
Increase-Decrease Congestion Control for Real-time Streaming: Scalability

Dmitri Loguinov
Computer Science Department
City University of New York

New York, NY 10016
csdsl@cs.ccny.cuny.edu

Hayder Radha
Dept. of Electrical & Computer Engineering

Michigan State University
East Lansing, MI 48824

radha@egr.msu.edu

Abstract – Typically, NACK-based congestion control is dismissed
as being not viable due to the common notion that “open-loop”
congestion control is simply “difficult.” Emerging real-time
streaming applications, however, often rely on rate-based flow
control and would benefit greatly from scalable NACK-based
congestion control. This paper sheds new light on the perform-
ance of NACK-based congestion control and measures the
amount of “difficulty” inherently present in such protocols. We
specifically focus on increase-decrease (I-D) congestion control
methods for real-time, rate-based streaming. First, we introduce
and study several new performance measures that can be used to
analyze the class of general I-D congestion control methods. These
measures include monotonicity of convergence to fairness and
packet-loss scalability (explained later in the paper). Second, un-
der the assumptions that the only feedback from the network is
packet loss, we show that AIMD is the only TCP-friendly method
with monotonic convergence to fairness. Furthermore, we find
that AIMD possesses the best packet-loss scalability among all
TCP-friendly binomial schemes [2] and show how poorly all of the
existing methods scale as the number of flows is increased. Third,
we show that if the flows can obtain the knowledge of an addi-
tional network parameter (i.e., the bottleneck bandwidth), the
scalability of AIMD can be substantially improved. We conclude
the paper by studying the performance of a new scheme, called
Ideally-Scalable Congestion Control (ISCC), both in simulation
and a NACK-based MPEG-4 streaming application over a Cisco
testbed.

I. INTRODUCTION
Congestion is an inherent property of the currently best-

effort Internet. Consequently, transport protocols (such as
TCP) commonly implement congestion control, which refers
to end-to-end algorithms executed by a protocol in order to
properly adapt the sending rate of a network flow to the avail-
able bandwidth in the path along which the flow sends its
packets. Protocols with ACK-based flow control utilize one or
another version of TCP-friendly congestion control, which
includes Jacobson’s modifications to TCP [1], [9], TCP-like
congestion control (e.g., [19]), increase-decrease algorithms
(e.g., [2], [3], [5], [8], [10], [12], [14], [21]), and equation-
based methods (e.g., [7], [15]). These algorithms are shown to
work well in the environment where the sender relies on “self-
clocking,” which refers to the use of positive acknowledge-
ments in congestion control.

However, current real-time streaming applications in the
Internet [18] typically rely on NACK-based (i.e., rate-based)
flow control1, for which congestion control either does not
exist, or assumes a very rudimentary form [18]. Furthermore,
congestion control in NACK-based applications is typically
labeled as being “difficult” due to the “open-loop” operation of

its flow control, and the actual extent of “difficulty” remains
neither documented nor measured.

1 Note that ACK-based flow control could be used in real-time streaming, but
it typically results in some form of QoS penalty (such as longer startup delays,
more frequent buffer underflow events, etc.).

At the same time, before emerging real-time streaming ap-
plications can gain wide-spread acceptance, we believe that
they first must implement some form of scalable congestion
control. Therefore, in this paper, we undertake an analysis and
performance study that sheds the light on both the exact diffi-
culties found in “open-loop” congestion control and the extent
of penalty incurred by a NACK-based protocol in an Internet-
like environment. In the course of our investigation, we found
that traditional NACK-based congestion control possessed
poor scalability (i.e., their use resulted in high packet loss
when the number of simultaneous flows was large) and that the
stability of existing NACK-based schemes was much lower
than that of similar ACK-based schemes. Note that this paper
does not study a fundamental question of whether NACK-
based congestion control can achieve the same level of stability
as its ACK-based counterparts, but rather investigates previ-
ously-undocumented drawbacks of NACK-based congestion
control and attempts to improve the performance of the exist-
ing schemes in rate-based applications.

Studying new congestion control methods in this paper, we
sometimes drift away from TCP-friendly schemes. Hence, we
must mention a few words about why find such practice ac-
ceptable. We argue that in the future Internet, it is quite possi-
ble that UDP traffic will not compete with TCP in the same
router queues (e.g., DiffServ may be used to separate these
types of traffic at the router level). This intuition is driven by
the fact that real-time flows have substantially different delay
requirements from those of TCP, and it may not be practical to
mix the two types of traffic in the same queues. Furthermore,
NACK-based applications are unlikely to be fully TCP-
friendly, because they often do not follow TCP’s fast retrans-
mit and timeout backoff algorithms and do not rely on the
“packet-conservation” principle [9] in their flow control.

The remainder of the paper is organized as follows. Section
II provides the necessary background on increase-decrease (I-
D) congestion control. In section III, we define the notion of
monotonic convergence to fairness of general I-D congestion
control and derive certain desired properties of control func-
tions that guarantee such monotonic convergence. We next
focus on binomial algorithms [2] in section IV and, under sim-
ple assumptions, derive their average link utilization and
packet loss rate in the stable state. In section V, we study
packet-loss scalability of binomial congestion control and
show that AIMD possesses the best scalability among all TCP-
friendly schemes. In addition, we show that to achieve optimal
scalability (i.e., constant packet loss), a congestion control
scheme must have the knowledge of the bottleneck bandwidth.

1 0-7803-7476-2/02/$17.00 © 2002 IEEE. INFOCOM 2002

mailto:csdsl@cs.ccny.cuny.edu
mailto:radha@egr.msu.edu

In section VI, we investigate the feasibility of using real-time
bottleneck bandwidth estimates as a supplement to binomial
congestion control and study whether the new schemes can
achieve better scalability than AIMD in a real network. We
conclude the paper in section VII.

II. BACKGROUND
Within the class of end-to-end congestion control protocols,

we specifically focus on the class of increase-decrease (I-D)
methods. I-D congestion control implements a simple reactive
control system, which responds to congestion by decreasing
the sending rate and responds to the absence of congestion by
increasing the sending rate. Hence, at any stage, the decision of
I-D congestion control is binary.

Furthermore, the increase and decrease functions are local
[2], [5], which means that they only use the local state of a
flow in computing the next value of the sending rate. In addi-
tion, I-D congestion control usually assumes a memoryless
model [2], [5], in which the amount of increase and decrease is
based only on the value of the current sending rate rather than
on the history of the sending rate (e.g., several flavors of
“AIMD with history” are examined in [11], [12]). In this paper,
we explicitly assume a local and memoryless model of I-D
congestion control.

To prevent high-frequency oscillations on timescales smaller
than it is needed to receive the feedback from the network, I-D
congestion control is executed on discrete timescales of R time
units long. Typically, R is a multiple of the round-trip delay
(RTT) and in many cases, simply equals the RTT.

Many papers study congestion control in the context of win-
dow-based flow control [2], [8], [12], [21] and apply I-D for-
mulas to the size of congestion window cwnd. In such notation,
assuming that the size of congestion window cwnd during in-
terval i for a particular flow is given by wi, I-D congestion con-
trol can be summarized as:

 . (1)




>−
=+

=+ 0),(
0),(

1 fwWw
fwWw

w
iDi

iIi
i

where f is the congestion feedback (positive values indicate
congestion), and WI and WD are the increase and decrease func-
tions of window-based I-D congestion control, respectively. In
practice, feedback f is usually equal to the packet loss rate ob-
served by the flow during the last interval (i.e., interval i).

Since our work focuses on rate-based streaming applica-
tions (in which cwnd has little meaning), we must write an
equivalent formulation of increase-decrease congestion control
using the value of each flow’s sending rate ri instead of con-
gestion window wi. The conversion from the packet-based no-
tation to the rate-based notation is straightforward, i.e., each
unit of wi is equivalent to a rate of MTU/RTT bits/s, where the
MTU (Maximum Transmission Unit) is given in bits and the
RTT is given in seconds. In other words, ri = MTU/RTTwi.

 Therefore, assuming that ri is the sending rate of a particular
flow during discrete interval i, the I-D congestion control (1)
for that flow can be re-written as:

 , (2)




>−
=+

=+ 0),(
0),(

1 frRr
frRr

r
iDi

iIi
i

where RI and RD are the increase and decrease functions of
rate-based I-D congestion control, respectively.

One special case of I-D congestion control is given by bi-
nomial algorithms, where the increase and decrease functions
are simple power functions [2]:

 or , (3)






=

= −

l
D

k
I

wwW

wwW

β

α

)(

)(







=

= −

l
D

k
I

rrR

rrR

σ

λ

)(

)(

where all constants α, β, λ, σ are positive. For binomial al-
gorithms, the difference between the two notations lies only in
the constants in front of the corresponding power functions.
Hence, the conversion from the window-based to the rate-
based notation is supplied by the following formulas:

1+







=

k

RTT
MTUαλ and

l

RTT
MTU −







=

1

βσ . (4)

Throughout the rest of the paper, we will use both versions
of binomial algorithms in (3), sometimes referring to constants
(λ,σ) instead of constants (α,β), while keeping in mind the
conversion in (4).

A special case of binomial congestion control that is imple-
mented in TCP is called AIMD (Additive Increase, Multiplica-
tive Decrease) [5], [9]. In AIMD, k equals 0, i.e., WI(w) = α
(α > 0), and l equals 1, i.e., WD(w) = βw (0 < β < 1).
AIMD(α,β) is TCP long-term fair 2, if it achieves the same
average throughput when competing with a TCP connection
under the same end-to-end conditions. The necessary condition
for such long-term fairness is [8], [12], [21] 3 α = 3β/(2–β). On
the other hand, for binomial congestion control (3) to be TCP-
friendly, Bansal et al. [2] show that k + l must be equal to 1.
Among such (non-AIMD) TCP-friendly binomial congestion
control, they propose two methods called IIAD (Inverse In-
crease, Additive Decrease) with k = 1, l = 0, and SQRT
(Square Root) with k = l = ½.

Finally, we should mention that the analysis of increase-
decrease congestion control typically assumes an ideal network
with synchronized and immediate feedback [2], [5], [10], [11],
[12]. Synchronized feedback means that all flows sharing a
congested link receive notifications about packet loss at the
same time. Immediate feedback means that if the capacity of
any link along an end-to-end path is exceeded during interval i,
feedback f is positive for interval i. Under these ideal condi-
tions, Chiu and Jain [5] show that all AIMD schemes converge
to a fair state. In addition, Bansal et al. [2] show that for bino-
mial algorithms (3) to converge to fairness, k + l must be
strictly greater than zero.

III. GENERAL I-D CONTROL
Not all increase-decrease functions RI and RD guarantee

convergence to fairness. In the context of I-D congestion con-
trol, convergence to fairness is usually defined as the ability of
any number of identical flows sharing a common bottleneck

2 Sometimes called TCP-compatible [2], [8] or TCP-friendly [21].
3 Note that some papers [2], [20], [21] use a different notation, in which
WD(w) = (1–β)w and this formula has a different form. Furthermore, if the rate
of AIMD is dominated by timeouts, the formula assumes yet another form
[21].

2 0-7803-7476-2/02/$17.00 © 2002 IEEE. INFOCOM 2002

link to reach a state in which their rates become equal and stay
equal infinitely long. Even though in practice this is a very
difficult goal to achieve, under the ideal conditions of synchro-
nized and immediate feedback, many schemes can guarantee
convergence to fairness.

efficiency line

fairness line

equi-fairness line

xi

yi

C

Pi

sending rate of flow X

sending rate of flow Y

C

One of the interesting properties of I-D congestion control
that we introduce in this paper is the ability of a scheme to
approach fairness monotonically, i.e., if the fairness during
interval i is given by fi, 0 ≤ fi ≤ 1, then the following conditions
are necessary for monotonic convergence:
 and . (5) ii ffi ≥∀ +1: 1lim =

∞→
ii

f
Figure 1. Two-flow I-D control system.

Generally, monotonic convergence is not necessary, but it is
beneficial, because non-monotonic convergence tends to tem-
porarily drive the system into extremely unfair states (i.e., one
flow receiving much higher bandwidth), especially in the pres-
ence of random packet losses and heterogeneous feedback de-
lays. Later in this paper, we will relax the above condition of
monotonic convergence, but will keep the rest of the results in
this section as they are applicable to both binomial algorithms
and the ideally-scalable schemes studied in section V.

porarily drive the system into extremely unfair states (i.e., one
flow receiving much higher bandwidth), especially in the pres-
ence of random packet losses and heterogeneous feedback de-
lays. Later in this paper, we will relax the above condition of
monotonic convergence, but will keep the rest of the results in
this section as they are applicable to both binomial algorithms
and the ideally-scalable schemes studied in section V.

It is common [2], [12] to examine the case of two flows
sharing a link, since the extension to n flows can be easily per-
formed by considering flows pair-wise. It is also common to
use a continuous fluid approximation model [2] and disregard
the discrete nature of packets (i.e., all packets are infinitely
divisible). Furthermore, in this paper, we use a max-min fair-
ness function fi instead of Chiu’s fairness index [5]. Recall that
max-min fairness of n flows with non-zero sending rates
(x1,…, xn) is given by:

It is common [2], [12] to examine the case of two flows
sharing a link, since the extension to n flows can be easily per-
formed by considering flows pair-wise. It is also common to
use a continuous fluid approximation model [2] and disregard
the discrete nature of packets (i.e., all packets are infinitely
divisible). Furthermore, in this paper, we use a max-min fair-
ness function fi instead of Chiu’s fairness index [5]. Recall that
max-min fairness of n flows with non-zero sending rates
(x1,…, xn) is given by:
 ()jiji

xxf /min
≠

= . (6)

Consider two flows X and Y sharing a bottleneck link under
the above assumptions. Suppose that during interval i, the
flows’ sending rates are given by xi and yi, respectively. To
help us understand the behavior of a two-flow I-D control sys-
tem, we use Figure 1 from [5]. In the figure, the axes represent
the sending rate of each of the two flows. Furthermore, line
y = x is known as the fairness line and represents points (x, y)
in which fairness f equals 1. Assuming that the capacity of the
bottleneck link is C, line x + y = C is called the efficiency line
and represents points in which the bottleneck link is about to
overflow. Given a particular point Pi = (xi, yi) in the figure, line
y = mx connecting Pi to the origin is called the equi-fairness
line (i.e., points along the line have the same fairness fi = xi/yi =
1/m). Furthermore, we define efficiency ei of point Pi as the
combined rate of both flows in that point, i.e., ei = xi + yi.

A. Decrease Function

To ensure monotonic convergence and proper response to
congestion signals, the following four conditions must hold
during each decrease step assuming that the system is in some
point Pi just before the decrease step.

First, the efficiency in the new state must be strictly less
than that in the old state, i.e., ei+1 < ei. This condition ensures
that flows backoff during congestion. Second, the fairness
must not decrease in the new state, i.e., fi+1 ≥ fi. This condition
guarantees monotonic convergence to fairness, and as pointed

out before, although desired, it is often not available in prac-
tice. Consequently, we will relax this condition later in the
paper. Third, to properly maintain convergence, the system
must not arbitrarily cross or oscillate around the fairness line,
i.e., it must stay on the same side of the fairness line at all
times. For the case in Figure 1, we can write: (yi > xi) ⇒ (yi+1 >
xi+1). Finally, the system must not allow rates below or equal to
zero, i.e., given an arbitrary state with xi > 0 and yi > 0, we
must guarantee that yi+1 > 0 and xi+1 > 0.

The first condition is equivalent to:
 0)()(11 <−−=−+− ++ iDiDiiii yRxRyyxx , (7)

which can be satisfied with any positive function RD(x) > 0,
∀x > 0. The second condition is equivalent to:

i

i

i

i

y
x

y
x

≥
+

+

1

1 , xi > 0, yi > 0. (8)

Expanding the last inequality using (2) and generalizing by
dropping the indexes (the inequality depends only on xi and yi),
we get:
 , for all x > 0, y > 0, x < y. (9) 0)()(≥− xyRyxR DD

Writing y = x + ∆x, for ∆x > 0:
 () 0)()()(≥∆−−∆+ xxRxRxxRx DDD , (10)

x

xR
x

xRxxR DDD)()()(
≥

∆
−∆+ , for x > 0, ∆x > 0. (11)

Restricting RD(x) to be a differentiable function for all x > 0,
(11) is equivalent to:

x

xRxR D
D

)()(≥′ , for all x > 0. (12)

Bringing RD(x) to the left and taking the integral (both x and
RD(x) are known to be positive):

 ∫∫ ≥
x

dx
xR
xdR

D

D

)(
)(, for all x > 0. (13)

 , for all x > 0. (14) 1ln)(ln mxxRD +≥

 , for all x > 0. (15) xmxRD 2)(≥

The result in (15) shows that the original condition (12) re-
stricts RD(x) to grow no slower than some linear function m2x.

Using similar derivations, we find that the third condition
(i.e., the non-cross-over condition) results in:
 1)(<′ xRD , for all x > 0, (16)

3 0-7803-7476-2/02/$17.00 © 2002 IEEE. INFOCOM 2002

which means that RD(x) must grow slower than function x
(i.e., the slope of RD(x) in all points x > 0 must be less than 1).
Finally, the fourth condition
 , for all x > 0 (17) 0)(>− xRx D

is automatically satisfied by combining (12) and (16) above.
To summarize by combining (15) and (16), function RD(x)

must be positive and differentiable for all values of x > 0, and
must be an asymptotically (i.e., for substantially large x) linear
function of x, with the slope strictly less than 1. For example,
AIMD function RD(x) = σx clearly satisfies these conditions for
0 < σ < 1.

B. Increase Function

The analysis of increase function RI(x) is similar to the
above. This time, instead of four conditions, we have only
three. First, the efficiency in the new state must increase (i.e.,
ei+1 > ei), which guarantees that flows will probe for new
bandwidth in the absence of congestion. Second, the fairness
must not decrease (i.e., fi+1 ≥ fi), which is the result of the same
monotonicity requirement as before. And third, the system
must not cross the fairness line (i.e., yi+1 > xi+1). Crossing the
fairness line violates monotonic converge to fairness and, as
we will see later, never happens in practice (i.e., among bino-
mial schemes).

The first condition is satisfied with any positive function
RI(x), i.e., RI(x) > 0, ∀x > 0. The second condition is the oppo-
site of (12) due to a different sign in (2):

x

xRxR I
I

)()(≤′ , for all x > 0. (18)

Finally, the third condition is similar to (16), but assumes
the following shape:
 , for all x > 0. (19) 1)(−>′ xRI

Using (18), we find that RI must grow no faster than some
linear function m3x and using (19), RI cannot decay quicker
than –x. For example, AIMD increase function RI(x) = λ again
satisfies all conditions of monotonic convergence for λ > 0.
We will look at other examples in the next section while study-
ing binomial congestion control methods [2].

C. Convergence

Note that the above conditions still do not guarantee conver-
gence to fairness. In other words, the conditions guarantee that
if the system converges, it will do so monotonically, but the
fact of convergence has not been established yet. Hence, we
impose a final restriction on RD and RI – either the decrease or
the increase step must strictly improve fairness, i.e., one of
(12), (18) must be a strict inequality. If (12) is made into a
strict inequality, we can no longer satisfy the condition in (16).
Consequently, (12) must remain in its present form, and (18)
must become a strict inequality.

IV. PROPERTIES OF BINOMIAL ALGORITHMS
A. Overview

Consider binomial algorithms in (3). Clearly, both functions
RI and RD are positive for x > 0 and therefore, satisfy the first
condition. The second condition (i.e., monotonically non-

decreasing fairness) results in the following restrictions on k
and l from applying (12) and the strict form of (18):

 . (20)




≥
−>

⇒






≥

<−
−

−+−

1
1

/

/
1

)1(

l
k

xxlx

xxkx
ll

kk

σσ

λλ

The third (i.e., non-cross-over) condition derived from (16)
and (19) restricts l even further, but does not impose any limit
on k (assuming sufficiently large x):

 . (21)




≤
=

⇒






<

<
−

+

11

1

l
anythingk

xl

xk
l

k

σ

λ

Note that restriction on l in (21) is dictated by the fact that
sending rate x of a flow is not limited a-priori and the selection
of a positive constant σ such that it is less than x1–l/l, for sub-
stantially large x > 0, is feasible only when power 1–l is strictly
non-negative.4 Later in this paper, we will show how restric-
tion l ≤ 1 can be lifted and what kind of advantages such
schemes bring to congestion control protocols.

Consequently, assuming that the upper limit on x is not
known, for a binomial algorithm to possess monotonic conver-
gence to fairness, both (20) and (21) must be satisfied. In prac-
tice, this means that l must be strictly 1. Knowing that for
TCP-friendly binomial congestion control k + l must be one
[2], we arrive at the fact that AIMD is the only TCP-friendly
binomial algorithm with monotonic convergence to fairness.
Hence, for the rest of the paper, we will study schemes with
non-monotonic convergence to fairness, because we want to go
beyond what AIMD has to offer.

In the absence of monotonic convergence, [2] shows that the
necessary condition for convergence is k + l > 0 (i.e., flows
make due progress towards the fairness line not necessarily at
every step, but between every two consecutive decrease steps).
Hence, dropping the monotonicity requirement and combining
(21) with the convergence rule k + l > 0, we notice that the
necessary restrictions on k and l for convergence of non-
monotonic binomial algorithms are: k > –1 and l ≤ 1.

B. Efficiency

The average efficiency is an important property of a conges-
tion control scheme, which reflects how well the scheme util-
izes the bottleneck bandwidth in the stable state. Clearly,
higher efficiency is more desirable (but not necessarily at the
expense of other properties of the scheme, such as packet loss
or convergence speed). Formulas derived in this section not
only help us study the efficiency of binomial schemes, but also
are a necessary background for our packet-loss scalability
analysis in the next section.

We define the average efficiency of a scheme as the percent-
age of the bottleneck link utilized by the scheme over a long
period of time once the scheme has reached its stable state. In
the stable state, each flow’s sending rate will oscillate between
two points, which we call the upper point (U) and the lower

4 Note that we implicitly assume that x is limited from below by some constant
xmin. In window-based congestion control, xmin is equivalent to one unit of cwnd
(i.e., MTU/RTT), and in rate-based congestion control, xmin is the minimum rate
at which real-time material can be received (e.g., the rate of the base video
layer).

4 0-7803-7476-2/02/$17.00 © 2002 IEEE. INFOCOM 2002

point (L) as shown in Figure 2. When a single flow is present
in the network, U equals the capacity of the bottleneck link C.
When n flows compete over a shared link of capacity C, U
equals C/n for each flow (because the flows have reached fair-
ness by this time). In both cases, L = U – σU l according to (3).
In addition, since the pattern in Figure 2 is repetitive, it is suf-
ficient to determine the average throughput of a flow during a
single oscillation (i.e., between points A and B) rather than
over a longer period of time. Note that in the window-based
notation of congestion control, the maximum capacity of the
link is given by W = C⋅RTT/MTU.

Using a continuous fluid approximation and results from [2],
each flow’s rate x(t) during the increase phase (i.e., between
points A and B) is given by:

1

1
)1()(

+






 +

=
k

R
tktx λ , (22)

where R is a fixed duration of the control interval (which is
typically equal to the value of the RTT). Following [2], the
duration between points A and B in Figure 2 is:

()

)1(

11
111

+






 −−

=∆

+−+

k

RUU
t

klk

λ

σ
, (23)

and the total amount of bits transmitted during the same in-
terval is:

()

)2(

11
212

+






 −−

=

+−+

k

RUU
X

klk

λ

σ
. (24)

Consequently, we derive that the flow’s average sending
rate during the interval is X/∆t and the average efficiency (i.e.,
percent utilization) of a binomial congestion control scheme is:

()
() 





 −−+






 −−+

=
∆

=
+−

+−

11

21

11)2(

11)1(

kl

kl

Uk

Uk

tU
Xe

σ

σ
. (25)

Note that (25) can be converted to the window-based nota-
tion by replacing σ with β and rate U with its window equiva-
lent. We also note that for large n, the exact model of effi-
ciency e in (25) becomes inapplicable when U = C/n drops
below σ1/(1–l). We can no longer use any of the above deriva-
tions due to the fact that 1–σ(C/n)l–1 becomes negative, which
is caused by the “drop-below-zero” effect (i.e., rate x(t) be-
comes negative) that we tried to avoid before in (17). This
condition was automatically satisfied given monotonic conver-

gence to fairness in (12), but in the absence of monotonicity,
we must explicitly restrict n to the following:

U

L

time t

flow’s sending rate x(t)

A

B

∆t
)1/(1)1/(1 ll

WCn
−−

=<
βσ

. (26)

We next focus on simplifying the expression in (25). Equa-
tion (25) contains two terms of the form 1–(1–z)q, which can
be expanded using Taylor series to:

 





 −−

+
−

−=− ...
6

)2)(1(
2

11)1(2zqqzqqzz q−1 . (27)
Figure 2. Oscillation of the sending rate in the stable state.

Note that for l < 1, the value of z is less than 1, which means
that the higher order terms in (27) get progressively smaller.
Hence, by keeping the first two terms5 in (27), we arrive at the
following approximation to the exact formula in (25):

 1

1

2
1

−

−

−
−= l

l

Uk
Ue
σ

σ . (28)

To perform a self-check, we plug AIMD parameters (l = 1, k
= 0) into (28) and get the familiar (and exact) formula of the
average efficiency of an AIMD scheme: e = (2–β)/2 (recall that
σ = β in AIMD).

C. Packet Loss

The amount of packet loss during the stable state is another
important property of a congestion control scheme. Consider
one oscillation cycle between points A and B in Figure 2 and
the case of a single flow. The maximum amount of overshoot
under non-ideal (i.e., non-continuous) conditions will be the
value of the increase function just before the flow reaches its
upper boundary C in point B. Hence, the amount of the maxi-
mum overshoot for a single flow is given by λC–kR, where R is
the fixed duration between control actions. Knowing how
many bits X were sent by the flow during the same interval of
duration ∆t, we can write the average percentage of lost data p1
using (24) and assuming the worst case of the maximum over-
shoot as:

()

()
,

11

)2(

)2(11

)2(

2122

2

22122

2

1






 −−

+
≈

++




 −−

+
=

+
=

+−+

+−+

−

−

klk

klk

k

k

CC

k

kCC

k
RCX

RCp

σ

λ

λσ

λ
λ

λ

 (29)

when λC–kR << X. In particular, for AIMD schemes, the
packet loss rate in the worst case is given by:

() () ()ββ

α
σσ

λ
λσσ

λ
−

=
−

≈
+−

=
1

2
1

2
21

2
2

2

2

2

22

2

1 WCC
p . (30)

A close look at the last equation reveals that as the number
of flows increases (i.e., C is replaced by C/n), AIMD’s packet
loss rate will also increase. Furthermore, the amount of in-

5 A one-term approximation used in [2] typically possesses an insufficient
accuracy.

5 0-7803-7476-2/02/$17.00 © 2002 IEEE. INFOCOM 2002

 ()).(
)/()1(2

)1(2 12
1

112
++

−

−++

=
+−

+−
≈ kl

l

lkl

n nO
nCk

Ckns
σ

σ (32)
crease is proportional to n2, where n is the number of flows.
This confirms a well-known fact that AIMD scales as n2 when
it comes to packet loss [14]. Note that as n→∞, the amount of
overshoot λC–kR will become large compared to the value of X,
and the approximations above will no longer work. However,
the exact formulas in (29) and (30) will asymptotically ap-
proach the correct value of 100%.

Hence, packet loss increase factor sn of binomial algorithms
is proportional to nl+2k+1 for small n and grows no faster than
nl+2k+1 for the rest of n. For AIMD, we get the familiar scalabil-
ity formula of n2, whereas the IIAD (i.e., k = 1, l = 0) and
SQRT (i.e., k = l = ½) algorithms scale as n3 and n2.5, respec-
tively. Furthermore, among all TCP-friendly schemes (i.e.,
k + l = 1), packet loss increase sn is proportional to n3–l, which
means that TCP-friendly schemes with the largest l scale best.
Since we already established that l must be no more than 1 (the
non-cross-over condition), we arrive at our first major conclu-
sion – among TCP-friendly binomial schemes, AIMD scales
best.

Consider a simple explanation of why AIMD scales quad-
ratically. In AIMD, the increase in packet loss by a factor of n2
comes from two places – from the reduction in the number of
discrete increase steps N during interval ∆t by a factor of n
(because the increase distance U–L becomes n times smaller),
and from the reduction of duration ∆t by the same factor of n
(due to the same reason). As a result, the number of bits sent
during the interval (which is proportional to N∆t) is reduced by
a factor of n2, and the amount of overshoot is unchanged (i.e.,
λR). Consequently, the total amount of lost packets relative to
the number of sent packets is increased by a factor of n2.

We should make several observations about the applicability
of (32) in practice. First, we assumed in (29) that the overshoot
will be as large as possible, i.e., λU–kR. However, in many
cases the actual overshoot will be some random value distrib-
uted between zero and λU–kR. Second, recall our discussion of
AIMD’s scalability in the previous section. When the increase
distance U–L becomes small compared to the value of the in-
crease step, AIMD starts scaling as a linear function rather than
a quadratic function. Hence, (32) is accurate only when the
increase steps are small compared to C/n. The results based on
the above model can be further skewed, if λU–kR becomes
large compared to X, in which case we must use the exact for-
mula in (29).

There are two reasons why we do not see this kind of
performance degradation in practice. First, our results in (30)
are based on a continuous fluid model, which assumes that
packets are infinitely divisible. However, in practice, this
approximation is true only when the amount of increase λR is
negligible compared to the difference between the upper and
lower limits, i.e., U–L in Figure 2. Hence, when the number of
discrete increase steps N becomes equal to 1 (or approaches 1),
it can no longer be reduced by a factor of n, because it must
remain an integer. Taking into account a fixed value of N = 1,
the increase in packet loss becomes a linear rather than a quad-
ratic function o B. Simulation f n.

Second, most protocols employing AIMD rely on positive
ACKs in implementing congestion control. This “self-
clocking” [9], or “packet conservation,” is capable of signifi-
cantly improving the scalability aspects of AIMD, because the
sender does not inject more packets into the network than the
network can handle at any given time. “Open-loop” congestion
control (i.e., NACK-based flow control) does not have this
nice cushion to fall back on, and NACK-based AIMD schemes
suffer a higher packet loss increase than equivalent ACK-based
schemes. In the next section, we will look at the scalability of
general binomial algorithms and study how we can reduce the
amount of packet loss as the number of flows increases.

To verify these theoretical results and show some examples,
we present simulation results of AIMD(1,½) and IIAD(1,½)
schemes over a T1 link (i.e., C = 1,544 kb/s). For AIMD, we
set MTU/RTT at two constant values of 5,000 and 50,000 bps
(the corresponding schemes will be called AIMD1 and AIMD2)
to show how their scalability changes when λ becomes large
compared to the upper boundary U = C/n. For IIAD we se-
lected MTU/RTT = 10,000 bps to allow the scheme to maintain
pn << 100% (otherwise, IIAD loses its n3 packet loss increase).
We used a discrete event simulation, in which n flows of the
same type shared a common link. We used our prior assump-
tion of immediate and synchronized feedback, as well as the
assumption that the flows employed a NACK-based protocol
(i.e., “open-loop” congestion control). V. PACKET-LOSS SCALABILITY OF CONGESTION CONTROL

A. Overview

Suppose the average packet loss when n flows share a link
of capacity C is given by pn. Let packet loss increase factor sn
be the ratio of pn to p1. Parameter sn specifies how fast packet
loss increases when more flows share a common link and di-
rectly relates to the ability of the scheme to support a large
number of flows (i.e., schemes with lower sn scale better). Us-
ing (29), we derive:

()() 





 −−

+
≈

+−+

+

2122

222

/11

)2(
klk

k

n
nCC

nkp
σ

λ , (31)

Figure 3 shows the variation of parameter sn (based on the
actual, rather than the maximum overshoot) during the simula-
tion as a function of n for the three flows. In AIMD1, packet
loss increase ratio s100 reaches a factor of 6,755, which is
equivalent to scalability of n1.91 (just below the predicted n2).
On the other hand, AIMD2 maintains its quadratic packet-loss
increase only until n = 7, at which time it switches to a linear
increase. The AIMD2 scheme reaches an increase factor of s100
= 352, which is equivalent to an overall scalability of n1.27. It
may seem at first that the larger increase step λ of the AIMD2
scheme is better; however, due to a larger λ, AIMD2 is much
more aggressive in searching for bandwidth and suffers a lot
more packet loss than AIMD1 for all values of n. Thus, for ex-

and using a two-term approximation from (27):

6 0-7803-7476-2/02/$17.00 © 2002 IEEE. INFOCOM 2002

ample, for n = 100, AIMD2 loses 55% of all sent packets, while
AIMD1 loses only 10%.

Finally, IIAD’s scalability performance is much worse than
that of either of AIMD schemes as can be seen in the figure.
The packet loss with 100 flows (i.e., p100) is 219,889 times
larger than the packet loss with one flow (i.e., p1). Hence, un-
der the given conditions, the overall scalability of IIAD is ap-
proximately n2.67 (again slightly less than the predicted n3).

As pointed out before and as shown in Figure 3, the actual
increase in packet loss under non-ideal (i.e., discrete) condi-
tions may be lower than that predicted by (32). Nevertheless,
the theoretical result in (32) can be used as a good perform-
ance measure in comparing the scalability of different binomial
schemes (e.g., as predicted, AIMD scales much better than
IIAD).

C. Feasibility of Ideal Scalability

We next examine the “ideal scalability” of binomial
schemes and derive its necessary conditions. We define a
scheme to have ideal scalability, if sn is constant for all n. This
definition is driven by the fact that no matter how small packet
loss p1 can be made in a non-scalable scheme (i.e., a scheme
with quickly-growing sn), there will be a link of sufficient ca-
pacity that will accommodate such large number of concurrent
flows n that pn will be unacceptably high. This is especially
true given the no-better-than-quadratic scalability of binomial
congestion control. Consequently, the ideal situation would be
to have a scheme that maintains a consistent packet loss rate
regardless of the number of flows utilizing the scheme over a
shared link, i.e., pn = p1 for all n. Furthermore, we would like
to have a scheme that maintains the same packet loss over links
of different capacity C.

To solve the above problem, we examine (32) again in order
to find congestion control schemes that allow sn to remain con-
stant. Clearly, the necessary conditions for this ideal scalability
are (the second condition is needed for convergence):

 . (33)




>
−<

⇒




>+
=++

1
1

0
012

l
k

lk
kl

The l > 1 condition means that if we plan to satisfy the non-
cross-over conditions (16), (21), or prevent the scheme from
reducing its rate below zero, ideal scalability requires the
knowledge of some tight upper limit on sending rate x (see
discussion following (21) earlier). Consequently, only assum-
ing that x is limited by a constant (i.e., C), is it possible to find

such σ that will satisfy the necessary condition σ < 1/(lxl–1) in
(21) for all rates 0 < x ≤ C. Hence, we come to our second ma-
jor conclusion – among I-D congestion control schemes, ideal
scalability is possible only when sending rates x are limited
from above by a constant, i.e., when flows have the knowledge
of the bottleneck capacity.

1

10

100

1000

10000

100000

1000000

0 10 20 30 40 50 60 70 80 90 100

the number of flows n

lo
ss

 in
cr

ea
se

 s n

AIMD1 AIMD2 IIAD

There are two simple ways how an application can learn the
value of C – by using real-time end-to-end measurements or by
asking the network to provide an explicit feedback with the
value of C. In the next section, we will examine the viability of
applying the former method to sampling the capacity of the
bottleneck link and the possibility of using such estimates in
ideally-scalable congestion control.

Figure 3. Parameter sn (i.e., packet-loss scalability) of AIMD and IIAD in
simulation based on actual packet loss.

Note that all flows sharing a single link must receive an es-
timate of C that is fairly close to the true capacity of the link6.
A major drawback of employing congestion control that relies
on real-time estimates of C is that different flows may form a
different estimate, which may result in poor convergence
and/or scalability depending on the amount of error. Hence,
our approach in this section relaxes one condition (i.e., l ≤ 1),
but imposes a new one – all flows must measure the bottleneck
capacity with high consistency. Note that a thorough evaluation
of various bandwidth estimation methods for the purpose of
ideally-scalable congestion control is beyond the scope of this
paper.

We also speculate that schemes with ideal scalability may be
somewhat difficult to use in practice due to two factors – errors
in measuring capacity C [6] and typically slower convergence
to fairness due to less-aggressive probing for bandwidth. Nev-
ertheless, we investigated ideally-scalable congestion control
until we established a working version of the algorithm, which
we will present in the remainder of the paper. Note that much
more work in this area is required before we can recommend
an I-D congestion control method other than AIMD for practi-
cal use over the Internet.

D. Ideally-Scalable Congestion Control

In this section, we introduce a new method, called Ideally-
Scalable Congestion Control (ISCC), and show how values of
the bottleneck capacity can be used to select the values of
(λ,σ). Note that other ways of selecting (λ,σ) may be possible
to achieve the same goal of constant sn. We use notation
ISCC(x) to refer to the ideally-scalable scheme described in
this section with parameter l equal to x and parameter k equal
to –(l+1)/2.

Assuming that C is known and assuming that x(t) ≤ C at all
times t (i.e., each application will limit its sending rate to be no
higher than C), we can satisfy σ < 1/(lxl–1) in (21) by choosing
the following σ :

 1
1

−
= l

DCm
σ , (34)

where l > 1 and mD is some constant greater than or equal to
l. It is easy to show that the decrease step of schemes with σ
according to (34) is no more than x/mD for any given state

6 The more the error, the slower will be the convergence. Unfortunately, the
lack of space does not permit us to show this result more conclusively.

7 0-7803-7476-2/02/$17.00 © 2002 IEEE. INFOCOM 2002

x > 0. Hence, rate x is guaranteed to stay positive at all times.
By varying constant mD, the scheme can adjust its average effi-
ciency, where larger values of mD mean higher efficiency.

Cisco
3620

Cisco
3620

Cisco
3660 Catalyst

2912

Client Server

Catalyst
2912

T1 T1
10 mb/ s10 mb/ s

100 mb/ s100 mb/ sIn addition, we must carefully select the value of λ so that
the negative value of power k is not allowed to cause uncon-
trollably-high increase steps. One way to attempt to achieve
this is to select a fixed value α and then multiply it by
(MTU/RTT)k+1 as shown in (4). However, the increase steps
will still remain virtually unlimited, because the value of
MTU/RTT has little relationship to the value of C (which is
needed to effectively limit λx–k). In addition, different flows
may use different multiplicative factors in (4) due to the differ-
ences in the RTT or the MTU. An alternative approach is to
apply a similar thinking to that used before in selecting σ –
choose λ so that the increase step is always no more than x/mI
for any given rate x, where mI is some constant greater than or
equal to one. This can be written as:

choose λ so that the increase step is always no more than x/mI
for any given rate x, where mI is some constant greater than or
equal to one. This can be written as:

Figure 4. Setup of the experiment.

 , (35) , (35) 1,/ ≥≤−
II

k mmxxλ 1,/ ≥≤−
II

k mmxxλ

which is satisfied with the following choice of λ: which is satisfied with the following choice of λ:

 1,
1

≥=
+

I
I

k
m

m
C

λ . (36)

Parameter mI can be used to vary the aggressiveness of the
scheme in searching for new bandwidth, where larger values of
mI result in less aggressive behavior of the scheme.

Furthermore, the above selection of λ and σ allows us to
separate the value of packet loss p1 from the capacity of the
bottleneck link C. Combining (29), (34) and (36), we get that
packet loss of ISCC schemes is link-independent:

()() 2/111

2
221

++−−

+
= + kmm

kp k
DI

 (37)

In the next section, we compare the performance of one par-
ticular ISCC congestion control scheme in a NACK-based
real-time streaming application with that of IIAD, AIMD, and
TFRC (TCP-Friendly Rate Control) [7].

VI. EXPERIMENTS
A. Choice of Powers Functions

We start with an observation that if l becomes much larger
than 1.0 in an ISCC scheme and sending rate x is much smaller
than capacity C (e.g., when n is large), such congestion control
becomes less responsive to packet loss. Being less responsive
usually results in very small rate reductions that often cannot
elevate congestion in a single step. Thus, schemes with large l
usually need multiple back-to-back decrease steps to move the
system below the efficiency line in Figure 1. Our assumptions
above do not model this behavior and the actual resulting
packet loss in these schemes turns out to be higher than pre-
dicted by (32) and the convergence time is sometimes substan-
tially increased.

Hence, from this perspective, larger values of l are not desir-
able. The only value of l that guarantees ideal scalability
among TCP-friendly schemes (i.e., k + l = 1 and l + 2k + 1 = 0)
is quite high and, specifically, equals 3. In practice, this

scheme converges very slowly7 and may not be a feasible solu-
tion for the real Internet. Among non-TCP-friendly schemes,
values of l close to 1.0 force k to come close to –1.0 (because
l+2k+1 must still remain zero), which also results in slower
convergence to fairness as sum k + l approaches zero8.

Among an infinite number of ISCC schemes, we arbitrarily
selected a scheme with l = 2 (k = –1.5), which achieves reason-
able performance in terms of both packet loss and conver-
gence, and show its performance in this paper. Note that this
particular scheme is somewhat less aggressive that TCP and
typically would yield bandwidth to TCP, if employed over a
shared path (however, this effect becomes noticeable only
when the number of flows n is large). Hence, the practical ap-
plication of this ISCC scheme in the Internet would require the
use of new QoS methods in routers (i.e., DiffServ) as discussed
in the introduction. Alternatively, it may be possible to use
other ISCC schemes (with a different l), which are not penal-
ized by TCP and which do not suffer from much slower con-
vergence. Due to limited space, we consider finding the best
ISCC scheme to be beyond the scope of this paper.

B. Real-time Bandwidth Estimation

In this section, we briefly examine the accuracy of real-time
bandwidth estimation in our NACK-based streaming applica-
tion and in the next section, we show the performance of
ISCC(2), which relies on these real-time estimates for comput-
ing the values of λ and σ.

We used a Cisco network depicted in Figure 4 for all real-
life experiments in this paper. During the experiment, we dis-
abled WRED and WFQ on all T1 interfaces to reflect the cur-
rent setup of backbone routers. The server supplied real-time
bandwidth-scalable MPEG-4 video, which included the FGS
(Fine-Granular Scalable) enhancement layer [17] and the regu-
lar base layer, to the client. Consequently, at any time t, the
server was able to adapt its streaming rate to the rate x(t) re-
quested by the client, as long as x(t) was no less than the rate of
the base layer b0 and no more than the combined rate of both
layers.

We used a 10-minute MPEG-4 video sequence with the base
layer coded at b0 = 14 kb/s and the enhancement layer coded
up to the maximum rate of 1,190 kb/s. Note that two concur-
rent flows were needed to fully load the bottleneck link.
Hence, our experiments below do not cover the case of n = 1,
and sn is defined as the ratio of pn to p2.

During the experiment, the client applied a simple packet-
bunch estimation technique [4], [16] to server’s video packets.
To simplify the estimation of the bottleneck bandwidth, the

7 Slow convergence was found experimentally.
8 Values of k + l close to zero mean that the system makes very small steps
toward the fairness line and thus, converges very slowly.

8 0-7803-7476-2/02/$17.00 © 2002 IEEE. INFOCOM 2002

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 500 1000 1500 2000

estimated bandwidth (kb/s)

PD
F

pe
rc

en
t

0%

5%

10%

15%

20%

25%

30%

35%

0 500 1000 1500 2000

estimated bandwidth (kb/s)

PD
F

pe
rc

en
t

1

10

100

1000

0 5 10 15 20 25 30 35 40 45 50

the number of flows n

sc
al

ab
ili

ty
 s

n

AIMD IIAD TFRC ISCC

server sent its packets in bursts of a pre-defined length. A
bandwidth sample was derived from each burst that contained
at least three packets.

To establish a baseline performance, Figure 5 (left) plots the
PDFs of IP bandwidth estimates9 obtained by two AIMD(1,½)
flows over the T1 link in Figure 4 (both flows used a fixed
value of MTU/RTT equal to 30 kb/s). As the figure shows, the
flows measured the IP bottleneck bandwidth to be 1,510 kb/s,
which is very close to the actual T1 rate of 1,544 kb/s (the dis-
crepancy is easily explained by the data-link/physical layer
overhead on the T1 line). Furthermore, both flows were in per-
fect agreement, and 99.5% of estimates of each flow were be-
tween 1,500 and 1,520 kb/s.

Figure 5 (right) shows the PDFs of bandwidth estimates ob-
tained by 32 simultaneous AIMD(1,½) flows running over the
same topology in Figure 4 and with the same value of
MTU/RTT. This time, the majority of estimates lie in the prox-
imity of 1,490 kb/s, and 95.5% of estimates are contained be-
tween 1,400 and 1,620 kb/s (i.e., within 7% of 1,510 kb/s). The
lower accuracy of bandwidth estimation in the second case is
explained by the lower average sending rate of each flow (i.e.,
36 kb/s compared to 559 kb/s in the first case).

Nevertheless, what matters most to the ISCC congestion
control is the ability of flows to establish consistent estimates,
rather than accurate estimates. To this extent, we found that
the actual disagreement between the flows during the experi-
ment was negligible and did not noticeably impact packet loss
rates or fairness. Due to limited space, we skip a detailed per-
formance study of our bandwidth estimation scheme and move
on to show the scalability results in the next section.

C. Scalability Results

We extensively tested ISCC in simulation and found that it
performed very well, in fact achieving constant packet loss.
Due to the lack of space, we were forced to remove the simula-
tion results from this paper, and show only real-life experi-
ments over a Cisco testbed (see below).

In our application with NACK-based congestion control, all
methods used slow start at the beginning of each transfer;
however, the results below exclude the behavior of the network
during slow start and focus on the performance of the schemes
in the interval starting 5 seconds after the last flow finished its

slow start and ending when the first flow terminated.10 This
interval was 520 to 600 seconds long (depending on the num-
ber of flows) and included a combined transfer of approxi-
mately 60,000 packets.

Figure 5. The PDFs of bandwidth estimates with 2 (left) and 32 (right)
AIMD(1,½) flows over a shared T1 link.

Figure 6. Packet-loss increase factor sn for the Cisco experiment.

During the experiment, we tried to select the parameters of
the schemes so that the average packet loss of two competing
flows using each scheme was between 0.3% and 0.6%. This
constraint resulted in selecting MTU/RTT equal to 30 kb/s for
AIMD(1,½), and 50 kb/s for IIAD(½,2). The value of the MTU
variable in TFRC’s equation [7] was selected to be 180 bytes,
whereas the actual MTU used during the experiment was
1,500 bytes for all schemes. Note that TFRC was the only pro-
tocol, which used real-time measurements of the RTT in its
computation of the rate.

The efficiency and aggressiveness parameters of the
ISCC(2) scheme were set with the same goal in mind to main-
tain low initial packet loss p2: mD = 2 and mI = 20. These pa-
rameters guarantee that each flow does not decrease its rate by
more than ½ and does not probe for new bandwidth more ag-
gressively that by 5% (i.e., 1/20) of the current sending rate.

The results of the experiment are summarized in Figure 6,
which shows packet-loss increase factor sn for four different
schemes and values of n between 2 and 50. The results of the
experiment show that all non-scalable schemes maintained a
steady packet-loss increase to well over 15%. For example,
IIAD reached p50 = 45% (p2 = 0.29%), AIMD 22% (p2 =
0.38%), and TFRC 20% (p2 = 0.26%).

e.

On the other hand, the packet loss of the ISCC(2) scheme
climbed only to 3.1% over the same range of flows n (p2 =
0.57%). A least-squares fit suggests that the increase in ISCC’s
packet loss is very slow, but noticeable (i.e., n0.47). Thus, even
though the ISCC scheme was not able to achieve constant
packet loss in practice, it did show a substantially better
performance than any other schem

In addition, under the worst conditions (i.e., n ≈ 50), our
data show that the non-scalable protocols maintained a “fro-
zen” picture between 11% and 42% of the corresponding ses-
sion due to underflow events (which are produced when a
frame is missing from the decoder buffer at the time of its de-
coding). Clearly, these results indicate that high packet loss is
very harmful, even in the presence of low RTTs (50-200 ms),
large startup delays (3 seconds in our case), and an efficient
packet loss recovery mechanism (our retransmission scheme

 9 Note that bandwidth estimates were derived from bandwidth samples by
using the median of the past 20-seconds worth of samples. 10 Flows were started with a 1.5-second delay.

9 0-7803-7476-2/02/$17.00 © 2002 IEEE. INFOCOM 2002

10 0-7803-7476-2/02/$17.00 © 2002 IEEE. INFOCOM 2002

were able to recover all base-layer packets before their dead-
lines until loss rates exceeded approximately 15%).

At the same time, the ISCC(2) scheme was able to recover
all frames (including base and enhancement layer) before their
decoding deadlines, representing an ideal streaming situation
for an end-user.

Therefore, we come to the conclusion that non-scalable
schemes are poorly suited for rate-based protocols that do not
utilize self-clocking and that ideally-scalable schemes promise
to provide a constant packet-loss scalability not only in simula-
tion, but also in practice. Nevertheless, further study is re-
quired in this area to understand the tradeoffs between the dif-
ferent values of l and k, as well as establish whether slower
convergence to fairness found in simulation has any strong
implications in large networks (i.e., in the real Internet).

VII. CONCLUSION
The difficulty of “open-loop” congestion control stems from

the fact that the sender in such protocols is not governed by
“self-clocking” of acknowledgements and typically continues
to stress the network at the same rate even in the presence of
severe packet loss and congestion. In such situations of aggra-
vated packet loss, the main problem of NACK-based conges-
tion control can be narrowed down to cases when the client
either does not receive any server packets at all (which by de-
fault prohibits it from changing the server’s rate), or takes mul-
tiple retransmissions of control messages to notify the server
about the new reduced rate.

Interestingly, these problems are only noticeable when the
congestion is severe enough to require multiple retransmissions
of the client’s control messages, or when the network encoun-
ters periods of heavily-bursty loss. Our experiments with tradi-
tional (i.e., non-scalable) NACK-based congestion control
methods found that packet loss rates increased very rapidly as
the number of flows on the shared link increased.

To investigate this observation further, we analyzed the
class of binomial algorithms and derived the formulas of
packet loss increase factor sn as a function of the number of
flows: sn = O(nl+2k+1). Using our derivations we found that
among all proposed binomial schemes, AIMD had the best
scalability O(n2) and the lowest packet loss. Furthermore, we
showed that unless the schemes had the knowledge of bottle-
neck capacity C, the scalability of AIMD could not be im-
proved, and even the performance of AIMD was inadequate
for actual use in NACK-based applications. Even though all
the derivations in the paper assumed synchronized and imme-
diate feedback, our final formulas were found to hold in a
number of streaming experiments over a real Cisco network
with random packet loss and delayed feedback.

Given the knowledge of the bottleneck bandwidth, we
showed that ideal scalability was both theoretically and practi-
cally possible; however, the ISCC schemes were found to be
slower in their convergence to fairness when the number of
flows n was large. Even though ISCC schemes are “more care-
ful” in probing for new bandwidth, the average efficiency of
these schemes was no worse than that of AIMD or IIAD (due
to limited space, not discussed in the main body of the paper).

Regardless of whether ISCC is a viable protocol for the cur-

rent or future (i.e., DiffServ) Internet, this paper not only an-
swered the question of why NACK-based congestion control is
“difficult,” but it also measured the exact magnitude of this
“difficulty” and provided one solution that overcomes the rapid
packet-loss increase typical to “open-loop” congestion control.

REFERENCES
[1] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Con-

trol,” IETF RFC 2581, April 1999.
[2] D. Bansal and H. Balakrishnan, “Binomial Congestion Control

Algorithms,” IEEE INFOCOM, April 2001.
[3] D. Bansal, H. Balakrishnan, S. Floyd, S. Shenker, “Dynamic

Behavior of Slowly-Responsive Congestion Control Algo-
rithms,” ACM SIGCOMM, August 2001.

[4] R.L. Carter, and M.E. Crovella, “Measuring Bottleneck Link
Speed in Packet Switched Networks,” International Journal on
Performance Evaluation 27 & 28, 1996.

[5] D-M. Chiu, and R. Jain, “Analysis of the Increase and Decrease
Algorithms for Congestion Avoidance in Computer Networks,”
Computer Networks and ISDN Systems, vol. 17, 1989.

[6] C. Dovrolis, P. Ramanathan, and D. Moore, “What Do Packet
Dispersion Techniques Measure?” IEEE INFOCOM, April 2001.

[7] S. Floyd, M. Handley, and J. Padhye, “Equation-Based Conges-
tion Control for Unicast Applications,” ACM SIGCOMM, Sep-
tember 2000.

[8] S. Floyd, M. Handley, and J. Padhye, “A Comparison of Equa-
tion-Based and AIMD Congestion Control,” ACIRI Technical
Report http://www.aciri.org/tfrc/aimd.pdf, May 2000.

[9] V. Jacobson, “Congestion Avoidance and Control,” ACM
SIGCOMM, 1988.

[10] T. Kim, S. Lu, and V. Bharghavan, ``Loss Proportional De-
crease based Congestion Control in the Future Internet,'' Univer-
sity of Illinois Technical Report http://timely.crhc.uiuc.edu/
Drafts/tech.lipd.ps.gz, July 1999.

[11] K-W. Lee, T. Kim, V. Bharghavan, “A Comparison of End-to-
End Congestion Control Algorithms: The Case of AIMD and
AIPD,” University of Illinois Technical Report http://timely.
crhc.uiuc.edu/~kwlee/psfiles/infocom2001.ps.gz, 2000.

[12] K-W. Lee, R. Puri, T. Kim, K. Ramchandran, V. Bharghavan,
“An Integrated Source Coding and Congestion Control Frame-
work for Video Streaming in the Internet,” IEEE INFOCOM,
March 2000.

[13] A. Mena, and J. Heidemann, “An Empirical Study of Real Audio
Traffic,” IEEE INFOCOM, March 2000.

[14] T. Nandagopal, K-W. Lee, J.R. Li, V. Bharghavan, “Scalable
Service Differentiation Using Purely End-to-End Mechanisms:
Features and Limitations,” IFIP/IEEE International Workshop
on Quality of Service (IWQoS), June 2000.

[15] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
Throughput: A Simple Model and its Empirical Validation,”
ACM SIGCOMM, September 1998.

[16] V. Paxson, ”Measurements and Analysis of End-to-End Internet
Dynamics,” Ph.D. dissertation, UC Berkeley, 1997.

[17] H. Radha, Y. Chen, K. Parthasarathy, and R. Cohen, “Scalable
Internet Video Using MPEG-4,” Signal Processing: Image
Communication, 1999.

[18] RealPlayer, Real Networks, http://www.real.com.
[19] R. Rejaie, M. Handley, and D. Estrin, “RAP: An End-to-End

Rate-based Congestion Control Mechanism for Real-time
Streams in the Internet,” IEEE INFOCOM, March 1999.

[20] Y.R. Yang, M.S. Kim, and S.S. Lam, “Transient Behaviors of
TCP-friendly Congestion Control Protocols,” IEEE INFOCOM,
April 2001.

[21] Y.R. Yang and S.S. Lam, “General AIMD Congestion Control,”
University of Texas at Austin Technical Report
ftp://ftp.cs.utexas.edu/pub/lam/gaimd.ps.gz, May 2000.

http://timely.crhc.uiuc.edu/ Drafts/tech.lipd.ps.gz
http://timely.crhc.uiuc.edu/ Drafts/tech.lipd.ps.gz
http://timely. crhc.uiuc.edu/~kwlee/psfiles/infocom2001.ps.gz
http://timely. crhc.uiuc.edu/~kwlee/psfiles/infocom2001.ps.gz
http://www.real.com/
ftp://ftp.cs.utexas.edu/pub/lam/gaimd.ps.gz

	Introduction
	Background
	General I-D Control
	Decrease Function
	Increase Function
	Convergence

	Properties of Binomial Algorithms
	Overview
	Efficiency
	Packet Loss

	Packet-loss Scalability of Congestion Control
	Overview
	Simulation
	Feasibility of Ideal Scalability
	Ideally-Scalable Congestion Control

	Experiments
	Choice of Powers Functions
	Real-time Bandwidth Estimation
	Scalability Results

	Conclusion
	References

