Graph-Theoretic Analysis of Structured Peer-to-Peer Systems: Routing Distances and Fault Resilience

Presented by Seong-Ryong Kang

Dmitri Loguinov, Anuj Kumar,
Vivek Rai, and Sai Ganesh
Computer Science
Texas A\&M University
College Station, TX 77843

- Motivation
- Optimal-diameter graphs
- Routing analysis
- Shortest path distributions
- Resilience analysis (brief overview)
- Incremental construction of de Bruijn graphs
- Conclusion

Motivation

- Peer-to-peer (P2P) networks are important elements of the existing Internet
- Many recent proposals address the issue of constructing efficient DHTs (Distributed Hash Tables)
- However, two important pieces of analysis are missing from current work:
- Comparison of existing methods with each other
- Full understanding of their "optimality"
- Our work aims to fill this void

Motivation 2

- Traditional DHTs (CAN, Chord, Pastry, Tapestry) are graphs with logN diameter and logN degree
- N is the number of peers in the network
- Can these logarithmic bounds be improved?
- Other important questions:
- Which existing proposal is "best?"
- What is the best possible diameter for a given degree?
- Can fault resilience of existing methods be improved?
- Can resilience and diameter be optimized at the same time?

Optimal Diameter

- Consider a problem of building a fixed-degree graph on N nodes with the smallest diameter
- Assume k is the fixed degree of each node
- Since DHTs treat all peers equally, constant node degree is a realistic assumption
- Heterogeneous DHTs are beyond the scope of this work
- The smallest diameter is achieved in directed Moore graphs and equals:

$$
D_{M}=\left\lceil\log _{k}(N(k-1)+1)\right\rceil-1
$$

Optimal Diameter 2

- One big problem with Moore graphs
- Non-trivial Moore graphs do not exist
- Generalized de Bruijn graphs have the best known diameters
- Diameter $\left\lceil\log _{k} \mathrm{~N}\right\rceil$
- Asymptotically optimal
- Several versions exist, but only one allows efficient (greedy) routing rules
- Imase and Itoh, 1981

Optimal Diameter 3

- Do we really care that de Bruijn graphs route faster than Chord/CAN/Pastry?
- Assume $\mathrm{N}=1$ million nodes
- Chord's degree is $\log _{2} N=20$, diameter $\left\lceil\log _{2} N\right\rceil=20$
- De Bruijn's degree $k=20$, diameter $\left\lceil\log _{20} N\right\rceil=5$
- Moore graph of degree 20: diameter also 5 hops
- Improvement by a factor of 4 is significant

De Bruijn Graphs

- Recall that de Bruijn graphs have very simple linking rules:
- Each node is a D-character string in some alphabet Σ
- D is the diameter of the graph
- Each node $\left(a_{1}, \ldots, a_{D}\right)$ links to all nodes $\left(a_{2}, \ldots, a_{D}, x\right)$, for all $x \in \Sigma$
- Self-loops are acceptable
- For now assume that each graph is fully populated with N nodes
- Incremental and distributed construction will be discussed later

De Bruijn Graphs 2

- Shortest-path routing is very simple and greedy - See the paper for details
- Classical de Bruijn graph on $\mathrm{N}=8$ nodes, degree $\mathrm{k}=2$ and diameter $\mathrm{D}=3$:

De Bruijn Graphs 3

- Next study degree-diameter tradeoffs of P2P graphs with $\mathrm{N}=10^{6}$ users:

Degree	de Bruijn	Chord	CAN	Pastry	Butterfly
2	20	-	500,000	-	31
3	13	-	-	-	20
10	6	-	40	-	10
20	5	20	20	20	8
50	4	-	-	7	7
100	3	-	-	5	5

De Bruijn Graphs 4

- Improvement in the diameter is significant over all existing structures
- Even the butterfly networks offer diameter 50-60\% larger than that of de Bruijn graphs
- The improvement is most noticeable in lowdegree networks ($\mathrm{k}<20$)
- Large neighbor tables require substantial maintenance and keep-alive traffic when peers frequently fail
- Thus, small-degree graphs are often desirables
- Asymptotically (for very large N), de Bruijn graphs offer diameter D twice as small as any other graph in related work

Routing Distances

- Next we analyze the average distance in each graph
- This is the expected number of hops that each query must travel
- An important metric since there are graphs with diameters smaller than Chord's, but larger average distance
- Xu et al., IEEE JSAC 2003
- We also compare Chord and CAN in this study - Which one is better?

Routing Distances 2

- Chord's distribution of shortest distances is known to be bell-shaped and appears Gaussian (left)
- CAN's distribution progressively becomes Gaussian as well (right)

Routing Distances 3

- Lemma 1: Chord's distribution of shortest distances is binomial with $p=q=1 / 2$
- Appears Gaussian for large D
- Lemma 2: CAN's distribution of shortest distances is a d-fold convolution of this simple 1D distribution (d is the number of dimensions):

$$
p_{1}(n)=\frac{1}{N}\left\{\begin{array}{l}
1, n=0 \\
2,0<n<D \\
q(N), n=D \\
0, \text { otherwise }
\end{array}\right.
$$

$$
q(N)=\left\{\begin{array}{l}
1, N=\text { even } \\
2, N=\text { odd }
\end{array}\right.
$$

Routing Distances 4

- According to the Central Limit Theorem, selfconvolution of $p_{1}(n)$ also appears Gaussian
- Now notice that if the number of dimensions d is $\log _{2} \mathrm{~N} / 2$, CAN's degree and diameter are the same as Chords
- However, there is more to it
- Lemma 3: When $\mathrm{d}=\log _{2} \mathrm{~N} / 2$, distribution of shortest distances in CAN and Chord are identical
- Both graphs offer the same routing performance

Routing Distances 5

- De Bruijn graphs have a completely different routing structure
- These graphs expand exponentially
- Lemma 4: The distribution of shortest distances (PMF) in de Bruijn graphs is:

$$
p(n) \approx \frac{k^{n}}{N}-\frac{k^{2 n-1}}{N^{2}} \geq \frac{k^{n}-k^{n-1}}{N}
$$

- The number of nodes at distance n is approximately $\mathrm{k}^{\mathrm{n}}-\mathrm{k}^{\mathrm{n}-1}$

Routing Distances 6

- Simulations confirm that CAN and Chord for the same degree are identical (from the routing view) (figure below, left, $N=1,024$)
- However, they are not isomorphic
- De Bruijn graphs indeed expand exponentially (figure below, right, $\mathrm{N}=1,000, \mathrm{k}=10$)

Routing Distances 7

- Additional examples
- The average distance μ_{d} in graphs of size $\mathrm{N}=10^{6}$

Degree	Moore	de Bruijn	Chord	CAN	Butterfly
2	17.9	18.3	-	250,000	22.4
3	11.7	11.9	-	-	14.7
10	5.8	5.9	-	19.8	7.3
20	4.5	4.6	10	10	5.7
50	3.5	3.5	-	-	4.3
100	2.98	2.98	-	-	3.65
18					

Routing Distances 8

- Exponential expansion in de Bruijn graphs leads to
- Small diameter
- Very few short cycles
- Low clustering
- Non-existence of short cycles means that alternative (parallel) paths to destinations do not overlap
- This further leads to better resilience to edge and node failure as the graph is tightly packed
- We verify this in the paper

Routing Distances 9

- Additional advantage of smaller average distance is the increased capacity of the network
- For each useful request, peers need to forward (on average) μ_{d} other requests
- Thus, the capacity of the graph is inverse proportional to the average distance (similar to wireless networks)
- De Bruijn graphs offer $\log _{2} \log _{2}$ N/2 times more capacity than Chord/CAN
- Asymptotically, 50\% more than the butterfly
- For $\mathrm{N}=10^{6}, 22 \%$ more

Omitted Material

- We derive clustering coefficients of each graph
- We perform a simple expansion analysis of each graph and generalize clustering to become global
- We further show that de Bruijn graphs have bisection width larger than Chord's by a factor of $\log _{2} \log _{2} \mathrm{~N} / 2$
- All these findings point toward higher resilience and better performance of de Bruijn graphs under node/edge failure
- We finally study the probability that a vertex appears in multiple parallel paths, per-node distribution of the number of non-overlapping shortest paths, and routing performance of these graphs under adversarial failure
- We finish this talk by discussing incremental construction of de Bruijn graphs
- ODRI - Optimal Diameter Routing Infrastructure
- Several other papers concurrently proposed de Bruijn graphs
- Koorde, Kaashoek et al., 2003
- Distance Halving, Naor et al., 2003
- D2B, Fraigniaud et al., 2003
- Our construction is not substantially different

ODRI 2

- Organize all peers into a modulo- $\mathrm{N}_{\max }$ circle - $N_{\text {max }}$ is some upper limit on the number of users
- This circle represents the underlying de Bruijn graph that is split into zones by arriving users
- Assume that degree k is known and $\mathrm{N}_{\text {max }}$ is some power of k
- Each zone $Z_{x}=\left[Z_{1}, Z_{2}\right]$ held by peer x contains a certain number of de Bruijn vertices (all integers between z_{1} and z_{2})
- Each vertex $v \in\left[z_{1}, z_{2}\right]$ links to k other de Bruijn vertices

ODRI 3

- Peer x then links to all peers holding the other end of each edge originating in Z_{x}
- In the figure, degree $k=2$ and x links to peers y and w

ODRI 4

- It is easy to demonstrate that if all zones are the same, then the application-layer diameter is optimal and the degree of each peer is exactly k
- Under a uniform hashing function, zone distributions are not equal
- However, the diameter is still asymptotically optimal
- Simple join method (e.g., Chord, CAN): a joining peer generates a random number and joins the ring at that location (splitting an existing node in half or otherwise)
- Imbalance by a factor of logN with high probability

ODRI 5

- "Power of two choices" method: sample d locations in the graph and split the largest peer
- If the number of sampled locations is $\sim \operatorname{logN}$, then it can be guaranteed that the imbalance stays within a constant factor (usually 2) from the optimal
- This method is implemented in Distance Halving ($\mathrm{d}=$ $8 \operatorname{logN}$ peers) and D2B (unspecified d)
- ODRI has its own variation of this method
- Start from a random location and then walk through the graph searching for the largest node to split
- Reduced join latency as d messages can sample d•k peers (where k is the degree as before)

ODRI 6

- Example
$-\mathrm{N}=30,000, \mathrm{k}=8$
- Traditional methods require over 400 messages to sample 82 peers, while ODRI needs only 10
- To further improve the search, ODRI is biased towards the largest neighbor at each step
- Larger nodes "cover" more DHT space with their edges and are thus more likely to "know" other large nodes
- Loops are prevented by appending the entire path to each request packet
- Node departure can re-introduce imbalance in zone distributions and actually make it worse
- Thus, each departing node x performs a d-walk searching for the smallest node to take its place
- Once found, this smallest node y will take over x's zone
- Successor/predecessor of y will take over its zone
- The d-walk is still biased towards the largest neighbor at each step
- Same reasoning as before
- Performs very well in practice

Conclusion

- Details of these algorithms and probabilistic analysis will be presented in the next paper
- "Evolution of Massive P2P Graphs: Zone Distribution Perspective"
- Our results in the current paper indicate that de Bruijn graphs offer an appealing framework for P2P networks
- Their diameter and average distance are smaller than that of any alternative graph
- Their bisection width and expansion are higher than that of Chord/CAN and no worse than that of the butterfly ${ }_{29}$

Conclusion 2

- De Bruijn graphs are much easier to construct incrementally than other fixed-degree graphs (e.g., the butterfly)
- They exhibit very little path overlap, clustering, and susceptibility to node failure
- Nevertheless, the bisection width of de Bruijn graphs is far from optimal
- Thus, one final question remains: is it possible to simultaneously optimize resilience (e.g., bisection width) and diameter?

