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ABSTRACT
This paper examines graph-theoretic properties of existing
peer-to-peer architectures and proposes a new infrastructure
based on optimal-diameter de Bruijn graphs. Since gener-
alized de Bruijn graphs possess very short average routing
distances and high resilience to node failure, they are well
suited for structured peer-to-peer networks. Using the ex-
ample of Chord, CAN, and de Bruijn, we first study routing
performance, graph expansion, and clustering properties of
each graph. We then examine bisection width, path over-
lap, and several other properties that affect routing and re-
silience of peer-to-peer networks. Having confirmed that de
Bruijn graphs offer the best diameter and highest connec-
tivity among the existing peer-to-peer structures, we offer
a very simple incremental building process that preserves
optimal properties of de Bruijn graphs under uniform user
joins/departures. We call the combined peer-to-peer archi-
tecture ODRI – Optimal Diameter Routing Infrastructure.

Categories and Subject Descriptors
C.2.2 [Communication Networks]: Network Protocols

General Terms
Algorithms, Performance, Theory

Keywords
Peer-to-peer, Modeling, Graph Theory, DHT, de Bruijn

1. INTRODUCTION
In the last few years, peer-to-peer networks have rapidly

evolved and have become an important part of the exist-
ing Internet culture. All current peer-to-peer proposals are
built using application-layer overlays, each with a set of
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graph-theoretic properties that determine its routing effi-
ciency and resilience to node failure. Graphs in peer-to-peer
networks range from star-like trees (centralized approaches
such as Napster) to complex k-node-connected graphs (such
as Chord [40], CAN [31] and Pastry [35]). The performance
of each peer-to-peer architecture is determined by the prop-
erties of these graphs, which typically possess Θ(logN) di-
ameter and Θ(logN) degree at each node (where N is the
number of peers in the system). Until recently [12], [20],
[27], understanding whether these bounds were optimal and
whether there existed fixed-degree graphs with logN diame-
ter was believed to be the fundamental question of peer-to-
peer research [32], [42].

Besides the diameter and degree, a third very important
property of a peer-to-peer structure is its resilience to simul-
taneous node failure. Without fault resilience, the answer to
logarithmic routing in fixed-degree networks is obvious and
includes a variety of simple tree-like structures. Thus, the
main goal of this work is to find a fixed-degree graph with
not only provably minimum diameter, but also maximum
connectivity (i.e., fault resilience) among all such graphs.

Another dimension to this work is to provide a unifying
analytical framework for understanding the various prop-
erties of existing and future peer-to-peer graphs. Many of
the existing proposals (e.g., CAN, Chord, Pastry) have not
been modeled in ways that can provide a clear quantita-
tive assessment of each graph’s resilience to node failure. In
addition to these classical approaches, there are proposals
based on heuristics (e.g., [14], [26], [41]) with no provably-
optimal underlying foundation for choosing one or another
graph structure. Our work supplements such proposals with
a more fundamental insight into the problem and offers an-
alytical tools for evaluating future peer-to-peer routing ar-
chitectures.

The paper is organized as follows. We first examine the
problem of obtaining logarithmic routing diameter in fixed-
degree (sparse) graphs. Our work relies on generalized de
Bruijn graphs [19] of fixed degree k and asymptotically op-
timal diameter logkN . However, since the diameter itself
does not tell the whole story, we also study the average dis-
tances between all pairs of nodes since this metric (rather
than the diameter) determines the expected response time
(i.e., number of hops) and the capacity of the peer-to-peer
network.

We next examine clustering and small-world properties
of each graph and explain how they relate to graph expan-
sion. We derive that de Bruijn graphs have an order of
magnitude smaller clustering coefficients than Chord, which
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explains the differences in expansion, resilience, and diam-
eter between the two graphs. We then study the resilience
of these graphs against node failure, or simply their connec-
tivity. In general, connectivity determines the number and
location of failures that a graph can tolerate without becom-
ing disconnected. We examine edge bisection width in each
graph and demonstrate that de Bruijn graphs are several
times more difficult to disconnect than the traditional ap-
proaches. We also examine the amount of overlap between
alternative (parallel) paths leading to any given destination
and investigate how it affects the success of greedy routing
under adversarial node failure.

Having confirmed that de Bruijn graphs offer a resilient
and diameter-optimal routing structure, we provide an algo-
rithm for building such graphs incrementally as peer nodes
join and leave the system. We conclude the paper by show-
ing that under uniform user joins, the diameter of the peer-
to-peer graph remains asymptotically optimal.

2. BACKGROUND
Many current peer-to-peer networks [31], [35], [40], [43]

are based on distributed hash tables (DHTs), which provide
a decentralized, many-to-one mapping between user objects
and peers. This mapping is accomplished by organizing the
peers in some virtual coordinate space and hashing each ob-
ject to these virtual coordinates. The information about
each object (such as the IP address of the owner) is kept
by the peer to whose coordinates the object hashes. Their
distributed structure, excellent scalability, short routing dis-
tances, and failure resilience make DHTs highly suitable for
peer-to-peer networks.

2.1 Peer-to-Peer DHTs
Many current DHTs [17], [35], [37], [43], [44] rely on the

concept of prefix-based routing introduced by Plaxton et al.
in [29]. Plaxton’s framework is extended in Tapestry [43] and
Bayeux [17], [44] to accommodate dynamic join/departure
of peers and provide necessary failure-recovery mechanisms.
A similar method based on generalized hypercubes (Pastry)
is shown by Rowstron et al. in [35]. Using an alphabet of size
b, Pastry builds a k-regular graph with diameter logbN and
node degree (b− 1) logb N, b ≥ 2. Among other approaches,
Ratnasamy et al. [31] propose a peer-to-peer architecture
called Content-Addressable Network (CAN) that maps the
DHT to a d-dimensional Cartesian space. CAN’s diameter
is 1/2dN1/d and the degree of each node is 2d. Stoica et al.
[40] propose a distributed graph called Chord, which uses a
1D modulo field (ring) with the diameter and degree both
equal to log2N .

Recent proposals start to address the issue of routing in
logarithmic time in fixed-degree graphs. For example, Con-
sidine et al. [8] expand on Chord’s ring structure by con-
structing a digraph (directed graph) of fixed degree; how-
ever, the proposed structure needs to estimate the num-
ber of active nodes to properly build the application-layer
graph. Among tree-based structures, Freedman et al. [13]
propose a DHT based on distributed tries and Tran et al.
[41] organize peers into a multicast tree of degree O(k2) and
diameter O(logkN). Xu et al. [42] study diameter-degree
tradeoffs of current DHTs and propose a graph based on a
modified static butterfly. As of this writing, the details of
this framework are still under on-going investigation. An-

other peer-to-peer architecture based on butterfly networks
(Viceroy) is shown in [25].

Independently of this work, several recent papers have
also proposed de Bruijn graphs for peer-to-peer networks
[12], [20], [27]. These developments are complementary to
our investigation and provide implementation details and
additional analysis not covered in this paper.

2.2 Fault Tolerance of DHTs
Fault tolerance of peer-to-peer networks is an equally im-

portant topic. Liben-Nowell et al. [23] examine error re-
silience dynamics of Chord when nodes join/leave the system
and derive lower bounds on the degree necessary to main-
tain a connected graph with high probability. Fiat et al. [11]
build a Censorship Resistant Network that can tolerate mas-
sive adversarial node failures and random object deletions.
Saia et al. [36] create another highly fault-resilient struc-
ture with O(log3N) state at each node and O(log3N) per-
message routing overhead. Unfortunately, very few studies
examine the resilience of existing graphs in comparison with
each other or attempt to understand whether this resilience
can be improved while preserving the diameter and routing
overhead of the graph. We are aware of only one compari-
son study, in which Gummadi et al. [15] find that ring-based
graphs (such as Chord) offer more flexibility with route se-
lection and provide better performance under random node
failure compared to several other traditional DHTs.

2.3 Random Graphs
Another direction for building DHTs relies on properties

of random graphs. The main thrust in this area is to build
logarithmic-time routing structures with constant degree.
Pandurangan et al. [28] propose a random DHT graph with
a constant degree and (almost certainly) logarithmic diame-
ter; however, the paper does not provide an efficient routing
algorithm for the proposed structure that can deterministi-
cally explore the low diameter of the graph. Aspnes et al.
[1] examine random graphs of fixed degree l + 1 and derive
upper and lower bounds on the expected routing distance in
such graphs. Their results show that both bounds are pro-

portional to ln2 N
l ln ln N

. Law et al. [21] build random expander
graphs based on Hamiltonian cycles with O(logN) diameter
and O(logN) degree.

Even though random graphs of logarithmic diameter can
be built with high probability using random neighbor selec-
tion, the design of efficient routing algorithms competitive
to those in deterministic graphs is still an open issue.

2.4 Optimal-Diameter Graphs
The problem of designing an optimal-diameter graph of

fixed degree has been extensively studied in the past. In
one formulation of this problem, assume a graph of fixed
degree k and diameter D (the maximum distance between
any two nodes in the graph). What is the maximum number
of nodes N that can be packed into any such graph? A well-
known result is the Moore bound [6], [7]:

N ≤ 1 + k + k2 + ... + kD =
kD+1 − 1

k − 1
= NM . (1)

Interestingly, Moore bound NM is only achievable for triv-
ial values of k and D. In fact, the Moore bound is provably
not achievable for any non-trivial graph [6]. Directed de
Bruijn graphs come close to the Moore bound and can be
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built with N = kD nodes [19] or even with N = kD + kD−1

nodes [33]. In general, it is not known how close we can
approach upper bound NM for non-trivial graphs [7]. In the
context of peer-to-peer DHTs, we are concerned with a dif-
ferent formulation of the problem: given N nodes and fixed
degree k, what is the minimum diameter in any graph built
on top of these N nodes? The answer follows from (1):

D ≥ dlogk (N(k − 1) + 1)e − 1 = DM . (2)

Imase and Itoh [19] construct nearly optimal de Bruijn
graphs of diameter D = dlogk Ne, which is at most DM +1;
however, for large k, the two diameters become asymptoti-
cally equal. In this paper, we use the same basic algorithms
[19] even though they can be slightly improved [33].

Another very important metric related to the routing per-
formance of a graph is its average distance µd between every
pair of nodes (note that we include distances from a node to
itself in µd while some of the related work does not). The
lower bound on µd in any k-regular graph is given by the
average distance in the corresponding Moore graph and is
also not achievable for non-trivial values of N and k [38]:

µd ≥ DM − k(kDM − 1)

N(k − 1)2
+

DM

N(k − 1)
≈ DM − 1

k − 1
. (3)

With respect to µd, de Bruijn graphs are again asymp-
totically optimal and converge to the bound in (3) for suffi-
ciently large N and k [38].

3. BASICS OF DE BRUIJN GRAPHS

3.1 Motivation
One of the goals of this work is to build a distributed hash

table (DHT) on top of fixed-degree graphs with provably
optimal routing diameter. Since non-trivial Moore graphs
do not exist [6], we use de Bruijn graphs [19] of diameter
dlogk Ne and often call them “optimal” since among the
class of practically achievable graphs with simple routing
rules, they are optimal. To illustrate the impressive reduc-
tion in diameter compared to the classical DHT structures,
assume 1 million nodes and degree k fixed at dlog2 Ne = 20.
Under these circumstances, Chord offers a graph with diam-
eter D equal to dlog2 Ne = 20, while a de Bruijn graph with
the same number of neighbors has a diameter four times
smaller: D = dlog20 Ne = d4.61e = 5. Note that the di-
ameter of the corresponding Moore graph is essentially the
same: DM = d4.59e = 5.

Throughout the paper, we are concerned with the proper-
ties of the underlying graph of each peer-to-peer network.
Consequently, we examine the diameter and resilience of
these graphs assuming that the hashing function equally
spreads users along the DHT space and that all graphs are
populated with the maximum number of nodes (this as-
sumption is relaxed in section 7). We further assume for
simplicity of notation that the total number of nodes N is
a power of node degree and omit ceiling functions whenever
appropriate.

3.2 Structure of de Bruijn Graphs
De Bruijn graphs [5], [19], [22], [38] are nearly optimal,

fixed-degree digraphs of diameter logkN , where k is the fixed
degree of each node and N is the total number of nodes.
Note that de Bruijn graphs are directed graphs with k out-
going and k incoming edges at each node, which also holds
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Figure 1: A de Bruijn graph of degree 2 and diame-
ter 3 (left). Optimal routing from Hx to Hy (right).

for many other protocols [35], [40], [43]. Assume that each
node x is hashed to a string Hx drawn from some alphabet
Σ of size k. For example, if k is two, then Hx is a binary
string of 0s and 1s. A directed de Bruijn graph [19] contains
N = kD nodes where D is the diameter of the graph. Each
node Hx in the graph is a string (h1, . . . , hD) of length
D linked to k other nodes (h2, . . . , hD, α), for all possible
α ∈ Σ. A classical de Bruijn graph for k = 2 and N = 8 is
shown in Figure 1 (left) [38]. The diameter of the graph in
the figure is 3, even though some nodes link to themselves.
In fact, de Bruijn graphs contain exactly k nodes (h, h,. . . ,
h), for all h ∈ Σ, which link to themselves (this makes the
graph irregular). It is possible to create a regular de Bruijn
graph by linking these nodes to each other for added failure
resilience. We discuss this in section 6.

3.3 Routing
Recall that shortest-path routing between any two nodes

in de Bruijn networks follows a greedy procedure executed
by individual nodes in a distributed fashion [19], [38]. As-
sume that node x seeks a shortest path to node y. The choice
of the next-hop neighbor follows a simple string-matching al-
gorithm shown in Figure 1 (right). Node x finds the longest
overlap between the suffix of its hash index Hx and the pre-
fix of y’s hash index Hy. In the figure, the longest overlap,
labeled B, contains (D − i) digits, for some i. By merging
prefix A, overlap B, and suffix C, node x can generate the
entire path P to reach y. Notice that P starts with Hx, ends
with Hy, and contains no more than (D − 1) intermediate
nodes (each node is a D-character substring of P , read from
left to right). As an example, again consider the graph in
Figure 1 (left). Suppose node 001 needs to route to node 101
along the shortest path. Using the above procedure, prefix
A is 00, overlap B is 1, and suffix C is 01. The resulting
shortest path is P = 00101, which translates to 001→010
→101.

3.4 Comparison with Existing Graphs
In this section, we briefly examine diameter-degree trade-

offs of the existing protocols and compare them to those of
de Bruijn graphs. We leave a thorough analysis of numerous
recently proposed graphs [14], [21], [25], [26], [41], [42] for
future work and conduct a detailed study of two classical
approaches Chord [40] and CAN [31] in sections 4-6. This
section also shows results for Pastry and the static butter-
fly graph (without detailed analysis) and all together omits
Tapestry since its diameter-degree tradeoff is very similar
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Graph Degree Diameter D

de Bruijn k logkN
Trie k+1 2logkN
Chord log2N log2N

CAN 2d 1/2dN1/d

Pastry (b−1)logbN logbN
Classic butterfly k 2 logk N(1− o(1))

Table 1: Asymptotic degree-diameter properties of
the different graphs.

to that of Pastry.1 Note that our treatment of the butter-
fly graph follows the traditional definition [22], which is the
basis of two recent proposals Viceroy [25] and Ulysses [42];
however, neither of these two graphs exactly implements the
classic butterfly. Therefore, as we discuss below, the indi-
vidual diameter-degree tradeoffs of these approaches are dif-
ferent from that in the classic graph. We further remove all
fault-resilient additions of each structure (such as the pre-
decessor pointer and r-element successor list in Chord) and
only analyze the “raw” performance of each graph.

As an illustration of fixed-degree tree structures, we also
examine k-ary tries as they have been recently proposed for
DHTs [13]. A k-ary trie uses prefix-based routing over a
tree where each parent maintains k children, one child for
each symbol in the alphabet. Consequently, the maximum
degree of any node in the trie is k + 1 and the diameter of
the graph is 2 dlogk Ne (i.e., the distance to the root and
back).

Finally, recall that the traditional butterfly network con-
tains N = mkm nodes (where k is again the degree of each
node) and has diameter D = 2m–1. Notice that D can be
expressed in terms of degree k using Lambert’s function W
[22]:

D = 2m− 1 = 2
W (N ln k)

ln k
− 1 = 2 logk N(1− o(1)). (4)

Even though butterflies are appealing graphs, there are
non-trivial difficulties in building them as nodes join and
leave the system. In one example, Viceroy [25] implements
a binary butterfly with diameter 3log2N and degree 7 and
further requires estimation of the number of nodes in the
system. In another example, Ulysses [42] adds logN neigh-
bors to each node and is no longer a fixed-degree graph. As
we show in section 7, distributed de Bruijn graphs possess
no more conceptual complexity than Chord, achieve optimal
diameter in the peer-to-peer graph, and can be built with a
fixed application-layer degree.

Table 1 shows asymptotic diameter and node degree of
de Bruijn graphs and several existing (deterministic) struc-
tures. First note that we assume that CAN uses circular
(toroidal) routing in each of the dimensions, which means
that all nodes along the borders maintain 2d neighbors and
that the CAN graph is regular. Second, Chord allows a gen-
eralization to d log2 N neighbors and diameter log1+d N [40];
however, it is most frequently used with the default value of
d = 1 shown in the table (which is also the version studied
in this paper). Finally, the trie maintains its average de-
gree over all nodes equal to only 2 (since approximately k−1

k

1Strictly speaking, Tapestry’s routing table size is b logb N
instead of (b− 1) logb N [43].

k de Trie Chord CAN Pastry Classic
Bruijn butterfly

2 20 – – huge – 31
3 13 40 – – – 20
4 10 26 – 1,000 – 16
10 6 13 – 40 – 10
20 5 10 20 20 20 8
50 4 8 – – 7 7
100 3 6 – – 5 5

Table 2: Graph diameter for N = 106 (cells with a
dash indicate that the graph does not support the
corresponding node degree).

fraction of the nodes are leaves); however, the imbalance in
the middle of the tree with nodes of degree k + 1 creates a
rather pessimistic diameter-degree tradeoff.

We next examine the performance of these graphs in a
hypothetical peer-to-peer system of N = 106 nodes. Table
2 shows the diameter of each graph as a function of its de-
gree k. Notice that for low-degree networks (k ≤ 20), even
the trie offers a better diameter than the three classical ap-
proaches (i.e., CAN, Chord, and Pastry). In fact, the trie
routes in half the time compared to Chord or CAN. Also
notice that de Bruijn graphs with the same number of neigh-
bors offer diameters at least four times smaller than those in
Chord and CAN. Furthermore, de Bruijn graphs can route
between any pair of nodes in 20 hops with only 2 neighbors,
which is 10 times less than that required by CAN, Chord,
or Pastry to achieve the same diameter. Finally, the tra-
ditional butterfly offers a diameter approximately 50-60%
larger than that in de Bruijn graphs for all values of k.

One interesting observation about CAN points to the fact
that selection of the number of dimensions d is an important
decision for a given number of nodes N . It is noted in [31]
that d is likely to be fixed while N changes; however, as
Table 2 shows, many small values of d ¿ log2 N result in
greatly suboptimal diameters. This observation is easy to
explain since CAN’s diameter 1/2dN1/d is a strictly convex
function with a unique minimum located at d = lnN (e
peers per dimension). Keeping in mind that each dimension
must contain an integer number of peers, the best practical
diameter is achieved for d = log3N . Thus, for N = 106, the
optimal number of dimensions d is 12 (k = 24 neighbors)
and the optimal diameter is 19. Also note that when d =
1/2 log2 N , CAN’s degree and diameter are both equal to that
of Chord (this is shown in Table 2 for k = 20 and also noted
in [31], [40]).

Further examining Table 2, notice that Pastry offers a
good diameter only for large b À 2. In fact, to come within
one hop of the optimal diameter for N = 106, Pastry re-
quires at least 160 neighbors (not shown in the table). Such
large routing tables may be impractical in the real Internet
due to high volume of traffic required to maintain peer-level
connections and repair broken links when existing neighbors
frequently fail. From this angle, bounded-degree graphs are
preferable.

On the other hand, Pastry has an advantage over other
structures in its ability to employ proximity-based peer se-
lection. In theory, such graph construction is possible in
Chord, CAN, and de Bruijn, but it requires a less-transparent
implementation. Since the benefits of topologically aware
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peer-to-peer networks are hard to quantify with respect to
other metrics, our current study only focuses on pure graph
performance of each approach. Construction of topologi-
cally aware de Bruijn graphs is a possible topic for future
investigation.

4. ROUTING ANALYSIS
De Bruijn graphs have desirable properties for peer-to-

peer networks that stem from their small diameter. How-
ever, the diameter of a graph is simply the largest distance
between any pair of nodes and only provides an upper bound
on the delay (number of hops) experienced by the users. A
much more balanced metric is the average distance between
any pair of nodes since this is the performance a user can
expect from the peer-to-peer system when searching for ob-
jects. In fact, it is possible to reduce the diameter of a graph
and at the same time increase its average routing distance
as was recently demonstrated in [42].

Define d(x,y) to be the shortest distance between nodes
x and y in a given graph. To better understand how the
distribution of d(x,y) is formed and study expansion prop-
erties of each graph, the full version of the paper [24] first
derives the density (mass) function of d(x,y) and then com-
putes its expectation µd. In this paper, we present the most
important results from [24] and omit all technical proofs.

4.1 Chord
Stoica et al. [40] showed in simulation that the average

inter-node distance µd in Chord is D
2

and offered a sim-
ple explanation of why this happens. They further showed
the distribution of d(x,y) to be bell-shaped as demonstrated
in Figure 2 (left) for N = 1,024. The histogram appears
to be Gaussian as illustrated by an almost-perfect fit of a
Gaussian distribution in the figure. It has been noted before
that certain real-world graphs (such as those describing web-
page linkage structure [3]) exhibit Gaussian distributions of
d(x,y), but no explanation of why this happens has been
offered. Below, we analyze Chord’s distribution of shortest
distances, understand why it appears to be Gaussian, and
provide additional qualitative insight into the structure of
the graph using “small-world” terminology.

The following lemma is proved in [24].

Lemma 1. Each node in Chord can reach exactly CD
n nodes

at shortest distance n.

Using symmetry of nodes in Chord and the result of this
lemma, the PMF (probability mass function) of d(x,y) is
given by a binomial distribution with parameters p = q = 1/2
(recall that N = 2D):

p(n) =
CD

n

N
=

CD
n

2n2D−n
= CD

n pnqD−n, (5)

where p(n) is the PMF of shortest distances d(x, y). Our
simulation results confirm that (5) gives the exact distribu-
tion of shortest path lengths in Chord. The expected value
µd of a binomial random variable is a well-known result and
equals Dp, or simply D

2
. This provides an alternative deriva-

tion of the result previously shown in [40].
The reason why the distribution of shortest distances in

Chord appears to be Gaussian is explained by the de Moivre-
Laplace theorem, which states that the binomial distribu-
tion in (5) asymptotically tends to a Gaussian distribution
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Figure 2: Distribution of shortest paths d(x, y) in
Chord for N = 1,024 together with a Gaussian model
(left). Shortest path distribution in CAN for N =
10 (1D), 102 (2D), 103(3D), 104 (4D) nodes (right).

with mean Dp = D
2

and variance Dpq = D
4

for sufficiently
large D. Even though we have not provided an insight into
why certain Internet graphs exhibit Gaussian distributions
of shortest paths, we found a clear explanation of this phe-
nomenon in Chord.

There is also a simple intuitive link between the bell shape
of the curve in Figure 2 (left) and the expansion properties
of the graph. As the distance from any given node x in-
creases, the number of new neighbors found by the search
slowly saturates and starts declining after half the nodes
have been reached. This means that many of the newly
found nodes link to some of the previously discovered nodes.
This leads to a situation where the new neighbors “know”
many of the old neighbors, which is often called the small-
world property (or clustering) of the graph [3], [4]. In graph
theory, the growth in the number of new neighbors discov-
ered at a certain distance is related to node expansion of the
graph. Quickly expanding graphs maintain an exponentially
increasing number of new neighbors up to the diameter of
the graph, which means that very few of the new neighbors
“know” the old ones (and hence their clustering coefficients
are virtually zero). We study these phenomena more care-
fully in section 5, but currently conjecture that we should
expect reasonably high clustering and low expansion from
Chord.

4.2 CAN
Recall that CAN organizes its nodes into a d-dimensional

Cartesian space. We first examine the average distance in
this graph and then show that for the same degree, CAN’s
distribution of routing distances becomes identical to that
in Chord. The following result in proved in [24] and is men-
tioned for the even values of N in [31].

Lemma 2. The expected distance between any pair of nodes
in CAN is D

2
for even N and 2D+d

4
− o(1) for odd N.

Our next lemma shows that as the number of dimensions
d increases, CAN’s distribution of shortest paths becomes
Gaussian as well [24].

Lemma 3. For large d, CAN’s distribution of shortest
distances p(n) is Gaussian.

This lemma is illustrated in Figure 2 (right) for four dif-
ferent values of d. As the figure shows, starting with d =
4, the PMF function p(n) becomes Gaussian with very high
accuracy (the Gaussian model is not shown in the figure).

5



0%

5%

10%

15%

20%

25%

30%

0 1 2 3 4 5 6 7 8 9 10

distance n

p
ro

b
ab

ili
ty

CAN Chord

0.1%

1.0%

10.0%

100.0%

0 1 2 3

distance n

p
ro

b
ab

ili
ty

 
Figure 3: Comparison between Chord’s and CAN’s
shortest path distributions for N = 1,024 and d = 5
(left). Distribution of shortest distances in de Bruijn
for N = 1,000 and k = 10 (right).

As noted in section 3.4, when d = 1/2 log2 N , CAN’s de-
gree and diameter are both log2N , or those of Chord. We
call such CAN “logarithmic” and note that the size of its
dimensions is N1/d = 4 peers.

Lemma 4. The distribution of shortest distances in log-
arithmic CAN (d = 1/2 log2 N) is binomial and identical to
that in Chord.

The result of this lemma is illustrated in Figure 3 (left) for
N= 1,024, d = 5, and D = 10, which shows a perfect match
between the two graphs (the distributions also match numer-
ically). Note that the only problem that prevents CAN from
“becoming” Chord is the difficulty of dynamically adjusting
the number of dimensions d. Even though CAN offers more
flexibility with the choice of d, the choice itself is very dif-
ficult as it must be made a-priori and can only rely on the
expected number of nodes in the system. Small (fixed) val-
ues of d prevent the system from scaling to large N , while
large values of d are inefficient in settings where N happens
to be small. Therefore, it appears that in practical networks
of non-trivial size, the ability to scale its degree dynamically
provides Chord with a clear advantage over CAN.

4.3 De Bruijn
From the diameter perspective, de Bruijn graphs offer sig-

nificantly smaller end-to-end upper bounds on routing time.
However, the improvement by a factor of 4 over Chord for
N = 106 no longer holds when we examine the average short-
est distances in each graph. Nevertheless, the improvement
in µd is still substantial, but drops down to about a factor
of two faster than Chord as we demonstrate below.

In general, the distribution of de Bruijn’s distances d(x, y)
is very complicated and there is no known closed-form ex-
pression for its PMF p(n) [38]. In the full version of the
paper [24], we derive a simple formula for p(n) that is exact
for all graphs of diameter D ≤ 3 and is very close to the real
p(n) for the rest of the graphs.

Lemma 5. The asymptotic distribution of shortest dis-
tances in de Bruijn graphs is given by:

p(n) ≈ kn

N
− k2n−1

N2
≥ kn − kn−1

N
. (6)

It immediately follows from the lemma that de Bruijn
graphs expand exponentially and that the majority of nodes
are reachable at shortest distance D from each node v. This

k Moore de Bruijn Chord CAN Classic
graph butterfly

2 17.9 18.3 – huge 22.4
3 11.7 11.9 – – 14.7
4 9.4 9.5 – 500 11.8
10 5.8 5.9 – 19.8 7.3
20 4.5 4.6 10.0 10.0 5.7
50 3.5 3.5 – – 4.3
100 2.98 2.98 – – 3.65

Table 3: The average distance in each graph (N =
106 nodes).

is demonstrated in Figure 3 (right), which shows de Bruijn’s
p(n) for N = 1,000 and k = 10 (note the log scale of the
y-axis). Intuitively, it is clear that the average distance in
de Bruijn graphs must be very close to diameter D and that
the local structure of the graph at each node looks like a tree
(i.e., very few short cycles and low clustering). We examine
the cyclic structure of each graph in section 5 and in the
meantime, focus on de Bruijn’s average distance µd.

Lemma 6. The average distance in de Bruijn graphs is
asymptotically:

µd ≈ D − 1

k − 1
. (7)

As expected, the average distance in de Bruijn graphs
cannot shrink much beyond its already very small diameter
D. In fact, for large values of N , the average distance µd in
(7) asymptotically tends to D as k becomes large.

4.4 Butterfly
The final graph we examine in this section is the classic

butterfly. Even though its diameter and average distance are
close to optimal, they are always higher than those in (non-
trivial) de Bruijn graphs. Recall that the average distance
in the butterfly graph is given by the following [18]:

µd =
3m− 1

2
− 1

k − 1
+

m

N(k − 1)
≈ 3 logk N

2
, (8)

which, for large N and k, is asymptotically 50% larger than
the same metric in de Bruijn graphs.

4.5 Discussion
The results of this section indicate that de Bruijn graphs

offer not only provably-optimal diameter D, but also smaller
average routing times compared to Chord, CAN, and the
static butterfly. As shown in Table 3 for N = 106, the
average distance in de Bruijn graphs is still smaller than
half of that in Chord and CAN for the same number of
neighbors and 22% smaller than that in the butterfly. Also
notice that for large k, µd in de Bruijn graphs converges to
the best possible average distance of Moore graphs shown
in the first column of Table 3.

This result has several practical implications. First, µd

determines the expected delay in the graph and represents
a measure of responsiveness of the system to user searches.
Second, the average distance determines the capacity of a
peer-to-peer network, where the capacity is a term widely
used in interconnection and wireless networks to define the
throughput available to each node under random communi-
cation patterns within the network. Since each peer must
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forward requests for other peers, the expected useful capac-
ity of a node is determined by the inverse of µd (i.e., for each
useful request a node makes, it must forward on average µd

other requests).
Assuming fixed transmission bandwidth and discounting

interference effects, the average capacity c(G) of wireless
ad-hoc networks is O(1/√N) due to spatial restrictions on
connectivity [16], while both Chord and logarithmic CAN
maintain an average capacity of 1

µd
= 2

log2 N
. Compared to

wireless networks, this is a much better bound; however, it
is still several times lower than that in de Bruijn graphs.
Even assuming a worst-case average distance µd = D in de
Bruijn graphs, their average capacity with log2N neighbors
is superior to Chord’s for all N > 16:

c(G) =
1

logk N
=

log2 log2 N

log2 N
. (9)

In fact, the ratio of these two capacities grows infinitely
large (albeit very slowly) for large N . Compared to the
static butterfly, de Bruijn graphs offer asymptotically 50%
more capacity and at least 22% more capacity in graphs of
practical size examined in this work.

In the current Internet, each search request typically car-
ries a small amount of information and it is not clear at this
point whether future peer-to-peer systems will be utilized
to the point of their ultimate capacity. Nevertheless, we be-
lieve that it is desirable to design the underlying structure of
the application-layer graph to be able to carry as many con-
current requests as possible. Thus, we must conclude that
de Bruijn graphs offer clear benefits in terms of expected
capacity and routing distances (delay) over the existing ap-
proaches.

There exists, however, one drawback of fixed-degree graphs
based on the static butterfly and de Bruijn graphs. In both
cases, edge load distribution is not uniform and results in
some edges carrying more load (on average) than others. In
addition, de Bruijn graphs demonstrate non-uniform node
load distribution. This is a well-studied area in intercon-
nection networks and there are many improvements to the
routing protocols that can distribute the load in de Bruijn
and butterfly networks more evenly [18], [38], [42]. We leave
exploration of this direction for future work.

Next, we investigate clustering and then resilience features
of de Bruijn graphs before addressing their practical use in
peer-to-peer networks.

5. CLUSTERING AND EXPANSION
Following significant research effort to model the structure

of the current Internet, it was discovered that many of the
existing topology generators did not accurately match the
“small-world” (clustering) properties of the Internet graph
[3], [4]. Clustering is a very interesting concept that is found
in many natural phenomena and that determines how tightly
neighbors of any given node link to each other. In what fol-
lows, we examine clustering in Chord, CAN, and de Bruijn
graphs, study graph-theoretic semantics behind the cluster-
ing coefficient, and show why metrics related to clustering
are important concepts for peer-to-peer systems.

Given graph G = (V, E), node v ∈ V , and its neighbor-
hood Γ(v) = {u: (v,u) ∈ E}, clustering coefficient γ(v) is
defined as the ratio of the number of links L(Γ(v)) that are
entirely contained in Γ(v) to the maximum possible number

of such links (if the graph is undirected, each link in L(Γ(v))
is counted twice):

γ(v) =
L(Γ(v))

|Γ(v)|(|Γ(v)| − 1)
. (10)

Graph clustering γ(G) is the average of γ(v) for all ver-
tices v with degree at least 2. The main questions that we
study in this section are: what exactly does clustering mean
and how does it affect the properties desirable in peer-to-peer
networks?

5.1 Clustering Coefficients
We first present the values of clustering coefficients of all

three graphs (for proofs, see [24]) and then explain the mean-
ing of our results.

Lemma 7. Chord’s clustering coefficient is 1
log2 N

.

Lemma 8. De Bruijn’s clustering coefficient is k−1
N

.

Notice that de Bruijn’s γ(G) decays to zero much quicker
than Chord’s confirming our earlier conjecture based on the
distribution of shortest paths in section 4. The derivation
of γ(G) for CAN is much simpler as one can easily no-
tice that none of the nodes in any neighborhood link to
each other. Hence, CAN’s γ(G) is zero. This is somewhat
counter-intuitive since CAN’s number of new neighbors be-
comes saturated at D

2
just as in Chord and therefore its

clustering properties should be similar to Chord’s. We next
examine the reasons behind this phenomenon and generalize
clustering to become a global metric.

5.2 Cycles
There are two ways to better understand what clustering

means and assess its importance for peer-to-peer networks.
The first insight is based on cycles. Given a k-regular undi-
rected graph G, it is easy to notice that the number of 3-
cycles per node determines the clustering coefficient of the
graph. Recall that an n-cycle is a path that starts and ends
in the same node and contains exactly n edges2. Hence, any
3-cycle must involve two direct neighbors of node v, which
results in clustering.

Since one goal in peer-to-peer networks is to reach as
many nodes as possible within a certain number of hops,
cycles that lead back to the original node where the request
started are not very helpful. Another goal of peer-to-peer
networks is to provide a fault-resilient environment where
a simultaneous collapse of several nodes does not separate
the graph into disjoint components. Short cycles mean that
paths from any node x through different neighbors leading
to any destination y must overlap with each other. This
is not desirable since multiple parallel paths to y may be
compromised when nodes in the neighborhood fail. This is
shown in Figure 4 (left) where failure of node 1 leaves x with
no path leading outside of its neighborhood. In fact, when
node 1 fails, nodes 2 and 3 are also disconnected from the
rest of the graph since all of their outgoing (as well incom-
ing) edges are locally clustered.

Now we come back to the issue of why CAN has zero clus-
tering, but identical shortest-path properties to those found
in Chord. The absence of 3-cycles in CAN is explained by

2Usually, these paths are required to be edge and/or node
disjoint, but this always holds for 3-cycles.
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Figure 4: High clustering leads to weak connections
outside a neighborhood (left). A more generic defi-
nition of clustering (right).

the fact that it has no odd cycles whatsoever, but it does
have plenty of even cycles. In fact, the number of 4-cycles
in CAN is roughly the same as in undirected Chord with
the same number of neighbors. Consequently, local proper-
ties captured by the clustering coefficient do not necessar-
ily mean much for graphs like CAN where only “friends of
friends” have common acquaintances while direct friends of
node x never know each other. This is illustrated in Figure
4 (right), where clustering coefficient γ(x) is zero, but nodes
2, 3, 4 all link to the same “friend of a friend” node 5.

The concept of n-cycles applies to directed graphs as well;
however, it does not directly produce the clustering coeffi-
cient because of a stricter nature of directed cycles. These
difficulties lead us to generalize the framework of clustering
using expansion analysis below.

5.3 Graph Expansion
Examine Figure 4 (right), which shows how undirected

4-cycles contribute to a graph’s global clustering proper-
ties. Global clustering is a concept of “friends knowing each
other” generalized to “friends knowing each others’ friends”.
Although the previous discussion of cycles allows one to ac-
count for these cases, we seek a more generic and useful
definition of clustering that goes beyond n-cycles (n ≥ 3)
and has a simple closed-form analytical expression for all
three graphs.

We next study graph expansion, which determines how
quickly the graph finds “unknown” nodes. Consider graph
G = (V , E) and select some of its nodes into set S ⊂ V .
Define the set of all edges between S and the rest of the
graph V \S to be ∂S={(u, v): (u, v) ∈ E, u ∈ S, v ∈ V \S}.
∂S is called the edge boundary of S. Edge expansion i(S) is
defined as the ratio of the size of ∂S to the size of S:

i(S) =
|∂S|
|S| . (11)

It is easy to see the relationship of i(S) to clustering. Se-
lect S to be the neighborhood Γ(v) of some node v. There-
fore, |S| = k and the number of edges contained within S is
k2−|∂S|, generically assuming a k-regular graph. Then the
clustering coefficient of v is given by:

γ(v) =
k2 − |∂S|
k(k − 1)

=
k2 − i(Γ(v))k

k(k − 1)
=

k − i(Γ(v))

k − 1
. (12)

Edge expansion determines the strength of the graph in
the presence of edge failure. Clearly, a larger clustering co-

efficient in a k-regular graph implies smaller i(Γ(v)) as seen
in (12) and generally leads to weaker graphs.

Definition 1. Graph edge expansion (sometimes called
the isoperimetric number of the graph) i(G) is the minimum

of i(S) for all non-empty sets S ⊂ V, |S| ≤ |V |
2

.

Notice that by examining i(G), we no longer focus on local
clustering, but rather on global properties of the graph and
its resilience to edge failure over all possible sets S. Edge
expansion tells us how many edges link outside any set S;
however, it does not tell us if the outgoing edges link to
the same node multiple times. For example, in Figure 4
(right), there are 8 edges leaving neighborhood Γ(x), but
they link to only 4 unique nodes, which indicates a good
amount of path overlap. Edge expansion tells us the size of
the edge cut between Γ(x) and the rest of the graph, which is
a useful analysis tool for studying a graph’s resilience when
edges are expected to fail (i.e., 8 edges in the cut are better
than 4). In peer-to-peer systems, node failure is much more
common than edge failure, in which case regardless of how
many edges cross the cut, the strength of the neighborhood
is determined by the number of nodes on the other side of
∂S. Hence, from the resilience perspective of peer-to-peer
networks, it makes more sense to examine node expansion
of the graph as we define below.

Definition 2. Consider graph G = (V, E) and some sub-
set of nodes S ⊂ V . Define the node boundary of S to be
∂S = {v : (u, v) ∈ E, u ∈ S, v ∈ V \S}. Node expansion
h(G) of the graph is given by:

h(G) = min
{S:|S|≤|V |/2}

|∂S|
|S| . (13)

Both i(G) and h(G) are related to edge and node bisection
widths of the graph and generally are NP-complete prob-
lems. Furthermore, even after many years of research, the
exact expression of these metrics for de Bruijn graphs re-
mains unknown. Below, we limit our analysis to sets S that
are neighborhoods of a given node (i.e., balls centered at
the node) and study graph expansion that explains how well
each ball is connected to the rest of the graph. Note that
these balls do not necessarily represent the weakest sets S
of each graph and do not, in general, achieve the minimum
bound in (13). Derivation of better bounds on h(G) is the
topic of on-going research.

Recall that ball B(v,n) of radius n centered at node v
contains all nodes reachable from v in no more than n hops.
In other words: B(v,n)={u: d(v,u) ≤ n}. It is easy to
notice that the boundary of a ball is simply ∂B(v,n)={u:
d(v,u) = n+1} and that our derivations in section 4 can be
applied to study expansion (and global clustering) of each
graph. Both logarithmic CAN and Chord have the same
expansion properties since their distributions of d(x,y) are
identical. Hence, from now on, we only consider Chord.

Lemma 9. Chord’s ball expansion hB(G) is asymptoti-
cally Θ(1/

√
log2 N).

This function slowly decays from 0.45 for N = 2,048 to
0.27 for N = 109. Contrast this result with that in de Bruijn
graphs below, which maintain constant connectivity hB(G)
for all ball sizes and all values of N .

Lemma 10. De Bruijn’s ball expansion hB(G) is no less
than k − 1.
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De Bruijn graphs expand so quickly, they actually ap-
proach the maximum possible bound on hB(G) and keep
all balls B(v, n) connected to the rest of the graph through
at least (k − 1)|B(v, n)| external nodes. In fact, this not
only explains the low diameter of de Bruijn graphs, but also
leads to two important results. First, clustering in de Bruijn
graphs is minimal at both local and global levels since ex-
ponential neighborhood expansion is preserved for all balls
smaller than the graph itself. Second, path overlap in the
graph is virtually non-existent due to little global cluster-
ing. This means that shortest parallel paths towards any
given destination are expected to be node-disjoint with high
probability.

In the next section, we study fault resilience of these
graphs and examine whether k-node-connectivity of each
graph can always be exploited using greedy routing.

6. RESILIENCE

6.1 Generic Methods
Classical failure analysis in peer-to-peer networks (e.g.,

[23], [40]) focused on analyzing the probability that a given
node x becomes disconnected under a p-percent node fail-
ure. This amounts to computing the probability that all k
neighbors of x fail simultaneously and leads to very small
individual failure probabilities pk for most practical net-
works. Also note that results derived using this method
hold for any k-regular graph, regardless of its internal struc-
ture. Clearly, this analysis is insufficient to distinguish be-
tween all k-regular graphs since some of them may contain
“weak” parts that can partition the graph into several dis-
joint components while no single node is completely discon-
nected from its component.

Another approach often used in classical fault resilience
analysis is to examine k-node-connectivity of the graph in
question. Given our graph structures, we show below that
this metric does not lead to any significant insight either.

Definition 3. A k-regular graph is k-node-connected if
there are k node-disjoint paths between any pair of nodes.

This implies that a k-node-connected graph can tolerate
the failure of any k−1 nodes without becoming disconnected
and that the diameter of the graph after any k − 1 nodes
have failed is at most D + 1. Both CAN and Chord are k-
node-connected3, while de Bruijn graphs are not due to sev-
eral “weak” nodes with self-loops. This classical form of de
Bruijn graphs has been shown to be (k−1)-node connected
[39]; however, we seek to achieve maximum fault tolerance,
which leads us to removing the loops and linking these k
“weak” nodes to each other. Consider node (h,h,. . . ,h),
h ∈ Σ, with a self-loop. A chain-linked de Bruijn graph
has directed links (h,h,. . . ,h) → (g,g,. . . ,g), for all h ∈ Σ
and g = (h +1) mod k. Recent development in consecutive-
d graphs [9] also studied chain-linked de Bruijn graphs and
proved that they are k-node connected.

What we know so far from classical peer-to-peer network
analysis and maximum fault-tolerance metrics is that all
three graphs are similar in their resilience. Hence, we seek

3This can be shown for CAN by generating all possible or-
ders of traversing d-dimensional paths between any pair of
nodes. Chord’s connectivity is easily derived from the well-
known properties of hypercubes.

additional methods that can distinguish between the fault
tolerance offered by each graph. One such metric is bisection
width [22], which is defined as the smallest number of (pos-
sibly directed) edges between any two equal-size partitions
of the graph. Graph bisection width determines the diffi-
culty of splitting the graph into giant components by failing
individual edges. We next examine this metric in all three
graphs.

6.2 Bisection Width
Note that besides determining resilience, bisection width

of a graph often provides tight upper bounds on the achiev-
able capacity of the graph. Assume that each node sends
messages to random destinations at a certain fixed rate.
This communication pattern generates N messages per time
unit. Each message is replicated µd times (on average) and

each edge is expected to carry Nµd
Nk

= µd
k

messages per
time unit. Note, however, that this analysis assumes that
the combined load is equally distributed between all edges.
There may be bottlenecks in which the load is significantly
higher than the average and the resulting throughput ca-
pacity of the graph may be lower than the expected (mean)
value.

Recall that approximately half of all communication in
the graph is expected to cross the bisection cut. Thus, if
this part of the graph is narrow (contains only a few edges),
it will lead to congestion and inability of the graph to carry
its expected load. One example of graphs with unacceptably
small bisection width are trees, which are susceptible to both
easy disconnects and severe congestion near the root.

Lemma 11. Chord’s bisection width bw(G) is N .

Note that this value is double the bisection width of binary
hypercubes since Chord uses directed links while hypercubes
are undirected.

Lemma 12. Assuming the size of each dimension is even,
CAN’s bisection width bw(G) is 2N (d−1)/d.

Applying this result to logarithmic CAN (d = 1/2 log2 N),
notice that its bisection width is N

2
. Furthermore, if we

view undirected links of logarithmic CAN as being composed
of two directed edges, its bisection width matches that of
Chord. Also note that CAN achieves its maximum bw(G)
when d = log3N and that all sub-logarithmic values of d ¿
log2 N result in “weaker” graphs. This is another way of
showing that CAN with small fixed values of d may not be
competitive to Chord in practical settings.

The bisection width of the butterfly is kN
2m

[22], where m is
given by Lambert’s function W in (4). Asymptotically, this
bisection becomes kN

2 logk N
, although for small N it is slightly

better. Finally, the exact value of bw(G) of de Bruijn graphs
is unknown and the best available upper and lower bounds
differ by a factor of four [34]:

kN

2 logk N
(1− o(1)) ≤ bw(G) ≤ 2kN

logk N
(1 + o(1)). (14)

Using the lower bound in (14), the bisection width of de
Bruijn graphs for k = log2N is larger than that in Chord
or CAN by a factor of 1/2 log2 log2 N (which is 2.2 for N =
106) and is generally no worse than that in the butterfly.
It is further conjectured that the actual bisection width of
de Bruijn graphs is at least 40% higher than the pessimistic
lower bound used in the above comparison [10].
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In summary, larger values of bisection width in de Bruijn
graphs point towards higher resilience against graph parti-
tioning and lower congestion in the bisection cut in addition
to their optimal routing established earlier. Below, we ex-
amine several other resilience metrics that may lead to an
even better understanding of de Bruijn’s fault tolerance.

6.3 Path Overlap
So far, we have been omitting a great deal of simulation

results since most of the derived formulas in this paper were
exact. In this section, we examine several empirical metrics
and back our analysis of these metrics with simulations.

Define set P (x, y) to contain all vertices along some path
from x to y. Denote by Q(x,y) the set of all vertices in
P (x, y) except x and y: Q(x,y) = P (x,y)\{x∪y}. A graph’s
k-node-connectivity means that for every pair of nodes (x,y),
there are exactly k pair-wise non-overlapping paths P1(x,y),
. . . , Pk(x,y): Qi(x,y) ∩ Qj(x,y) = ∅ for all i 6= j. Node-
disjoint paths are very attractive to peer-to-peer networks
as they provide independent backup routing options when
the main shortest path fails.

Now notice that even though all three graphs under study
have k node-disjoint paths for each pair (x,y), not all of these
paths can be found using greedy routing at each node. In
fact, in order to deterministically find all k non-overlapping
paths between x and y in a generic graph, one needs to
flood the entire graph using breadth-first search or similar
techniques. Below we examine how well the routing rules in
each graph are able to find non-overlapping paths and what
happens to the diameter of the graph when nodes along the
best path are failed.

For any pair of nodes (x,y), define Pi(x,y) to be the short-
est (according to the greedy routing rules of the correspond-
ing graph) path to y through x’s neighbor i. We are inter-
ested in the structure of these shortest paths, because when
the best neighbor towards y fails, the graph routes through
the second-best neighbor also trying to achieve the shortest
path to y. Hence, if these paths overlap and nodes com-
mon to multiple parallel paths fail, both the diameter and
connectivity may significantly deteriorate.

Define T (x, y) to be the total number of vertices in all
shortest paths Pi(x,y) from x to y and U(x,y) to be the num-
ber of unique vertices in all such paths: T (x, y) = Σ|Qi(x,y)|
and U(x,y) = | ∪ Qi(x,y)|. Further define the average per-
centage U(G) of unique nodes in all parallel paths:

U(G) =

P
x

P
y U(x, y)P

x

P
y T (x, y)

. (15)

Finally, define path overlap J(G) to be 1 − U(G). We
demonstrate the performance of the graphs using the same
example of N = 1,024 for Chord and N = 1,000, k = 10
for de Bruijn since the two graphs are almost identical in
their size and node degree. In these graphs, path overlap
J(G) is 36% for Chord and only 3.7% for de Bruijn. In
fact, for larger k, de Bruijn’s overlap J(G) monotonically
decays to zero inverse proportionally to the product of k and
µd (whereas in Chord, overlap J(G) actually increases for
higher k and N). This decrease in de Bruijn graphs is easy
to explain – each set of k parallel paths between any pair of
nodes (x,y) contains kµd nodes on average, out of which only
one vertex is repeated in more than one path. The difference
in J(G) between Chord and de Bruijn is significant, but not
quite unexpected given our previous discussion of expansion
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Figure 5: Distribution of the number of non-
overlapping shortest paths in Chord for N = 1,024
(left). The same distribution in de Bruijn for N =
1,000, k = 10 (right).

properties of each graph. This result means that de Bruijn
(automatically) selects backup paths that do not overlap
with the best shortest path or with each other.

Next examine Figure 5, which shows the number of pair-
wise non-overlapping paths between any pair of nodes in
the corresponding graph (we exclude pairs (x,x) and di-
rect neighbors from the figure). Interestingly, 50% of pairs
(x,y) in Chord have only two non-overlapping shortest paths
Qi(x, y) and Qj(x, y). Hence, when nodes along these paths
fail, many alternative paths are likely to be affected. Fur-
ther observe in the figure that the number of node-disjoint
paths in Chord is given by a right-shifted geometric distri-
bution with p = q = 1/2 and (asymptotic) mean 1 + 1

p
=

3. Thus, no matter how many neighbors k Chord has, its
average number of node-disjoint paths Qi is no more than
3. Thus, for N = 32, the mean of the distribution is 2.61
and for N = 8,192 it is 2.99. As N tends to infinity, the
expected number of node-disjoint paths tends to 3.

The right side of the same figure shows that de Bruijn
graphs have at least 9 non-overlapping paths between any
pair of nodes. This means that when nodes fail and packets
get re-routed along the optimal paths of each neighbor, they
have very little likelihood of encountering the already-failed
nodes. Qualitatively, this difference leads to better fault-
resilience of de Bruijn graphs and smaller diameter under
node failure.

In our next experiment, we introduced adversarial failures
into the network. We failed all nodes along the shortest path
from x to y and routed traffic through the second-best neigh-
bor (i.e., the neighbor that is expected to have the shortest
distance to y among the remaining neighbors). Then we
failed all nodes along the second-best path and examined
the third-best path, and so on. The distribution of aver-
age path lengths in the graph is shown in Figure 6. As
demonstrated by the figure, the average distance in Chord
rises to as high as 17.6 hops when routed through some
of the “suboptimal” neighbors. De Bruijn graphs, on the
other hand, maintain the same low diameter and the aver-
age distance rises only by one hop. Note that we plotted
the average distances according to path rank (from the best
to the worst), which does not necessarily represent the or-
der in which Chord or de Bruijn would typically choose the
next-best neighbor. However, as the figure shows, all backup
neighbors of de Bruijn graphs are approximately equivalent
and achieve the same suboptimal average distance. This
cannot be said about Chord, which has certain neighbors

10



0

4

8

12

16

20

1 2 3 4 5 6 7 8 9 10

path rank

a
ve

ra
ge

 d
is

ta
nc

e

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

path rank

a
ve

ra
g

e
 d

is
ta

nc
e

 
Figure 6: Distribution of shortest-path distances in
Chord for N = 1,024 (left) and de Bruijn for N =
1,000, k = 10 (right) under adversarial failures.

that show tendency to construct shortest paths that always
overlap with the already-failed ones.

7. ODRI
We have accumulated sufficient evidence that shows that

de Bruijn graphs possess both short routing distances and
high fault tolerance. In this section, we discuss ODRI, Opti-
mal Diameter Routing Infrastructure, which builds de Bruijn
graphs incrementally and preserves their nice properties at
the application layer. Fortunately, de Bruijn graphs are very
simple to build incrementally and many of the details (some
of which we skip) are almost identical to those in Chord.
We also feel that the algorithmic structure of ODRI is much
simpler than that of other recently proposed fixed-degree
graphs [25], [42].

Let Nmax be the maximum possible number of nodes in
the system (such as 1010). Organize the space of all possible
nodes between [0, Nmax − 1] into a modulo-Nmax number
field. Now notice that each node x in de Bruijn graphs is
a base-k integer Hx and that its neighboring rules can be
expressed as:

Hx → (kHx + i) mod Nmax, i = 0, 1, ..., k − 1, (16)

since a shift left by one digit is equivalent to multiplication
of Hx by k. In ODRI, each existing peer holds a consecutive
stretch of the number space, which can be denoted by [z1,
z2], for some z1, z2 ∈ [0, Nmax − 1]. To join the network, a
node routes to the area of the circle where its hash index Hx

is located and asks the previous owner of the zone to split
it in half. Notice that building the routing table for a newly
joined node requires only O(1) message complexity as it can
be copied from the previous owner of the zone. Notification
of existing neighbors has another O(k) message overhead.

Peer-to-peer linking rules are also straightforward. Con-
sider node x that owns zone [z1, z2]. Each of the integer
values in [z1, z2] corresponds to the underlying de Bruijn
graph of size Nmax. Hence, to preserve de Bruijn linkage
at the application layer, x must connect to all peers hold-
ing the other end of each edge originating in [z1, z2]. This
means that there is an application-layer edge (x, y) if and
only if there is an edge (u, v) in the underlying de Bruijn
graph such that u ∈ Zx and v ∈ Zy, where Zx and Zy are
the corresponding zones held by x and y.

We next present several useful results about ODRI. We
first address the issue of whether the application-layer graph
maintains fixed degree and optimal diameter under the con-

dition of equal-size zones. We then extend this analysis to
random zones created by a uniform hashing function.

7.1 Equal-Size Zones

Lemma 13. If all zones have the same fixed size, ODRI
maintains the application-layer degree equal to k.

Given the assumptions of the previous lemma, notice that
the application-layer graph in ODRI is a scaled-down version
of the underlying de Bruijn graph. Thus, the diameter of
the peer-to-peer graph under these conditions must remain
optimal as we show in the next lemma.

Lemma 14. If all zones have the same fixed size, ODRI
builds an N-node application-layer de Bruijn graph with di-
ameter dlogk Ne.

7.2 Random Zones
Achieving constant-size zones using distributed join and

leave processes is a non-trivial, but well-studied problem [2],
[27], [30]. Equal zone sizes are desirable as they maintain a
fixed out-degree at the application layer and provide better
balancing of user objects between the peers. Assuming uni-
form random hashing, it can be shown [27], [30] that after a
sequence of N random joins, the maximum zone held by a
peer is larger than average by a factor of O(ln N) with high
probability (note that the same bound applies to the max-
imum out-degree of each peer). The following result about
the application-layer in-degree is less obvious.

Lemma 15. Under a uniform hashing function, ODRI’s
in-degree at each peer is no less than k with high probability.

Our next result shows that the imbalance in zone sizes has
very little impact on the diameter of the peer-to-peer graph.

Lemma 16. Under a uniform hashing function, ODRI con-
structs a peer-level graph with diameter dlogk Ne (1 + o(1))
with high probability.

This lemma further implies that the average distance in
the application-layer graph is also asymptotically optimal.

7.3 Balancing Zones
To overcome imbalance in zone sizes in a highly dynamic

environment, ODRI implements a variation of the “power
of two choices” algorithm [2], [12], [27] during peer joins
and departures. To join an existing ODRI network, a node
x performs a biased walk through the graph starting in a
random location and searching for the largest node to split.
The walk is biased towards large nodes since they are more
likely to “know” other large nodes. During departure, node
x does the same biased walk looking for the smallest node
to take over its zone Zx. The details of this framework are
currently under investigation and will be presented in future
work.

8. CONCLUSION
At this stage of peer-to-peer research with an overwhelm-

ing number of recent proposals, it is hard to assess the bene-
fits of one peer-to-peer network over another without a uni-
fying analytical framework that can capture graph-theoretic
properties of each proposal. In this paper, we studied the
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diameter-degree tradeoff question of DHT research and con-
ducted an extensive graph-theoretic comparison of several
existing methods in terms of their routing performance and
fault resilience. We then proposed a distributed architec-
ture based on de Bruijn graphs and demonstrated that it
offers an optimal diameter for a given fixed degree, opti-
mal resilience (k-node connectivity), large bisection width,
and good node expansion that guarantees very little over-
lap between parallel paths to any destination. Combining
all these findings with incremental construction of ODRI,
we conclude that de Bruijn graphs are viable and appealing
structures for peer-to-peer networks.
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