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Overview of the Talk

• Motivation

• Experimental setup and experiment overview

• Results
– Packet loss

– Underflow events

– Round-trip delay

– Delay jitter

– Packet reordering

– Asymmetric paths

• Conclusion
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MotivationMotivation
• Market research by Telecommunications 

Reports International (TRI) from August 2001
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Motivation (cont’d)Motivation (cont’d)
• Consider broadband (cable, DSL, and satellite) 

Internet access vs. narrowband (dialup and webTV)

• 88% of households use modems and 12% broadband
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Motivation (cont’d)Motivation (cont’d)
• Our study was conducted in late 1999 – early 

2000 when modems were more wide-spread than 
today

• Path properties of dialup ISPs and the view of the 
Internet from the angle of home users have not 
been documented

• Furthermore, large-scale performance of end-user 
video streaming in the current Internet has not 
been reported

• Main question – what is the main impediment to 
streaming? Is it delay, loss, or something else?
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Experimental SetupExperimental Setup
• MPEG-4 client-server real-time streaming architecture

• NACK-based retransmission and fixed streaming bitrate 
(i.e., no congestion control)

• Stream S1 at 14 kb/s (16.0 kb/s IP rate), Nov-Dec 1999

• Stream S2 at 25 kb/s (27.4 kb/s IP rate), Jan-May 2000
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OverviewOverview
• Three ISPs (Earthlink, AT&T WorldNet, IBM Global 

Net) – phone database included 1,813 dialup points in 
1,188 cities

• The experiment covered 1,003 points in 653 US cities

• Over 34,000 long-distance phone calls

• 85 million video packets, 27.1 GBytes of video data

• End-to-end paths with 5,266 Internet router interfaces

• 51% of routers from dialup ISPs and 45% from UUnet

• Sets D1p and D2p contain successful sessions with 
streams S1 and S2, respectively
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Overview (cont’d)
• Cities per state that participated in the experiment
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Overview (cont’d)Overview (cont’d)
• Streaming success rate during the day shown below

• Varied between 80% during the night (midnight – 6 
am) to 40% during the day (9 am – noon)
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Overview (cont’d)Overview (cont’d)
• Average end-to-end hop count 11.3 in D1p and 

11.9 in D2p

0%

5%

10%

15%

20%

25%

30%

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

end-to-end hops

pe
rc

en
t r

ou
te

s

Stream1 Stream2



11

Packet LossPacket Loss
• Average packet loss was 0.5% in both datasets

• 38% of sessions with no packet loss

• 75% with loss below 0.3%

• 91% with loss below 2%

• During the day, average packet loss varied between 
0.2% (3 am - 6 am) and 0.8% (9am - 6pm EDT)

• Average per-state packet loss varied between 0.2% 
(Idaho) to 1.4% (Oklahoma), but did not depend on 
the average RTT or the average number of end-to-
end hops in the state



12

Packet Loss (cont’d)Packet Loss (cont’d)
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Packet Loss (cont’d)Packet Loss (cont’d)
• 207,384 loss bursts and 431,501 lost packets

• Loss burst lengths PDF:
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Packet Loss (cont’d)Packet Loss (cont’d)
• Most bursts contained no more than 7 packets (however, 

the tail reached to over 100 packets)

• RED was disabled on the backbone; still 74% of loss bursts 
contained only 1 packet apparently dropped in FIFO queues

• Average burst length was 2.04 packets in D1p and 2.10 
packets in D2p

• Conditional probability of packet loss was 51% and 53%, 
respectively

• Over 90% of loss burst durations were under 1 second 
(maximum 36 seconds)

• The average distance between lost packets was 21 and 27 
seconds in D1p and D2p, respectively
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Packet Loss (cont’d)Packet Loss (cont’d)
• Apparently heavy-tailed distributions of loss burst lengths

• Pareto with α = 1.34; however, note that data was non-
stationary (time of day or access point non-stationarity)
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Underflow eventsUnderflow events
• Missing packets (frames) at their decoding deadlines cause 

buffer underflows at the receiver

• Startup delay used in the experiment was 2.7 seconds

• 63% (271,788) of all lost packets were discovered to be 
missing before their deadlines

• Out of these 63% of lost packets:
– 94% were recovered in time

– 3.3% were recovered late

– 2.1% were never recovered

• Retransmission appears quite effective in dealing with 
packet loss, even in the presence of large end-to-end delays
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Underflow events (cont’d)Underflow events (cont’d)
• 37% (159,713) of lost packets were discovered to be 

missing after their deadlines had passed

• This effect was caused by large one-way delay jitter

• Additionally, one-way delay jitter caused 1,167,979 data
packets to be late for decoding

• Overall, 1,342,415 packets were late (1.7% of all sent 
packets), out of which 98.9% were late due to large one-way 
delay jitter rather than due to packet loss combined with 
large RTT

• All late packets caused the “freeze-frame” effect for 10.5 
seconds on average in D1p and 8.5 seconds in D2p (recall 
that each session was 10 minutes long)
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Underflow events (cont’d)Underflow events (cont’d)
• 90% of late retransmissions missed the deadline by no more 

than 5 seconds, 99% by no more than 10 seconds

• 90% of late data packets missed the deadline by no more 
than 13 seconds, 99% by no more than 27 seconds
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RoundRound--trip Delaytrip Delay
• 660,439 RTT samples

• 75% of samples below 600 ms and 90% below 1 
second

• Average RTT was 698 ms in D1p and 839 ms in D2p

• Maximum RTT was over 120 seconds

• Data-link retransmission combined with low-bitrate 
connection were responsible for pathologically high 
RTTs

• However, we found access points with 6-7 second IP-
level buffering delays
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RoundRound--trip Delay (cont’d)trip Delay (cont’d)
• Distributions of the RTT in both datasets (PDF) were 

similar and contained a very long tail
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RoundRound--trip Delay (cont’d)trip Delay (cont’d)
• Distribution tails closely matched hyperbolic distributions 

(Pareto with α between 1.16 and 1.58)
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RoundRound--trip Delay (cont’d)trip Delay (cont’d)
• The average RTT varied during the day between 574 ms (3 

am – 6 am) and 847 ms (3 pm – 6 pm) in D1p

• Between 723 ms and 951 ms in D2p

• Relatively small increase in the RTT during the day (by only 
30-45%) compared to that in packet loss (by up to 300%)

• Per-state RTT varied between 539 ms (Maine) and 1,053 
ms (Alaska); Hawaii and New Mexico also had average 
RTTs above 1 second

• Little correlation between the RTT and geographical 
distance of the state from NY

• However, much stronger positive correlation between the 
number of hops and the average state RTT: ρ = 0.52 
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Packet ReorderingPacket Reordering
• Average reordering rates were low, but noticeable

• 6.5% of missing packets (or 0.04% of sent) were reordered

• Out of 16,852 sessions, 1,599 (9.5%) experienced at least 
one reordering event

• The highest reordering rate per ISP occurred in AT&T 
WorldNet, where 35% of missing packets (0.2% of sent 
packets) were reordered

• In the same set, almost half of the sessions (47%) 
experienced at least one reordering event

• Earthlink had a session where 7.5% of sent packets were 
reordered
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Packet Reordering (cont’d)Packet Reordering (cont’d)
• Reordering delay Dr is time between detecting a missing 

packet and receiving the reordered packet

• 90% of samples Dr below 150 ms, 97% below 300 ms, 99% 
below 500 ms, and the maximum sample was 20 seconds
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Packet Reordering (cont’d)Packet Reordering (cont’d)
• Reordering distance is the number of packets received 

during the reordering delay (84.6% of the time a single 
packet, 6.5% exactly 2 packets, 4.5% exactly 3 packets)

• TCP’s triple-ACK avoids 91.1% of redundant retransmits 
and quadruple-ACK avoids 95.7%
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Path AsymmetryPath Asymmetry
• Asymmetry detected by analyzing the TTL of the returned 

packets during the initial traceroute

• Each router reset the TTL to a default value (such as 255) 
when sending a “TTL expired” ICMP message

• If the number of forward and reverse hops was different, the 
path was “definitely asymmetric”

• Otherwise, the path was “possibly (or probably) symmetric”

• No fail-proof way of establishing path symmetry using end-
to-end measurements (even using two traceroutes in 
reverse directions)
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Path Asymmetry (cont’d)Path Asymmetry (cont’d)
• 72% of sessions operated over definitely asymmetric paths

• Almost all paths with 14 or more end-to-end hops were 
asymmetric

• Even the shortest paths (with as low as 6 hops) were prone 
to asymmetry

• “Hot potato” routing is more likely to cause asymmetry in 
longer paths, because they are more likely to cross AS 
borders than shorter paths

• Longer paths also exhibited a higher reordering probability 
than shorter paths
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ConclusionConclusion
• Dialing success rates were quite low during the day (as low 

as 40%)

• Retransmission worked very well even for delay-sensitive 
traffic and high-latency end-to-end paths

• Both RTT and packet-loss bursts appeared to be heavy-
tailed 

• Our clients experienced huge end-to-end delays both due to 
large IP buffers as well as persistent data-link 
retransmission

• Reordering was fairly frequent even given our low bitrates

• Most paths were in fact asymmetric, where longer paths 
were more likely to be identified as asymmetric
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