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Motivation

« Peer-to-peer (P2P) networks are important
elements of the existing Internet

« Many recent proposals address the issue of
constructing efficient DHTs (Distributed Hash
Tables)

 However, two important pieces of analysis are
missing from current work:

— Comparison of existing methods with each other

— Full understanding of their “optimality”

 Our work aims to fill this void




Motivation 2

« Traditional DHTs (CAN, Chord, Pastry, Tapestry)
are graphs with logN diameter and logN degree

— N is the number of peers in the network
e Can these logarithmic bounds be improved?

» Other important questions:
— Which existing proposal is “best?”
— What is the best possible diameter for a given degree?
— Can fault resilience of existing methods be improved?
— Can resilience and diameter be optimized at the same

ima?
time” .




Optimal Diameter

« Consider a problem of building a fixed-degree
graph on N nodes with the smallest diameter

— Assume Kk is the fixed degree of each node

— Since DHTs treat all peers equally, constant node
degree is a realistic assumption

— Heterogeneous DHTs are beyond the scope of this work

 The smallest diameter is achieved in directed
Moore graphs and equals:

D, =|log, (N(k-1)+1)]-1




Optimal Diameter 2

* One big problem with Moore graphs

— Non-trivial Moore graphs do not exist

« (Generalized de Bruijn graphs have the best
known diameters

— Diameter[log,N
— Asymptotically optimal
« Several versions exist, but only one allows
efficient (greedy) routing rules
— Imase and Itoh, 1981




Optimal Diameter 3

Do we really care that de Bruijn graphs route
faster than Chord/CAN/Pastry?

 Assume N = 1 million nodes
— Chord’s degree is log,N = 20, diameter | log,N | = 20
— De Bruijn’s degree k = 20, diameter [ log,,N | = 5
— Moore graph of degree 20: diameter also 5 hops

* Improvement by a factor of 4 is significant




De Bruijn Graphs

* Recall that de Bruijn graphs have very simple
linking rules:

— Each node is a D-character string in some alphabet X
— D is the diameter of the graph

— Each node (a4, ..., ap) links to all nodes (a,, ..., ap, X),
forall x e

— Self-loops are acceptable

* For now assume that each graph is fully
populated with N nodes

— Incremental and distributed construction will be
discussed later




De Bruijn Graphs 2

« Shortest-path routing is very simple and greedy

— See the paper for details

 Classical de Bruijn graph on N = 8 nodes, degree
k =2 and diameter D = 3:




De Bruijn Graphs 3

* Next study degree-diameter tradeoffs of P2P
graphs with N = 10° users:

Degree| de | Chord| CAN | Pastry | Butterfly
Bruijn
2 20 — 500,000 — 31
3 13 — — — 20
10 6 = 40 — 10
20 5 20 20 20 8
50 4 — — 7 [
100 3 — — 5 S 1




De Bruijn Graphs 4

* Improvement in the diameter is significant over
all existing structures
— Even the butterfly networks offer diameter 50-60%
larger than that of de Bruijn graphs

 The improvement is most noticeable in low-
degree networks (k < 20)

— Large neighbor tables require substantial maintenance
and keep-alive traffic when peers frequently fail

— Thus, small-degree graphs are often desirables

« Asymptotically (for very large N), de Bruijn
graphs offer diameter D twice as small as any
other graph in related work T



Routing Distances

* Next we analyze the average distance in each
graph
— This is the expected number of hops that each query
must travel

* An important metric since there are graphs with
diameters smaller than Chord’s, but larger
average distance

— Xu et al., IEEE JSAC 2003

* We also compare Chord and CAN in this study

— Which one is better?
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Routing Distances 2

« Chord’s distribution of shortest distances is known
to be bell-shaped and appears Gaussian (left)

« CAN's distribution progressively becomes
Gaussian as well (right)
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Routing Distances 3

e Lemma 1: Chord’s distribution of shortest
distances is binomial with p = q = %2

— Appears Gaussian for large D

 Lemma 2: CAN's distribution of shortest
distances is a d-fold convolution of this simple
1D distribution (d is the number of dimensions):

1, n=0
2,0<n<D

1
p1(n):ﬁ g(N), n=D

0, otherwise
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Routing Distances 4

— According to the Central Limit Theorem, self-
convolution of p,(n) also appears Gaussian

 Now notice that if the number of dimensions d is
log,N/2, CAN'’s degree and diameter are the
same as Chords

— However, there is more to it

 Lemma 3: When d = log,N/2, distribution of
shortest distances in CAN and Chord are
identical

— Both graphs offer the same routing performance

15



Routing Distances 5

« De Bruijn graphs have a completely different
routing structure

— These graphs expand exponentially

« Lemma 4: The distribution of shortest distances
(PMF) in de Bruijn graphs is:

n 2n—1 n n—l
LSRN Sl A

N N°? N

* The number of nodes at distance n is
approximately k" — kn-1 o




Routing Distances 6

« Simulations confirm that CAN and Chord for the

same degree are identical (from the routing view)
(figure below, left, N = 1,024)

— However, they are not isomorphic

De Bruijn graphs indeed expand exponentially
(figure below, right, N = 1,000, k = 10)

01 2 3 45 6 7 8 910
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Routing Distances 7

« Additional examples

— The average distance 4 in graphs of size N = 10°

Degree | Moore de Chord | CAN | Butterfly
Bruijn
2 17.9 18.3 = 250,000 | 224
3 11.7 11.9 — — 14.7
10 5.8 5.9 — 19.8 7.3
20 4.5 4.6 10 10 5.7
310 3.5 3.5 — — 4.3
100 2.98 2.98 — = 3.65




Routing Distances 8

« Exponential expansion in de Bruijn graphs leads to
— Small diameter
— Very few short cycles

— Low clustering

* Non-existence of short cycles means that
alternative (parallel) paths to destinations do not

overlap
 This further leads to better resilience to edge and

node failure as the graph is tightly packed
— We verify this in the paper
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Routing Distances 9

« Additional advantage of smaller average distance
IS the increased capacity of the network

— For each useful request, peers need to forward (on
average) u, other requests

— Thus, the capacity of the graph is inverse proportional to
the average distance (similar to wireless networks)

* De Bruijn graphs offer log,log,N/2 times more
capacity than Chord/CAN

« Asymptotically, 50% more than the butterfly
— For N =106, 22% more
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Omitted Material

— We derive clustering coefficients of each graph

— We perform a simple expansion analysis of each graph
and generalize clustering to become global

— We further show that de Bruijn graphs have bisection
width larger than Chord’s by a factor of log,log,N/2

— All these findings point toward higher resilience and
better performance of de Bruijn graphs under
node/edge failure

— We finally study the probability that a vertex appears in
multiple parallel paths, per-node distribution of the
number of non-overlapping shortest paths, and routing

performance of these graphs under adversarial failure
21



ODRI

« We finish this talk by discussing incremental
construction of de Bruijn graphs

— ODRI - Optimal Diameter Routing Infrastructure
« Several other papers concurrently proposed de
Bruijn graphs
— Koorde, Kaashoek et al., 2003
— Distance Halving, Naor et al., 2003
— D2B, Fraigniaud et al., 2003

« QOur construction is not substantially different
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ODRI 2

* Organize all peers into a modulo-N,,, circle

max

— N, .« IS some upper limit on the number of users

* This circle represents the underlying de Bruijn
graph that is split into zones by arriving users

— Assume that degree k is known and N, _, iS some power
of K

« Each zone Z, = [z,,z,] held by peer x contains a
certain number of de Bruijn vertices (all integers
between z, and z,)

— Each vertex v € [z,,Z,] links to k other de Bruijn vertices
23




ODRI 3

* Peer x then links to all peers holding the other end
of each edge originating in Z,

— In the figure, degree k = 2 and x links to peers y and w
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ODRI 4

 |tis easy to demonstrate that if all zones are the
same, then the application-layer diameter is
optimal and the degree of each peer is exactly k

* Under a uniform hashing function, zone
distributions are not equal

— However, the diameter is still asymptotically optimal

« Simple join method (e.g., Chord, CAN): a joining
peer generates a random number and joins the
ring at that location (splitting an existing node in
half or otherwise)

— Imbalance by a factor of logN with high probability %



ODRI 5

« “Power of two choices” method: sample d
locations In the graph and split the largest peer

* |If the number of sampled locations is ~logN, then it
can be guaranteed that the imbalance stays within
a constant factor (usually 2) from the optimal

— This method is implemented in Distance Halving (d =
8logN peers) and D2B (unspecified d)
« ODRI has its own variation of this method

— Start from a random location and then walk through the
graph searching for the largest node to split

— Reduced join latency as d messages can sample d-k
peers (where K is the degree as before) 26




ODRI 6

 Example
— N =30,000,k =38

— Traditional methods require over 400 messages to
sample 82 peers, while ODRI needs only 10

* To further improve the search, ODRI is biased
towards the largest neighbor at each step

— Larger nodes “cover’” more DHT space with their edges
and are thus more likely to “know” other large nodes

* Loops are prevented by appending the entire path
to each request packet

27




ODRI 7

* Node departure can re-introduce imbalance in
zone distributions and actually make it worse

* Thus, each departing node x performs a d-walk
searching for the smallest node to take its place

— Once found, this smallest node y will take over x’s zone

— Successor/predecessor of y will take over its zone

* The d-walk is still biased towards the largest
neighbor at each step

— Same reasoning as before

— Performs very well in practice s




Conclusion

« Detalls of these algorithms and probabilistic
analysis will be presented in the next paper

— “Evolution of Massive P2P Graphs: Zone Distribution
Perspective”

* Our results in the current paper indicate that de
Bruijn graphs offer an appealing framework for
P2P networks

* Their diameter and average distance are smaller
than that of any alternative graph

— Their bisection width and expansion are higher than that
of Chord/CAN and no worse than that of the butterfly 29




Conclusion 2

» De Bruijn graphs are much easier to construct
iIncrementally than other fixed-degree graphs (e.g.,
the buttertfly)

* They exhibit very little path overlap, clustering, and
susceptibility to node failure

* Nevertheless, the bisection width of de Bruijn
graphs is far from optimal

— Thus, one final question remains: is it possible to
simultaneously optimize resilience (e.g., bisection width)
and diameter?

30
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