regardless of the time of day or the

sending rate of our flows. Thus, the average packet loss
rate recorded in this trace was substantially higher than in
the modem experiment (i.e., 7.4% vs. 0.5%), and the aver-
age delay between obtaining new RTT samples was only
740 ms, which is by a factor of 20 less than that in the
wide-scale modem experiment.

Figure 13 shows the performance of the three estimators
studied earlier in this paper in the CUNY dataset. All three
optimal curves were built using Downhill Simplex. As the
figure shows, both RTO4 and RTOJ achieve the same opti-
mal performance, which means that the addition of delay
jitter to already-frequent RTT samples is not as beneficial
as previously discovered. In addition, note that RTO4(1,0,0) is
no longer optimal within the dataset. Both results were ex-
pected, because the higher sampling frequency in the
CUNY dataset allows RTO4 to be a much better predictor
than it was possible in the modem datasets.

The final question that stands is what values of tuning vari-
able a make RTO4 optimal along paths with high-frequency
RTT sampling (i.e., the CUNY dataset)? Our analysis of
the data shows that variance estimator SVAR is still redun-
dant and that RTO4 can be reduced to a simpler estimator,
which this time assumes the following form: a = (α, 0, 0,
n). Downhill Simplex optimization of RTO4 shows that
values of α between 0.12 and 0.13 are equally optimal and
produce an estimator with performance equal to that of
RTO4. Note that Jacobson’s value of α = 0.125 falls within
this range and agrees with the results derived from the
CUNY dataset.

To verify that the reduced estimator RTO4(0.125, 0, 0) performs
as well as RTO4, we plotted both optimal RTO curves in
Figure 14, which shows that the reduced estimator is al-
most identical to RTO4.

Note that the above observations about the optimality of
RTO4(0.125, 0, 0) were also found to hold when the CUNY
server was replaced with a server located at Michigan State
University, 21 hops from the client (the experiment was
conducted in January 2001 and involved the transfer of

12

As our results show, the performance of TCP-like estima-
tors depends on the sampling frequency of the RTT. Con-
sequently, we conclude that there is enough evidence to
suggest that the paradigm in which NACK-based applica-
tions sample the RTT only at times of packet loss may not
be very useful. We find that higher-frequency sampling of
the RTT may be necessary for accurate RTO estimation
and could be additionally used for other purposes (such as
equation-based congestion control [4]). Our experiments
with NACK-based congestion control show that RTT sam-
pling rates of once-per-RTT can be achieved with very
little overhead (i.e., the measurement of the RTT can be
incorporated into the congestion control feedback loop). In
such scenarios, our study found that a scaled SRTT estima-
tor was optimal and even TCP’s RTO was sufficiently ac-
curate.

over 17 million packets). Furthermore, similar results were
obtained in various streaming tests over ISDN (over 77
million packets): in low packet-loss scenarios, RTOJ was
significantly better than RTO4, and RTO4(1,0,0) was optimal
within the class of TCP-like estimators; however, in high
packet loss scenarios, RTOJ did not offer much improve-
ment over RTO4.

We finish this section by reaching our third major conclu-
sion – in our experiments, along paths with high-frequency
RTT sampling, a simple smoothed round-trip delay estima-
tor SRTT with parameter α between 0.12 and 0.13 was the
optimal estimator, and neither delay jitter nor delay vari-
ance estimator SVAR provided any added benefits.

8. CONCLUSION
Current real-time streaming applications [22] rely on
NACK-based retransmission and often do not implement
congestion control. The nature of NACK-based retransmis-
sion and the lack of congestion control in these applications
suggest that the current RTO estimation methods imple-
mented in TCP may not be adequate for NACK-based
streaming protocols. Furthermore, even the existing RTO
estimation methods in TCP do not have a rigorous per-
formance evaluation model, and their performance over
diverse Internet paths remains unknown.

9. REFERENCES
[1] M. Allman and V. Paxson, “On estimating end-to-end net-

work parameters,” ACM SIGCOMM, August 1999.
[2] R.P. Brent, “Algorithms for Minimization without Deriva-

tives,” Englewood Cliffs, NJ, Prentice Hall, 1973.
[3] B. Dempsey, J. Liebeherr, and A. Weaver, “On retransmis-

sion-based error control for continuous media traffic in
packet-switching networks,” Computer Networks and ISDN
Systems, vol. 28, no. 5, March 1996.

[4] S. Floyd, M. Handley, and J. Padhye, “Equation-based con-
gestion control for unicast applications,” ACM SIGCOMM,
August 2000.

Our study introduced a novel performance measure (suit-
able for both NACK and ACK-based protocols), which
captures the accuracy of hypothetical RTO estimators
based on packet data traces of real Internet connections.
This performance measure shows the inherent tradeoff be-
tween the number of duplicate packets generated by an
estimator and the amount of unnecessary waiting for time-
outs given the data traces.

[5] S.P. Pizzo, “Why Is Broadband So Narrow?” Forbes ASAP,
September 2001, p. 50.

[6] F. Gong and G.M. Parulkar, “An application-oriented error
control scheme for high-speed networks,” IEEE/ACM Trans-
actions on Networking, vol. 4, no. 5, 1996.

[7] R. Gupta, M. Chen, S. McCanne, and J. Walrand, “WebTP: a
receiver-driven web transport protocol,” University of Cali-
fornia at Berkeley Technical Report, 1998. Based on our performance measure, we found that in the

dialup Internet (which is often accompanied by low packet
loss [12]), TCP-like estimators were not optimal in tradi-
tional NACK-based protocols due to the large distance be-
tween RTT samples. We further established that in the
dialup Internet, the latest RTT had the most relevance to
the future RTTs and that EWMA smoothing of either RTT
samples or RTT variance did not increase the accuracy of
estimation. This result suggests that large distances be-
tween RTT samples (in the order of 15 seconds) allow end-
to-end network conditions in the Internet to change signifi-
cantly, which leads us to conclude that sampling rates of
higher frequency may be required to adequately sample the
RTT in the current Internet.

[8] ISP Planet and Telecommunications Research International,
"U.S. Residential Internet Market Grows in Second Quarter,"
http://isp-planet.com/research/2001/us_q2.html, 2001.

[9] V. Jacobson, “Congestion avoidance and control,” ACM
SIGCOMM, 1988.

[10] P. Karn and C. Partridge, “Improving round-trip time esti-
mates in reliable protocols,” ACM SIGCOMM, 1987.

[11] S. Keshav and S.P. Morgan, ”SMART retransmission: per-
formance with overload and random loss,” IEEE INFOCOM,
March 1997.

[12] D. Loguinov and H. Radha, “End-to-End Internet Video
Traffic Dynamics: Statistics Study and Analysis,” IEEE IN-
FOCOM, July 2002.

[13] D. Loguinov and H. Radha, “Increase-Decrease Congestion
Control for Real-time Streaming: Scalability,” IEEE INFO-
COM, July 2002. Furthermore, we found that frequent delay jitter samples

were very useful in fine-tuning the RTO estimation be-
tween the measurements of the RTT. Delay-jitter estima-
tors were found to perform much better in the modem
traces; however, their benefits were virtually nullified when
the RTT was sampled at a higher frequency.

[14] A. Mena and J. Heidemann, “An empirical study of real au-
dio traffic,” IEEE INFOCOM, March 2000.

[15] J.A. Nelder and R. Mead, “A simplex method for function
minimization,” Computer Journal, vol. 7, 1965, pp. 308-313.

13

http://isp-planet.com/research/2001/us_q2.html

14

[16] C. Papadopoulos and G.M. Parulkar, “Retransmission-based
error control for continuous media applications,” IEEE
NOSSDAV, 1996.

[17] V. Paxson, “Measurements and analysis of end-to-end inter-
net dynamics,” Ph.D. dissertation, Computer Science De-
partment, University of California at Berkeley, 1997.

[18] V. Paxson, “End-to-End Internet Packet Dynamics,” ACM
SIGCOMM, September 1997.

[19] V. Paxson and M. Allman, “Computing TCP's retransmission
timer,” IETF RFC 2988, November 2000.

[20] J. Postel, “Transmission control protocol – DARPA Internet
program protocol specification,” IETF RFC 793, September
1981.

[21] H. Radha, Y. Chen, K. Parthasarathy, and R. Cohen, “Scal-
able internet video using MPEG-4,” Signal Processing: Im-
age Communication, 1999.

[22] Real Player, Real Networks. http://www.real.com.
[23] I. Rhee, “Error control techniques for interactive low bitrate

video transmission over the Internet,” ACM SIGCOMM, Au-
gust 1998.

	ABSTRACT
	INTRODUCTION
	BACKGROUND AND RELATED WORK
	METHODOLOGY
	Experiment
	RTT Measurement

	PERFORMANCE
	Retransmission Model
	Optimality and Performance

	TCP-LIKE ESTIMATORS
	Performance
	Tuning Parameters
	Discussion

	JITTER-BASED ESTIMATORS
	Structure and Performance
	Tuning Parameters

	HIGH-FREQUENCY SAMPLING
	CONCLUSION
	REFERENCES

