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Overview

• Motivation

• Optimal-diameter graphs

• Routing analysis
– Shortest path distributions

• Resilience analysis (brief overview)

• Incremental construction of de Bruijn graphs

• Conclusion
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Motivation

• Peer-to-peer (P2P) networks are important 
elements of the existing Internet

• Many recent proposals address the issue of 
constructing efficient DHTs (Distributed Hash 
Tables)

• However, two important pieces of analysis are 
missing from current work:
– Comparison of existing methods with each other

– Full understanding of their “optimality”

• Our work aims to fill this void
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Motivation 2

• Traditional DHTs (CAN, Chord, Pastry, Tapestry) 
are graphs with logN diameter and logN degree
– N is the number of peers in the network

• Can these logarithmic bounds be improved?

• Other important questions:
– Which existing proposal is “best?”

– What is the best possible diameter for a given degree?

– Can fault resilience of existing methods be improved?

– Can resilience and diameter be optimized at the same 
time?
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Optimal Diameter

• Consider a problem of building a fixed-degree 
graph on N nodes with the smallest diameter
– Assume k is the fixed degree of each node

– Since DHTs treat all peers equally, constant node 
degree is a realistic assumption

– Heterogeneous DHTs are beyond the scope of this work

• The smallest diameter is achieved in directed 
Moore graphs and equals:

( )log ( 1) 1 1M kD N k= − + −  
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Optimal Diameter 2

• One big problem with Moore graphs
– Non-trivial Moore graphs do not exist

• Generalized de Bruijn graphs have the best 
known diameters 
– Diameter logkN
– Asymptotically optimal

• Several versions exist, but only one allows 
efficient (greedy) routing rules
– Imase and Itoh, 1981
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Optimal Diameter 3

• Do we really care that de Bruijn graphs route 
faster than Chord/CAN/Pastry?

• Assume N = 1 million nodes
– Chord’s degree is log2N = 20, diameter log2N = 20

– De Bruijn’s degree k = 20, diameter log20N = 5
– Moore graph of degree 20: diameter also 5 hops

• Improvement by a factor of 4 is significant
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De Bruijn Graphs

• Recall that de Bruijn graphs have very simple 
linking rules:
– Each node is a D-character string in some alphabet Σ
– D is the diameter of the graph

– Each node (a1, …, aD) links to all nodes (a2, …, aD, x), 
for all x ∈ Σ

– Self-loops are acceptable

• For now assume that each graph is fully 
populated with N nodes
– Incremental and distributed construction will be 

discussed later
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De Bruijn Graphs 2

• Shortest-path routing is very simple and greedy
– See the paper for details

• Classical de Bruijn graph on N = 8 nodes, degree 
k = 2 and diameter D = 3:
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De Bruijn Graphs 3

• Next study degree-diameter tradeoffs of P2P 
graphs with N = 106 users:
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De Bruijn Graphs 4
• Improvement in the diameter is significant over 

all existing structures
– Even the butterfly networks offer diameter 50-60% 

larger than that of de Bruijn graphs

• The improvement is most noticeable in low-
degree networks (k < 20)
– Large neighbor tables require substantial maintenance 

and keep-alive traffic when peers frequently fail
– Thus, small-degree graphs are often desirables

• Asymptotically (for very large N), de Bruijn 
graphs offer diameter D twice as small as any
other graph in related work
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Routing Distances

• Next we analyze the average distance in each 
graph
– This is the expected number of hops that each query 

must travel

• An important metric since there are graphs with 
diameters smaller than Chord’s, but larger 
average distance
– Xu et al., IEEE JSAC 2003

• We also compare Chord and CAN in this study
– Which one is better?
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Routing Distances 2

• Chord’s distribution of shortest distances is known 
to be bell-shaped and appears Gaussian (left)

• CAN’s distribution progressively becomes 
Gaussian as well (right)
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Routing Distances 3

• Lemma 1: Chord’s distribution of shortest 
distances is binomial with p = q = ½
– Appears Gaussian for large D

• Lemma 2: CAN’s distribution of shortest 
distances is a d-fold convolution of this simple 
1D distribution (d is the number of dimensions):
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Routing Distances 4
– According to the Central Limit Theorem, self-

convolution of p1(n) also appears Gaussian

• Now notice that if the number of dimensions d is 
log2N/2, CAN’s degree and diameter are the 
same as Chords
– However, there is more to it

• Lemma 3: When d = log2N/2, distribution of 
shortest distances in CAN and Chord are 
identical
– Both graphs offer the same routing performance
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Routing Distances 5
• De Bruijn graphs have a completely different 

routing structure
– These graphs expand exponentially

• Lemma 4: The distribution of shortest distances 
(PMF) in de Bruijn graphs is:

• The number of nodes at distance n is 
approximately kn – kn–1

2 1 1

2( ) .
n n n nk k k kp n

N N N

− −−
≈ − ≥



17

Routing Distances 6
• Simulations confirm that CAN and Chord for the 

same degree are identical (from the routing view) 
(figure below, left, N = 1,024)
– However, they are not isomorphic

• De Bruijn graphs indeed expand exponentially 
(figure below, right, N = 1,000, k = 10)
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Routing Distances 7

• Additional examples
– The average distance µd in graphs of size N = 106
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Routing Distances 8

• Exponential expansion in de Bruijn graphs leads to
– Small diameter

– Very few short cycles

– Low clustering

• Non-existence of short cycles means that 
alternative (parallel) paths to destinations do not 
overlap

• This further leads to better resilience to edge and 
node failure as the graph is tightly packed
– We verify this in the paper
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Routing Distances 9

• Additional advantage of smaller average distance 
is the increased capacity of the network
– For each useful request, peers need to forward (on 

average) µd other requests
– Thus, the capacity of the graph is inverse proportional to 

the average distance (similar to wireless networks)

• De Bruijn graphs offer log2log2N/2 times more 
capacity than Chord/CAN

• Asymptotically, 50% more than the butterfly
– For N = 106, 22% more
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Omitted Material
– We derive clustering coefficients of each graph

– We perform a simple expansion analysis of each graph 
and generalize clustering to become global

– We further show that de Bruijn graphs have bisection 
width larger than Chord’s by a factor of log2log2N/2

– All these findings point toward higher resilience and 
better performance of de Bruijn graphs under 
node/edge failure

– We finally study the probability that a vertex appears in 
multiple parallel paths, per-node distribution of the 
number of non-overlapping shortest paths, and routing 
performance of these graphs under adversarial failure
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ODRI

• We finish this talk by discussing incremental 
construction of de Bruijn graphs
– ODRI – Optimal Diameter Routing Infrastructure

• Several other papers concurrently proposed de 
Bruijn graphs
– Koorde, Kaashoek et al., 2003

– Distance Halving, Naor et al., 2003

– D2B, Fraigniaud et al., 2003

• Our construction is not substantially different
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ODRI 2

• Organize all peers into a modulo-Nmax circle
– Nmax is some upper limit on the number of users

• This circle represents the underlying de Bruijn 
graph that is split into zones by arriving users
– Assume that degree k is known and Nmax is some power 

of k

• Each zone Zx = [z1,z2] held by peer x contains a 
certain number of de Bruijn vertices (all integers 
between z1 and z2)
– Each vertex v ∈ [z1,z2] links to k other de Bruijn vertices
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ODRI 3

• Peer x then links to all peers holding the other end 
of each edge originating in Zx

– In the figure, degree k = 2 and x links to peers y and w
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ODRI 4

• It is easy to demonstrate that if all zones are the 
same, then the application-layer diameter is 
optimal and the degree of each peer is exactly k

• Under a uniform hashing function, zone 
distributions are not equal
– However, the diameter is still asymptotically optimal

• Simple join method (e.g., Chord, CAN): a joining 
peer generates a random number and joins the 
ring at that location (splitting an existing node in 
half or otherwise)
– Imbalance by a factor of logN with high probability
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ODRI 5
• “Power of two choices” method: sample d 

locations in the graph and split the largest peer

• If the number of sampled locations is ~logN, then it 
can be guaranteed that the imbalance stays within 
a constant factor (usually 2) from the optimal
– This method is implemented in Distance Halving (d = 

8logN peers) and D2B (unspecified d)

• ODRI has its own variation of this method
– Start from a random location and then walk through the 

graph searching for the largest node to split
– Reduced join latency as d messages can sample d⋅k 

peers (where k is the degree as before)
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ODRI 6

• Example
– N = 30,000, k = 8

– Traditional methods require over 400 messages to 
sample 82 peers, while ODRI needs only 10

• To further improve the search, ODRI is biased 
towards the largest neighbor at each step
– Larger nodes “cover” more DHT space with their edges 

and are thus more likely to “know” other large nodes

• Loops are prevented by appending the entire path 
to each request packet 
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ODRI 7

• Node departure can re-introduce imbalance in 
zone distributions and actually make it worse

• Thus, each departing node x performs a d-walk 
searching for the smallest node to take its place
– Once found, this smallest node y will take over x’s zone

– Successor/predecessor of y will take over its zone

• The d-walk is still biased towards the largest 
neighbor at each step
– Same reasoning as before

– Performs very well in practice
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Conclusion

• Details of these algorithms and probabilistic 
analysis will be presented in the next paper
– “Evolution of Massive P2P Graphs: Zone Distribution 

Perspective”

• Our results in the current paper indicate that de 
Bruijn graphs offer an appealing framework for 
P2P networks

• Their diameter and average distance are smaller 
than that of any alternative graph
– Their bisection width and expansion are higher than that 

of Chord/CAN and no worse than that of the butterfly
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Conclusion 2

• De Bruijn graphs are much easier to construct 
incrementally than other fixed-degree graphs (e.g., 
the butterfly)

• They exhibit very little path overlap, clustering, and 
susceptibility to node failure

• Nevertheless, the bisection width of de Bruijn 
graphs is far from optimal
– Thus, one final question remains: is it possible to 

simultaneously optimize resilience (e.g., bisection width) 
and diameter?
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