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End-to-End Rate-Based Congestion Control:
Convergence Properties and Scalability Analysis

Dmitri Loguinov, Member, IEEEand Hayder Radh&enior Member, IEEE

Abstract—in this paper, we study several properties of binary- tocols has not made it very far within the IETF and so far has
feedback congestion control in rate-based applications. We firstde- only been adopted in proprietary streaming applications [36],
rive necessary conditions for generic binary-feedback congestion [44]. But even then, the exact operation of these controls in
control to converge to fairness monotonically (which guarantees RealP| d Wi d Media P . idel ilabl
asymptotic stability of the fairness point) and show that AIMD ea_ aye_:r an n OWS e 'a_ aYef IS not wi _e_y avallable
is the only TCP-friendly binomial control with monotonic conver- ~ and is believed to consist of additive-increase additive-decrease
gence to fairness. We then study steady-state behavior of binomial (AIAD) layer-dropping and layer-adding algorithms [36], [44].
controls with n competing flows on a single bottleneck. Our main In contrast to very few studies of rate-based controls in

result here shows that combined probing for new bandwidth by tA it i ;
all flows results in significant overshoot of the available bandwidth end-to-end applications, a large body of data-link algorithms

and rapid (often super-linear as a function ofn) increase in packet exists [4], [22], [31], [39]; however, these methods often rely
loss. We also show that AIMD has the best scalability and lowest On routers to compute the sending rate of each flow (e.g.,
packet-loss increase among all TCP-friendly binomial schemes. We in ATM) and explicitly feed it back to the end flows. In the
conclude the paper by deriving the conditions necessary to achieve current Internet, such computation is considered too costly
constant packet loss regardless of the number of competing flows o be implemented in the network layer, which makes these
and examine one new scheme with such constant packet loss callec} . S
ideally scalable congestion contraid both simulation and streaming methqu unswtablle for end-to-end applications. Furthermore,
experiments. ATM is rarely available at the desktops and few end-to-end
Index Terms—Binomial algorithms, congestion control, paths are bu!lt entirely on top of the ATM technology. Thus,
MPEG-4, multimedia streaming, packet loss scalability. many emergmg streaming protocols cannot use native ATM
congestion control and have to rely on rate-based-to-end

methods that utilize packet loss as the only feedback from the
. INTRODUCTION network. Our work analyzes the performance of such methods

ONGESTION is an inherent property of the currently Vvideo streaming and derives several novel results about

best-effort Internet. Consequently, transport protocoR9th generic binary-feedback controls as well as their special
commonly implementcongestion contrgl which refers to Nnonlinear subclass callérinomial algorithmg2], [3]. _
end-to-end algorithms executed by a protocol in order toWe first examine the problem of determining which
properly adapt the sending rate of a network flow to the availicrease—decrease functions of binary-feedback controls guar-
able bandwidth in the network. Protocols with window-base@f'te€ convergence to fairness. To keep the problem tractable,
end-to-end flow control utilize one or another version of/€ only focus ormonotonicconvergence, which is a desirable
TCP-friendly congestion control, which includes Jacobson®Operty of congestion control since it guarantees asymptotic
modifications to TCP [1], [15], TCP-like congestion controptability of the fairness point. Our results in this section show
(e.g., [43]), binary-feedback algorithms (e.g., [2], [3], [6]that AIMD is the only TCP-friendly binomial control with
[12], [21], [28], [38], [49]), and equation-based methods (e.gMonotonic convergence to fairness.
[11], [40]). These algorithms are shown to work well in the \We then focus on steady-state properties of binomial conges-
environment where the sender relies on “self-clocking,” whidien control and derive long-term link utilization and packet-loss
refers to the use of positive acknowledgment not only f@tes of these controls. This study shows that long-term av-
recover lost packets, but also to slow down the sender durigge packet-loss rates increase as a super-linear function of
congestion [15]. the number of rovx_/sn, which prevents rate-based congestion

However, current real-time streaming applications in the 1§9Ntrols from scaling to a large number of flows. Our work

ternet [36], [44] typically rely orrate-basedend-to-end flow @IS0 finds that AIMD has the best scalability properties among

control. Rate-based congestion control for transport-layer prbCP-friendly binomial algorithms. . o
We finish the paper by showing the existence of binomial con-

trols calledideally scalable congestion contr@iISCC) that do
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iments and find it to scale significantly better than the existinghere p; is the congestion feedback during interva{posi-
methods. tive values indicate congestion), amid; and Wp, are the in-

Studying ISCC controls in this paper, we drift away frontrease and decrease functionsiafdow-basedongestion con-
TCP-friendly schemes. Hence, we must mention breifly why witeol, respectively. In practice, feedbagkis usually equal to the
find such practice acceptable. In the future Internet, itis possilacket-loss rate observed by the flow during intetval
that UDP traffic will not compete with TCP in the same router Since our work focuses aate-basedtreaming applications
gueues (e.g., DiffServ may be used to separate these typeimafhich cwndhas little meaning, we must write an equivalent
traffic at the router level). This intuition is driven by the facformulation of congestion control using the value of each flow’s
that real-time flows have substantially different delay requirgending rate; instead of congestion window;. The conver-
ments from those of TCP, and it may not be practical to mix theon from the window-based notation to the rate-based nota-
two types of traffic in the same queues. Furthermore, rate-bagienh is straightforward, i.e., each unit af; is equivalent to a
applications are unlikely to be fully TCP-friendly, because theyte of MTU/RTT bits/s, where the maximum transmission unit
often do not follow TCP’Sast retransmitandtimeout backoff (MTU) is given in bits and the RTT is given in seconds. In other
algorithms and do not rely on the “packet-conservation” prirwords,r; = w;(MTU/RTT).
ciple [15] in their flow control. Therefore, we can rewrite congestion control in (1) as

The rest of the paper is organized as follows. Section Il dis-
cusses related work. Section Il studies the convergence proper-
ties of generic binary-feedback congestion control. Section IV ri + Ri(ri), f=0
analyzes steady-state average link utilization and packet loss of Tit1 = { ri— Ro(r), >0
binomial schemes. Section V derives the rate of packet-loss in- ! DA
crease as a function of the number of flowsSection VI builds \yhere R; and R, are the increase and decrease functions of
ISCC and shows the performance of one such control in bqifte-hasedinary-feedback congestion control, respectively.
simulation and MPEG-4 streaming experiments. Section VIl e special case of end-to-end congestion control is given by
concludes the paper. binomial algorithmsin which the increase and decrease curves

are power functions of the current rate [2]

)

Il. RELATED WORK
A. End-to-End Binary-Feedback Congestion Control
3)

Within the class of end-to-end congestion control protocols, {
we focus on the class binary-feedbacknethods. Binary-feed-

back congestion control implements a simple reactive control N ] )
system, which responds to congestion by decreasing the sendihi§re all constants, 3, A, ando are positive. For binomial
rate and responds to the absence of congestion by increasingi{f@rithms, the difference between the two notations lies only
sending rate. Hence, at any stage, the decision of such congfu_%ghe constants in front of the correspondlng power functions.
tion control is binary. ence, the conversion from the V\(lndow-based to the rate-based

Furthermore, the increase and decrease functions of cong¥¥ation is supplied by the following formulas:
tion control are assumed to becal [2], [6], which means that
they only use the local state of a flow in computing the next
value of the sending rate. In addition, many existing models use MTU\ *+* MTU\ '
memorylessontrols [2], [6], in which the amount of increase -« <ﬁ) and o=4 <ﬁ> - @
and decrease is based only on the value of the current sending
rate rather than the history of the sending rate (e.g., several flaThroughout the rest of this paper, we will use both versions
vors of “AIMD with history” are examined in [27] and [28]). In of binomial algorithms in (3), sometimes referring to constants
this paper, we explicitly assume a local and memoryless model o) instead of constantsy, ), while keeping in mind the
of binary-feedback congestion control. conversion in (4).

To prevent high-frequency oscillations, congestion control is A special case of binomial congestion control that is imple-
executed on discrete timescalesidtime units long, wherd?  mented in TCP is called additive increase multiplicative de-
is the delay of the control loop, which in many cases simplyrease (AIMD) [6], [15]. In AIMD,k = 0, i.e.,, Wr(w) =
equals the round-trip time (RTT). Many papers study conges-(a > 0), andl = 1,i.e.,Wp(w) = fw (0 < 8 < 1). Hence,
tion control in the context ofvindow-basedlow control [2], inthe absence of congestion, AIMD probes for new bandwidth
[12], [28], [49] and apply control formulas to the size of conlinearly, and during congestion, AIMD backs off exponentially.
gestion windowcwnd In such notation, assuming that the siz&lote that notation AIMD(«, 3) refers to avindow-baseder-
of congestion windowewnd during interval: for a particular sion of AIMD with increase—decrease constantnd/. There-
flow is given byw;, binary-feedback congestion control can bére, AIMD(1, 1/2) (implemented in TCP) increases the rate by

Wr(w) = aw™* - Ri(r) = A~ F
Wp(w) = Buw' Rp(r) = or!

summarized as one packet per RTT in the absence of congestion and decreases
the rate by half during congestion.
Wi — w; + Wi(w;), pi=0 (1) AIMD (a, () is TCP-friendlyif it achieves the same average
B w; — Wp(w;), pi>0 throughput when competing with a TCP connection under the
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same end-to-end conditions. The necessary condition for swthbility. For example, Benmohamed al. [4] propose and

long-term fairness is [12], [28], [49] study proportional and proportional-derivative (PD) controllers
applied to the switch’'s queue size, Masceloal. [31] use a
o = ﬂ (5) fair-queuing switch that feeds back the size of each flow's
2-p queue, and Kulkarneét al. [23] model the ABR service using

) ) ) a quasi-death—birth process and incorporate round-trip delays
On the other hand, for binomial congestion control (3) t0 By thejr model. Kalyanaramagt al.[17] propose a rate-based
TCP-friendly, Bansaet al. [2] show thatk + | must be equal qo) called explicit rate indication for congestion avoidance
to 1. Among such (non-AIMD) TCP-friendly binomial congeser|ca) in which the switch estimates the number of active
tion control, they propose two methods called inverse-increggg, s and divides the available bandwidth equally among all
add|t|ve-d_ecrease (IAD) witk = 1,1 = 0, and Square Root competing flows. Kolaroet al. [22] use a dual PD controller
(SQ_RT) withk =1 =1/2. _ ) _ to achieve good convergence to stability during both transient
Finally, we should mention that the analysis of increase—dga gteady states. Other research related to ATM ER including

crease congestion control typically assumes an ideal netwagk astic modeling of queue sizes and video transport over
with SynChronlzed and immediate feedback [2], [6], [19], [27]ATM ABR can be found in [7], [13], [14], [46], and [50]
[28]. Synchronizefeedback means that all flows sharing a con-

gested link receive notifications about packet loss at the sa
time. Immediatdeedback means that if the capacity of any lin
along an end-to-end path is exceeded during intérfaédback  Continuous-feedback congestion control explicitly takes the
p; is strictly positive. Under these ideal conditions, Chiu andalueof the feedback into the control loop. In other words, these
Jain [6] show that all AIMD schemes converge to a fair state. methods can be summarized as a simple differential equation

addition, Bansaét al.[2] show that for binomial algorithms (3)

to converge to fairnes,+ [ must be strictly greater than zero.

.eContinuous Feedback and Utility Functions

| & = (), plt) ©
B. ATM Rate-Based Congestion Control
Asynchronous Transfer Mode (ATM) networks implemenwhere r(t) is the sending rate ang(t) is the continuous
congestion control on the data-link layer. The available bitrafeedback from the network (typically, packet loss). Kedly
(ABR) service in ATM allows connections to send data withoul- [19] propose and study an AIMD-like continuous-feedback
prior admission control or reservations (ABR is similar tgontroller (converted to the end-to-end context)
the best-effort class in DiffServ). Two types of congestion
control were originally proposed for ABR—credit-based [24] dr
and rate-based [39]. The credit-based approach implements il Br(t)p(t). (7)
hop-by-hop window-based congestion control [39]. The
rate-based methods rely on the network to provide congestionmmhe paper shows that flows using the controls in (7) con-
feedback in special resource management (RM) cells. In {isrge to so-calledproportional fairnessand maximize the
simplest form, the feedback consists of a single-bit congestieembined utility of all flows, where each utility functidii(z)
indication. These schemes include forward explicit congesti@ logarithmic. Massouliéet al. [33] further study fairness
notification (FECN), backward ECN (BECN), proportionaissues in congestion control and develmiimum potential
rate controller (PRCA), and several other derivatives [39%elay fairnesswhich maximizes combined utility for users
Upon receiving the feedback from the network, these schemgish hyperbolic functionsU(z). Kunniyur et al. [25] study
typically use linear controls to reduce or increase their sendifighg-term throughput behavior of proportional and minimum
rate. However, even the most advanced controllers in thystential delay fairness [33] both analytically and in simula-
category suffer from undesirable performance penalties whggn. Johariet al. [16] prove stability of end-to-end continuous
RM cells are lost (which leads to increased congestion andfeedback controller (7) under nonnegligible propagation de-
poor fairness together with oscillation). lays. Massoulié [32] examines a similar issue in the context
In addition to congestion-notification schemes, the feedbagk heterogeneous delays. Kat al. [18] study distributed
in ABR may carry theexplicit rate (ER) that the flow should convergence of proportional-fairess controllers in networks
use. Depending on the particular mechanism, ABR ER maere users have different utility functiongz). Continuous
or may not require the switch to maintain local per-flow statéeedback controllers are further analyzed in the context of
Among a volume of work in this area, the proposed schemgstive queue management (AQM), e.g., in [30] and [47].
range from simple [such as enhanced PRCA (EPRCA),Continuous-feedback congestion control has a nice property
adaptive proportional rate control (APRC), and EPRCA of converging to a single stationary point and maintaining
[39]] to more sophisticated with provable convergence amgnstant (i.e., smooth) transmission rate in the steady state.
However, since this stationary point has a strictly nonzero
packet loss, continuous-feedback controllers are incompatible

2Note that some papers [2], [48], [49] use a different notation, in whiclyith TCP flows as they are too aggressive in comparison to
Wp(w) = (1 — f)w and this formula has a different form. Furthermore, if

the rate of AIMD is dominated by timeouts, the formula assumes yet anottfeRY bir_]ary'feedbaCk F:O”tm"er' An interesting Cor_n.bin?-tion of
form [49]. both binary and continuous feedback called additive-increase
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loss-proportional-decrease (AIPD) is evaluated by éeal. in
[27].
D. Other Rate-Based Congestion Control
Keshav [20] studies rate-based flow control using packet-pair
(@

sampling of the available bandwidth in fair-queuing networks.

A similar method is proposed by Legoet al. [29] in the con-

text of layered multicast. Fendiak al.[10] show that delayed
feedback results in oscillatory behavior of generic rate—basﬁ@'ni'to
controllers. Mishraet al. [37] use rate-based controllers inside
routers that exchange queue length information with neighbors

to achieve hop-by-hop congestion control.

(b)

(a) Nonmonotonic convergence leads to quasi-asymptotic stability. (b)
nic convergence leads to asymptotic stability.

sending rate of flow Y
A

Cc

Ill. CONVERGENCEPROPERTIES /¥ eauifaimessine
Not all increase—decrease functioRs and Rp guarantee Vit &—— faimess line

convergence to fairness. In the context of congestion control,

convergence to fairness usually defined as the ability of a ;%7 e efficiency line
number of identical flows sharing a common bottleneck link to s N
reach a state in which their rates become equal and stay equal X; C sending rate of flow X

infinitely long. Even though in practice this is a very difficult

goal to achieve due to nonuniform and delayed feedback, un@er 2. Two-flow binary-feedback control system.

ideal conditions of Chiu and Jain’s model, many schemes can

guarantee convergence to fairness. t
One of the interesting properties of congestion control th&v

guarantees its asymptotic stabilitynsnotonic convergence to

fairness If fairness during interval is given by f;, 0 < f; <

1, then the following conditions are necessary for monotonic f = min <ﬁ> . 9)

convergence: 7] \Tj

at max—min fairness af flows with nonzerosending rates
1, - -+, Tn) IS given by

Vii fia>f; and lim f;=f*=1. @) Consider two rowsX andY” sharing a b(_)ttle.ne.ck link under
i—o0 the above assumptions. Suppose that during intértred flows’
sending rates are given by andy;, respectively. To help us

From the point of view of control theory, monotonic COMVETY derstand the behavior of a two-flow control system, we use

gence is desirable even though it is not necessary. Monoto'gf-_ 2 from [6]. In the figure, the axes represent the sending

cally convergent controls guarantee stability of the stationargg . )
oo . ' . . .rates of the two flows. Furthermore, line = =z is known as
point /*, which means that if a system is started in some neigh-

borhood of the stationary point, it stays there. Consider an I_efawness Imeanq represents p0|nt$,(y) in which fawnes_s .
: - . equals 1. Assuming that the capacity of the bottleneck link is
lustration of these two types of convergence in Fig. 1. Fig. 1(

. . . X lin =Ci lled theefficiency lineand represen
shows a particle that oscillates around the stationary point and ez +y C'is called t eetliciency finea d represe _ts
. . . . oints in which the bottleneck link is about to overflow. Given
eventually converges to it nonmonotonically (i.e., the d|stange . . . . )
: . . .4 particular pointP;, = (x;, y;) in the figure, liney = ma
from the particle to the attractor is not monotonically decreaswé% ; L o I
. . o S ; nnectingp; to the origin is called thequi-fairness lindi.e.,
at a function of time). A similar scenario with monotonic con- ". . )
. o points along the line have the same fairngss z;/y; = 1/m).
vergence is shown in Fig. 1(b). o : .
a . Furthermore, we definefficiencye; of point P; as the combined
Itis important to remember that the convergendaimesss . -
. - . . rate of both flows in that point, i.ee; = z; + y;.
different from the convergence #fficiencyin congestion con-
trol. Binary-feedback controls do not asymptotically converge )
to efficiency and always oscillate around the efficiency line. of Decrease Function
the other hand, both binary and continuous feedback controlsTo ensure monotonic convergence and proper response to
can asymptotically converge to fairness. In what follows in thisongestion signals, the following four conditions must hold
section, we study monotonic convergencéaionessof generic  during eachdecreasestep assuming that the system is in some
binary-feedback controls and derive conditions necessary faint P; just before the decrease step. First, the efficiency in
asymptotic stability of poinf* = 1. the new state must be strictly less than that in the old state,
Itis common [2], [6] to examine the case of two flows sharinge., e;11 < e;. This condition ensures that flows back off
a link, since the extension toflows can be performed by con-during congestion. Second, fairness must not decrease in
sidering flows pairwise. It is also common to use a continuotise new state, i.e.f;11 > f;, which guarantees monotonic
fluid approximation model [2] and disregard the discrete natucenvergence to fairness. As pointed out before, this condition
of packets. Furthermore, in this paper, we use a max—min fas- desired, but not necessary. Third, to properly maintain
ness functionf; instead of Chiu’s fairness index [6]. Recallconvergence, the system must not arbitrarily cross or oscillate
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around the fairness ling,e., it must stay on the same side ofunction ofz;, with the slope strictly less than 1. For example,
the fairness line at all times. For the case in Fig. 2, we can wri#géMD function Rp(z) = ox satisfies these conditions for<

(yi > x;) = (Yiv1 > zi41). Finally, the system must not o < 1. Note that nonlinear functions [suchas- 1g(z +2)] can
allow rates below or equal to zero, i.e., given an arbitrary stadéso be used, but their advantage over similar linear functions is

with z; > 0 andy; > 0, we must guarantee that,; > 0 and
Yiv1 > 0.
The first condition is equivalent to

Tit1 — i + Yiy1 —¥i = —Rp(xi) — Rp(y;) <0 (10)

which can be satisfied with any positive functidy (z) > 0,
YV« > 0. The second condition is equivalent to

Tit1

Yi+1

> 2

Z —, xz; >0, y; > 0.
Yi

(11)

not clear.

B. Increase Function

The analysis of increase functioR;(z) is similar to the
above. This time, instead of four conditions, we have only
three. First, the efficiency in the new state must increase (i.e.,
ei+1 > e;), which guarantees that flows will probe for new
bandwidth in the absence of congestion. Second, fairness must
not decrease (i.ef;+1 > f:), which is the result of the same
monotonicity requirement as before. Third, the system must not

Expanding (11) using (2) and generalizing by dropping theoss the fairness line (i.e;11 > x;,1). Crossing the fairness

indexes (the inequality depends only spandy;)
zRp(y) — yRp(z) > 0,

Writing y = x4+ Az, Az > 0 and dividing both sides bz

Ve >0,Vy>0,z<y. (12)

2(Rp(z + Az) — Rp(z)) — AzRp(z) > 0 (13)
Rp(z + Az) — Rp(x) S Rp(z) V>0 Az >0
Az - oz ’ )

(14)

RestrictingRp () to be a differentiable function for all >
0, (14) is equivalent to

RD(.Z’) )

R >
p(r) > -

Va>0.

(15)

line violates monotonic converge to fairness and, as we will see
later, never happens in practice among binomial schemes.

The first condition is satisfied with any positive function
Ri(z),i.e.,Rr(z) > 0,Vz > 0. The second condition is the
opposite of (15) due to a different sign in (2)

R[(Zl?) :

T

Yz >0.

Ry(z) < (21)
Finally, the third condition is similar to (19), but assumes the
following shape:
Ry(x) > —1,

Yz > 0. (22)

Using (21), we find thai?; must grow no faster than some
linear functionczz and using (22),R; cannot decay quicker

This result is interesting in its simplicity. To understand théan—z. For example, the AIMD increase functidty () = A
properties of this solution, bring () to the left and integrate again satisfies all conditions of monotonic convergencefor

both sides [both: and Rp(z) are positive]:

"dRp(x) " dx
> [ = v 0 16
/ Rp(z) — z’ v (16)
InRp(z) > Inz + ¢4, V>0 a7)
Rp(x) > com, Vo >0. (18)

0. We look at other examples in the next section while studying
binomial [2] congestion control methods.

C. Convergence

Note that the above conditions still do not guarantee conver-
gence to fairness. In other words, the conditions guarantee that
if the system converges, it will do so monotonically, but the fact

The result in (18) shows that the original condition (15) reRf convergence has not been established yet. Hence, we impose

strictsRp(z) to growno slowerthan some linear functiotpz.

a final restriction onRp and R;—either the decrease or the in-

Using similar derivations, the third (noncrossover) condition r&/€as€ step must strictly improve faimess, i.e., one of (15), (21)

sults in

Rp(z) < 1, V>0 (19)

which means thak p () mustgrow slower than function [i.e.,

the slope ofRp(z) in all pointsz > 0 must be less than 1].

Finally, the fourth condition

x — Rp(z) >0, Vo >0 (20)

is automatically satisfied by combining (15) and (19) above.
To summarize by combining (18) and (19p(x) must be

a positive differentiable function for all values of > 0 and

must be an asymptotically (i.e., for substantially laxgdinear

. . . . . ne
3|t is impossible to maintain monotonic convergence and nonnegative rates if

must be astrictinequality. If (15) is made into a strict inequality,
we can no longer satisfy the condition in (19). Consequently,
(15) must remain in its present form, and (21) must become a
strict inequality.

The proof of convergence under the above restrictions pro-
ceeds as follows. First note that pojfit = 1 is an upper bound
for sequencé f,,}: f, < f*. Since{f,} is monotonically non-
decreasing and bounded above, it must converge. Suppose that
the system doasotconverge to fairness under these conditions,
i.e., fn, — F < 1.Inother words, the system converges to some
stationary (fixed) poinf’ strictly less than 1. Restart the system
in point fo = F. During each congestion control cycle that
includes at least one decrease step and one increase step fair-
ss musstrictly improve. Therefore, after several steps, fair-

we allow the scheme to cross the fairess line. The interested reader can sH&WS will reach some ponﬁ > F'. The latter condition con-

this analytically following the derivations in this section.

tradicts the fact that the system previously converged to a fixed



LOGUINOV AND RADHA: END-TO-END RATE-BASED CONGESTION CONTROL 569

(stationary) point’. Consequently, the flows must converge to k< -1

the only stationary poinf* = 1. yA\ kf_1
We finish this section by making an observation that . A/ k> -1
the above convergence conditions hold for window-base:
increase—decrease functio®®; and Wp and cases when B// _m .
.. . / X
T; > Yi. 7 AN
/<1 ,’I /,/ \\\
IV. PROPERTIES OFBINOMIAL ALGORITHMS /s 1 \\\
A. Overview > —»
/=1 X time t
Consider binomial algorithms in (3). Both functiofy and @) (b)

},%D are positive for: > (.)_and,.therefore, sa.tlsfy the first Condl__Fi . 3. (a) Nonmonotonic convergence to fairness. (b) Oscillation of the
tion. The second condition (i.e., monotonically nondecreasigghding rate in the steady state.
fairness) results in the following restrictions band! from ap-

plying (15) and a strict form of (21): the equi-fairness line increases fairness{( —1 or [ > 1) and
\e—F deviation to the left decreases fairneBs( —1 or/ < 1). The
Ak~ < ( E>—1 system in the figure first reduces fairness from poirto point

o { 1>1 (23) B during the decrease step, but then recovers and achieves fair-

olpt-1 > 27 ness in poinC that is higher than that in point.
Sz Hence, as long as the resulting cycle (i.e., steps between
The third (i.e., noncrossover) condition derived from (19) arabints A andC') increases fairness, the scheme will eventually
(22) restrictd even further, but does not impose any limition converge to fairness. Parametérand!/ in (3) determine the
(assuming sufficiently large) shape of the curve along which the increase and decrease steps
ket i — anvthin are taken. Constantsando in (3) determine the size of each
{ kA <z = { yihing (24) step taken along the corresponding curve. Note thiatif = 0,

lo <zt~ <1 the system will oscillate along the curve given By o z!
The restriction o in (24) is dictated by the fact that sendind©F Br x l"_k-_Wh'Ch is the same). Under the assumption of a
ratex of a flow is not limiteda priori and the selection ofpos-  continuous fluid approximation [2], conditioh = —I/ makes

itive constantr such that it is less than' ! /1, for substantially the protocol take decrease steps along the same curve as the
largez > 0, is feasible only when power — [ is nonnegative. Ncrease steps, respltmg in no advance t.oward or away fr'om
Later in this paper, we will show how restrictién< 1 can be the fairness line. This can be' formulated dlfferently: a blqomlal
lifted and what kind of advantages such schemes bring to cGgheme converges to fairnessk + / > 0 and divergesff
gestion control protocols. k+1<0[2]. N _

Assuming that the upper limit anis not known, for binomial ~ Consequently, combining (24) with the convergence kule
controls to possess monotonic convergence to faimess, both (23) 0. We notice that the necessary restrictionskaand! for
and (24) must be satisfied. This combination of conditions cofPnvergence afionmonotonibinomial algorithms aré > —1
straingl to be strictly 1. Now recall that for binomial algorithmsa”dl <L
to be TCP-friendlyk + [ must also be 1. Consequently, the firs& Efficienc
major result of this paperisthat AIMk(= 0, [ = 1)istheonly y
TCP-friendly binomial algorithm with monotonic convergence The average efficiency is an important property of a conges-
to fairness This result shows that linear controls of AIMD aretion control scheme, which reflects how well the scheme utilizes
expected to be more robust in their convergence (i.e., asyntipe bottleneck bandwidth in the steady state. Higher efficiency
totically stable) than any other TCP-friendly binomial contrdls more desirable (but not necessarily at the expense of other
under a variety of network conditions. Nonmonotonic controRroperties such as packet loss or responsiveness). Analysis in
discussed below (IIAD and SQRT) can also guarantee stabilttyis section not only helps us study the efficiency of binomial

of f* = 1, however, this stability isjuasi-asymptotic schemes, but is also a necessary background for our packet-loss
scalability analysis in the next section.
B. Nonmonotonic Schemes It is common to define thaverage eftiencyof a scheme as

Among nonmonotonic binomial schemes, Bansial. [2] the long-term link utilization once the scheme has reached its
study controls that are forced to reduce fairness duringléhe steady state. In the steady state, each flow's sending rate will
creasestep (i.e.] < 1) according to (23) and increase fairnes@scillate between two points, which we call iiygper poin{U)
during theincreasestep (i.e.k > —1). This is illustrated in and thelower point(Z) as shown in Fig. 3(b). When a single
Fig. 3(a) from [2] and [6]. The equi-fairness line in the ﬁgurélow is present in the networK] equals the capacity of the bot-
is given byk = —1 andl = 1. Any deviation to the right from tleneck linkC'. Whenn flows compete over a shared link of ca-

pacity C, U equalsC/n for each flow (because the flows have

4We implicitly assume thai is limited below by some constant,;,. In reached fairness by this time). In both casks= U — ol
window-based congestion contrel,,;,, is equivalent to one unit afwnd(i.e., ’

MTU/RTT), and in rate-based congestion contrgl,;.. is the minimum rate at accor_d_ing _tO_ 3). In _addition’ Sinc? the pattern in Fig. 3(b) is
which real-time material can be received. repetitive, it is sufficient to determine the average throughput



570 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 11, NO. 4, AUGUST 2003

of a flow during a single oscillation (i.e., between poidtend '™ “-.‘\ Ty N
B) rather than over a longer period of time. Note that in the 4, 100%
window-based notation of congestion control, the maximum ca- 80%

—@— aver, fficienc: H—.—.—“—“% i
pacity of the link is given by = C(RTT/MTU). 5% 1 | m aror angletorm) | .
Using a continuous fluid approximation and results from [2], ,, | — - reeen

each flow’s ratex(t) during the increase phasge., between ) 40% XKk
points A and B) is given by 20 LL"“/- 20% \%h
1/(k+1) e 4888888 N _Teecoe.
)\ k 1 t 05 0 0.5 1 -0.5 0 0.5 1
L(t) = <%> (25) value of / value of /

(a) (b)
where R is a fixed duration of the control interval. FollowingFig. 4. (a) Exact average efficiency and relative error for one-term and

[2], durationAt between pointst and B in Fig. 3(b) is two-term approximations; = 1. (b) Increase in approximation error as the
! ’ number of flows becomes large,= 50, 150.

k+1 1—1\k+1
Ut (1 - (1 —oU ) ) R of X andAt. Keeping only the leading term, average efficiency

A= AMk+1) (26) e is given by
and the total amount of bits transmitted during the same interval o= (k+1)(k +2)oU"" -1 (31)
is (k +2)(k +1)oU!-1
ke (1 . O_Ul_l)k+2) R T_he res_ult in (31) suggests that link utilization of binomial al-
X = @7) gorithms is 100% regardless of the valueg ahd! even though
Ak 4+ 2) ' it is clearly incorrect (e.g., AIMD never achieves 100% utiliza-

tion unless8 = o = 0). To examine how close this equation
Consequently, we derive that the flow's average sending ragydels reality, we plotted in Fig. 4(a) thexactaverage effi-
during the interval is{ /At and theaverage eftiency(i.e., per-  ciency computed from (28) and the relative error between the
cent link utilization) of a binomial congestion control scheme igxact value and the one derived from (31) for a single-flow case
(i.e.,U = C). As the figure shows, for values bbelow 0.5, the

e (k+1) (1 - (1- aUl—l)k+2) efficiency is very high (close to 100%) and the corresponding
¢=TAL " NI (28) error is negligible. However, dsapproaches 1.0, the error in-
(k+2) (1 —(1-oU) ) creases to 31%. The figure is plotted using: 1/2, W = 100,

andfg = 1/2. The results do not change significantly for dif-

Equation (28) can be converted to the window-based notarent values of: the error forl = 1 varies monotonically from
tion by replacings with 4 and ratel/ with its window equiva- 359 fork = —0.5 to 28% fork = 1.
lent. We also note that for large the exact model of efficiency  Since Bansaét al. [2] use schemes with< 0.5 (i.e., IAD
e in (28) becomes inapplicable whéh = C/n drops below and SQRT), their analysis does not suffer from significant
o!/(1=D. We can no longer use the above derivations, becaysgind-off errors given a small number of flows(see below
terml—oU'~" in the equation becomes negative. This is causesk the discussion of largen). Having established that the
by the “drop-below-zero” effect [i.e., rate(t) becomes nega- |eading term alone in (30) is insufficient to achieve a good
tive] that we tried to avoid before in (20). Nonzero rates weigpproximation to the exact formula for valuesialose to 1,

automatically guaranteed given monotonic convergence to fajje next examine a two-term approximation to (28)
ness in (15), but in the absence of monotonicity, we must ex-

.. . . -1
plicitly restrictn to the following: —1— oU
e 5 hoUI=T" (32)

(29) To perform a self-check, we plug AIMD parametefs=£
1, k£ = 0) into (32) and get a familiar (and exact) formula of the

We next focus on simplifying the expression in (28). Equatio?lver"’uge efficiency of an AIMD scheme:= (2 — /3)/2 (recall

(28) contains two terms of the forin— (1 — z)7, which can be thate = /3 in AIMD). The result of comparing (32) with (28) is
expanded using Taylor series to also shown in Fig. 4(@). D_ependmg on the valué tifie error o_f
the two-term approximation (32) is between 5 and 1000 times
_ _ _ smaller than that of the single-term approximation (31).
q(q2 1)22+q(q lé(q 2)23 . (30) It is interesting that (32) depends on the valudgfwhich
means that efficiency will depend on the number of flows
Note that forl < 1, the value ofz is also less than 1, which sharing a link. Consider a case »fflows instead of one flow
means that the higher order terms in (30) get progressivélye.,U = C/n). It is easy to notice that controllers with multi-
smaller. We first consider keeping only the leading term of th@icative decrease (i.€.= 1) are theonly schemes in which the
Taylor expansion as used in [2], i.e., theterm, and examine efficiency does not change regardless of the number of flows,
how well the resulting approximation reflects the actual valud®ecausd — 1 in (32) is zero. However, the rest of binomial

c w

" GG C Fan

1-(1-2)? = qz—
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schemes witll < 1 suffer a reduction in efficiency as can beAt, we can write the average percentage of lost gatasing

seen by using/ = C/n in (32) (27) and assuming the worst case of a maximum overshoot as
U1 _ AC7FR
sy (33) "X AR
_ N (k +2)
For largern, term2n'~! becomes smaller, becausts less O2k+2 (1 —(1- 001—1)k+2) FA2(k+2)

than 1. Consequently, both the denominator in (33) gnde- )
come smaller for larget. This isillustrated in Fig. 4(b). The top ~ A (k+2) (34)
two curves in the figure show how the exact efficiency changes O2k+2 (1 —(1- 001—1)k+2)

with [ for two cases ofi equal to 50 and 150 (the curves marked
es0 andeysg, respectively). As the figure shows, for largethe
efficiency of schemes withh < 1 suffers a drastic reduction
compared to similar cases with fewer flows in Fig. 4(a). In a
dition, whenn approaches its upper limi¥’/3/ (=0 in (29) ) )
(which is 158 forl = —0.5), the performance of all schemes o= 2 ~ 2 ] (35)
with I < 1 becomes worse than that of AIMD. C?0(2—0)+2)3  C%0(2-0)

The two bottom curves in Fig. 4(b) show the amount of ac- Acl look at the | ) Is th h b
cumulated error when using one-term and two-term approximaf- closer loo att € ast e_quatlon reveals that as the r’1um er
flows increases (i.e.C is replaced byC/n), AIMD’s

tions forn = 150. The amount of error in the single-term ap-O ket.| Il also i Furth h f
proximation is substantially increased compared to that wherPac et- 0SS rate Wit & Slow'g‘ crerz:l S€ .urthermori, t ef ?Imount °
was 1 and stays between 30% and 65%. This was expected,I grease Is proportional to”, wheren Is the number of flows.

causez in (30) becomes close to 1.0avecomes large and the_T is confirms a well-known fact that AIMD scales a$ when
higher order terms are no longer insignificant. it comes to packet loss [38]. Note thatias— oo, the amount

—k
In practice, it may prove to be difficult to fine-tune binomialg); ove(rjs?r?ot/\(} R begomes tl)arge corrpared to tEe|_\|/aIue of
schemes with < 1 to achieveconsistentperformance over ™’ and the approximations aboveé no longer work. HOWever,

links of all capacitie€”, because the average efficiency of thes??:e exact formulas in (34) and (35) asymptotically approach

0
schemes will depend on both the number of flowsharing € corrgct valqe of 100%. .
the link and capacity”, none of which are usually known in Consider a simple explanation of why AIMD scales quadrat-
advance ically. In AIMD, the increase in packet loss by a factor/of
We sh.ould also mention that binomial schemes with 1 c°Mes from two places—from the reduction of both the number
possess limited scalability and can support a large numberocgld'_Screte increase stepsbetween pom_tsl andp3 n Fig. 3(b)
flows n only when(C is very large or is very small as seen and intervalAt by a factor ofi (because increase distari¢ceL

in (29). Whenn exceedsC/s'/(1=D such schemes will be 2egomt(er1m _t|rtnes Tmaf:l'e[]).. Asa re?'ult, tlhfggltjmberdof b|ésbsent
forced to reduce their rates to zero (or some minimumarateg) L:c”ntg ef|n2 erva:j 3’1\/ ICN1S prtopfor |onah t.)'S reh uce dy'
upon each packet loss, which is clearly not very efficient a%ac or ofn”, and the amount of overshoot is unchanged (i.e.,

when\C~*R < X. In particular, for AIMD schemes, the av-
éa_rage packet-loss rate given the maximum overshoot is

can be achieved with simpler methods. Consequently, we fi ). Consequently, the tota! amount of lost packets relative to
that AIMD may be the best solution for heterogeneous link T:number Olf sent pa(;:_ket? |str|]ncreasedltbyaffactlanfMD f
of the current Internetbecause its average efficiency does not or example, according to these resufts, a sing'e ow

change from link to link or when users join and leave a parti%Day extpetrlerr:ce_ OltZo packetl!ois tzve[ a g|v_efln ,I['r?k V\ihe“ 10
ular end-to-end path. ows start sharing the same link, the loss will (theoretically)

In addition, as we will see in the next section, a more seriolfiFrease by a fa_lctor of 100, reac_hmg 1.0%' When 100 flows
problem with schemes utilizing < 1 is that their packet-loss are sharing the link, packet loss will (again in theory) approach

0 i i -
rates increase at a faster pace than that in AIMD as the num 8 %. There are tW_O reasons V\.’hy we do not see this !<|nd of per
of flows n becomes large. ormance degradation in practice. First, our results in (35) are

based on a continuous fluid model, which assumes that packets
are infinitely divisible. However, in practice, this approximation
is true only when the amount of increas® is negligible com-
The amount of packet loss during the steady state is anotpared to the difference between the upper and lower limits, i.e.,
important property of a congestion control scheme. ConsidérL in Fig. 3(b). Hence, when the numberdifcreteincrease
one oscillation cycle between pointsand B in Fig. 3(b) and stepsN becomes equal to 1 (or approaches 1), it can no longer
the case of a single flow. The maximum amount of overshobé reduced by a factor af, because it must remain an integer.
under nonideal (i.e., discrete) conditions will be the value of thiaking into account values &f close to 1, the increase in packet
increase function just before the flow reaches its upper boundéogs becomes a subquadratic (often linear) function.of
C'in point B. Hence, the amount of the maximum overshoot for Second, most protocols employing AIMD rely on positive ac-
a single flow is given byAC—*R, whereR is the fixed dura- knowledgment (ACK) inimplementing congestion control. This
tion between control actions as discussed before. Knowing heelf-clocking [15], or packet conservation, is capable of signif-
many bitsX were sent by the flow during the interval of duratioricantly improving the scalability aspects of AIMD, because the

D. Packet Loss
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1E+06

sender does not inject more packets into the network than tt

Rl [7:Y0) AIMD1

AIMD?2 |

network can handle at any given time. Thus, window-based floxl s P,
control coupled with exponential timer backoff significantly in- /

creases stability of TCP-like protocols. On the other hand, rate;e.o. N M

based congestion control does not have this nice cushion to f ///\'F :

back on, which explains whate-based\IMD schemes suffera  1e+03

much higher packet-loss increase than equivalent window-bas:
schemes (see the experimental results given later in this pape

1E+02 /V i
1E+01 //W

. 1E+00
A. Overview 0 20 40 60 80

Rapid packet-loss increase of AIMD, discussed at the end o. numoer of flows n
the previous S.eCtlon’ IS ba.d f‘?r rate'_based protocols in gen%@' 5. Packet-loss scalability, of AIMD and IIAD in simulation (note the
and Internet video streaming in particular. However, the situgg scale of they axis).
tion is not as gloomy as it appears at first since our analysis later

in the paper leads to the existence of end-to-end controls Wti h . ten. AIMD start i i functi th
constant packet loss and much nicer properties than AIMD. € Increase step, starts scaling as a finear function ratner

Suppose the average packet loss whéiows share a link of _than a quadratic function. Hence, (37) is accurate only when the
capacityC is given byp,,. Letpacket-loss increase factey, be mcr[ﬁasebsteps a(;elsmaILc?m{)haredlS(’gbz. ng;_;e;l;)lts based
the ratio ofp,, top,. Parametes,, specifies how fast packet logsON € above model can be further s ewed, ecomes

increases when more flows share a common link and direck ge compared td, in which case we must use the exact for-

relates to the ability of the scheme to support a large numbe Pla in (34).
flows (i.e., schemes with lowes;, scale better). Using (34)

V. PACKET-LOSSSCALABILITY OF CONGESTIONCONTROL

100

B. Simulation

N2 (k + 2)n2k+2 . G e
3 (36) To verify packet-loss scalab|!|ty fmphngs above and show

C2k+2 (1 - (1 - (Q)l—l) ) some examples, we present simulation results of rate-based

" AIMD(1, 1/2) and IIAD(1, 1/2) over a T1 bottleneck link (i.e.,
C = 1544 kb/s). For AIMD, we set\ = MTU/RTT at two
constant values of 5 and 50 kb/s (the corresponding schemes
are called AIMDO and AIMD,) to show how their scalability
changes whei becomes large compared to the upper boundary

Pn =

and applying a two-term approximation from (30)

242 (1= (1= 001=1)"?)

Sn o1\ P2 U = C/n. For lIAD, we selected MTYRTT = 10 Kb/s to
<1 o (1 B (F) ) ) allow the scheme to maintaim, < 100% (otherwise, II1AD
plH2k+1 (2 — (k+ 1)001_1) Iqses it_5n3_pack_et—loss increase). We used a discrete event
~ T simulation, in whichn flows of the same type shared a common
2—(k+1)o %) link under the standard assumption of immediate and synchro-
=0 (ntt2k Ly (37) nized feedback. Furthermore, the simulated flows did not use

retransmission or other error control to recover lost packets.

Hence, packet-loss increase factgrof binomial algorithms ~ Fig. 5 shows parametey, (based on thactual rather than
is proportional ta:'+2*+1 for smalln (when overshoatC—*R  the maximumovershoot) during the simulation as a function
is small compared t&) and grows no faster thaef *2*+! for  of n for the three types of flows. In AIMP (the curve in the
the rest ofn. For AIMD, we get the familiar scalability formula middle), packet-loss increase rati@, reaches a factor of 6755,
of O(n?), whereas IIAD § = 1,1 = 0) and SQRT§ = [ = which is equivalent to scalability of*-! (just below predicted
1/2) scale a)(n?) andO(n??), respectively. n?). On the other hand, AIMB (the bottom curve) maintains

AmongTCP-friendlyschemes (i.ek+[ = 1), packet-lossin- its quadratic packet-loss increase only until= 7, at which
creases,, is O(n3~!), which means that TCP-friendly schemesime it switches to a linear increase. AIMPeaches an increase
with thelargest! scale best. Since we already establishedithaffactor of s109 = 352, which is equivalent to an overall scala-
must be no more than 1 (the noncrossover condition), we immglity of n'-27. It may seem at first that the larger increase step
diately arrive at our second major resuladmong TCP-friendly A of AIMD » is better; however, due to a larger AIMD ; is
binomial schemes, AIMD scales hest much more aggressive in searching for bandwidth and suffers

Now we should make several observations about the applicaere packet loss than AIMDfor all values ofn. Thus, for ex-
bility of (37) in practice. First, we assumed in (34) that the oveample, forn = 100, AIMD , loses 55% of all sent packets, while
shoot will always be as large as possible, M/, % R. However, AIMD; loses only 10%.
in many cases the actual overshoot will be some r andom valud=inally, IIAD’s scalability performance is much worse than
distributed between zero and/ —*R. Second, recall our dis- that of either of AIMD schemes, as can be seen in the figure
cussion of AIMD’s scalability in the previous section. When thé&he top curve). Packet loss with 100 flops) is 219 889 times
increase distandé—I. becomes small compared to the value darger than packet loss with one flowy. Analysis of the data
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using a least-squares fit to the curve shows that the overall sqalhd sometimes other parameters) and feed backuaiable
ability of IIAD is approximatelyr2-%7 (again, slightly less than bandwidth to the end flows. In our approach, the router only
predictedn?). needs to feed back thmttleneckbandwidth (i.e., line speed of
The dips in Fig. 5 occur when capaci€y happens to be a the outgoing link), which is a more practical approach in the
multiple of An for AIMD (a similar situation holds for IIAD) end-to-end context than the methods proposed for ATM.
and the amount of overshoot is significantly less than the av-Note thatall flows sharing a single link must receive an es-
erage. As pointed out before and as shown in Fig. Satiteal timate of C that is fairly close to the true capacity of the link.
increase in packet loss under nonideal (i.e., discrete) conditichsnajor drawback of employing congestion control that relies
may be lower than that predicted by (37). Nevertheless, the theo-end-to-end estimates 6fis that different flows may form a
retical result in (37) can be used as a good performance meaglifierent estimate, which may lead to poor convergence and/or
in comparing the scalability of different binomial schemes. scalability depending on the amount of error. Hence, our ap-
proach in this section relaxes one condition (iles 1) but
C. Feasibility of Ideal Scalability imposes a new one—all flows must measure the bottleneck ca-
We next examine ideal scalability of binomial schemes ancity with highconsistencynd reasonablkeccuracy Note that
derive its necessary conditions. We define a scheme to hahorough evaluation of various bandwidth estimation methods
ideal scalabilityif s,, is constant for allz. This definition is for ideally scalable congestion control is the topic of ongoing
driven by the fact that no matter how small packet lpsss, research. In Section VI, we briefly show some of our prelimi-
there will be a link of sufficient capacity that will accommo-hary results.
date such large number of concurrent flowshat p,, will be To be fair, we must mention another drawback of ideal scal-
unacceptably high. This is especially true given the no-betté@bility—typically slower convergence to fairness due to its less
than-quadratic scalability of binomial congestion control. Coraggressive probing for bandwidth and nonmonotonic conver-
sequently, the ideal situation is to have a scheme that maintagiegice to fairness. Nevertheless, we believe that ideally scalable
a consistent packet-loss rate regardless of the number of flosesitrollers present an interesting dimension to congestion con-
utilizing the scheme, i.ep,, = p; for all n. Furthermore, al- trol. We investigated ideally scalable congestion control until
though not necessary, it would be desirable to have a schewg established a working version of the algorithm, which we
that maintains thsamepacket loss over links differentca- present in the remainder of this paper. Note that much more
pacity C. work in this area is required before we can recommend binary-
To show the existence of ideal scalability, we examine (37edback congestion control other than AIMD for practical use
again and find congestion controllers that alleyvto remain over the Internet.
constant. The necessary conditions for ideal scalability are (re- )
call that the second equation is needed for convergence to f&ir- /deally Scalable Congestion Control

ness) In this section, we introduce ideally scalable congestion con-
l+2k+1=0 k< —1 trol (ISCC) and show how bottleneck capacitycan be used
{ { (38) in ISCC to adapt values d@f\, o) to each end-to-end path. We
k+1>0 I>1 use notation ISCQ, !) to refer to ideally scalable schemes de-

Thel > 1 condition means that if we plan to satisfy thescribed in this section with poweksand!. Note that other ways
noncrossover conditions (19) and (24), or prevent the schefet covered by ISCC) of selecting, o) may be possible to
from reducing its rate below zero, ideal scalability requires tlaehieve the same goal of constapnt
knowledge of some tight upper limit on sending ratfsee the ~ Assuming thaC(¢) is the current estimate of the bottleneck
discussion following (24)]. Consequently, only by assuming thagpacity and that sending raté) is limited by C(¢) at all times
z is limited by a constant is it possible to find suehhat will ¢, conditiono < 1/Iz'~! in (24) can be satisfied by choosing
satisfy the necessary conditien< 1/lz'=', I > 1in (24) for the followingo:
all ratesz. Hence, we come to our third major reswdimong 1
binary-feedback congestion control schemes, ideal scalability 0= ——i " (39)

. . . A mDC(t)l 1

is possible only when sending ratesare limited from above

by a constant, i.e., when flows have knowledge of the bottlenedkere/ > 1 andmp is some constant greater than or equal
capacity to /.51t is easy to show that the decrease step of schemes with

There are two possible ways that an application can learraccording to (39) is no more tharymp for any given state
the value ofC—by using real-time end-to-end measurements > 0. Hence, rate: is guaranteed to stay positive at all times.
or by asking the network to provide an explicit feedback witRurthermore, by varying constantp, the scheme can adjust
the value ofC'. In the next section, we examine the viability ofts average efficiency, where larger valuesofy mean higher
applying the former method to sampling the capacity of the bagfficiency.
tleneck link and the possibility of using such estimates in ide- In addition, we must carefully select the value oo that
ally scalable congestion control. Even though the latter methtite negative value of power does not cause uncontrollably
is similar in spirit to the explicit rate (ER) service in ATM ABR high increase steps. One way to achieve this is to select a fixed
[4], [22], [31], [39], it differs from the proposed work in its com- , _ o

. Lo . From now on, without losing any functionality or convergence, we atlow
plexity. Most ATM ER controllers inside the switch compute % be equal td /(Iz'="), in which case the system mgguchthe fairness line,
differential equation that is a function of the router’s queue sizat not cross it.
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valuea and then multiply it by(MTU/RTT)*+! as shown in O el T [onol 1 (ool ™
(4). However, the increase steps will still remain virtually un- ﬁ 3660 I'W 3620
limited, because the value of MTARTT has little relationship ol

to the value of” (which is needed to effectively limiz—*). In

addition, different flows may use different multiplicative factors

in (4) due to the differences in the RTT or the MTU. An alterna-

tive approach is to apply a similar thinking to that used befofégd. 6. Setup of the experiment.
in selectingc—choose\ so that the increase step is always no

more thanx/m; for any given rate:, wherem; is some con-  Among an infinite number of ISCC schemes, we arbitrarily

100 mb/s

stant greater than or equal to one. This can be written as  selected a scheme with= 2 (k = —1.5) which achieves a
reasonable compromise between packet loss and convergence,
Az7F < i7 my>1,2>0 (40) and we show its performance in this paper. Note that this par-
mr ticular scheme is somewhat less aggressive that AIMD and typ-
which is satisfied with the following choice of: ically yields bandwidth to AIMD (however, this effect becomes

noticeable only when the number of flowsis large). Hence,
_ my > 1. (41) practical application of this ISCC scheme in the Internet re-
myp - quires the use of new QoS methods in routers (i.e., DiffServ)
ﬁlg discussed in Section I.
orl = 2, the analytical result in (38) suggests a value of
qual to—1.5. However, in simulation, we found that =
—1.2 was sufficient to maintain constant packet loss. In fact,
(34), (39), and (4_1)' packet loss of ISCC schemes no Iongker: —1.5 appeared to be “too successful” in controlling the
depends om or C: combined packet loss of all flows and resulted in a slodgy

Parametern; can be used to vary the aggressiveness of t
scheme in searching for new bandwidth, where larger valueskp
my resultin less aggressive behavior of the scheme. Combinlnq

k+2 cayingfunctions,, (i.e., the more flows, the lower packet loss
1= e (42)  ;,.). Whether this observation holds in a real network is the topic
m? <1 — (1 - %) ) +k+2 of our investigation below.

In the next section, we compare the performance of ofe Real-Time Bandwidth Estimation
particular ISCC congestion control scheme in a rate-basedn this section, we briefly examine the accuracy of real-time
real-time streaming application with that of IIAD, SQRTpandwidth estimation in rate-based streaming applications. In

AIMD, and TCP-friendly rate control (TFRC) [11]. the next section, we show the performance of two ISCC schemes
that rely on these real-time estimates for computing the values
VI. SIMULATION AND EXPERIMENTS of A ando.

We used a Cisco network, depicted in Fig. 6, for all real-life
experiments in this paper. The server and the client were

We start with an observation thatiibecomes much larger connected to Catalyst switches via two 100-Mb/s Ethernets.
than 1.0 in an ISCC scheme and sending fatemuch smaller The switches in turn were connected to Cisco 3620 routers via
than capacity” (e.g., whem is large), such congestion controly o_Mp/s Ethernets. The 3620 routers connected to each other
becomes less responsive to packet loss. Being less respongi¥ers |inks passing through an additional Cisco 3660 router.
usually results in very small rate reductions that often cannBliring the experiment, we disabled weighted random early
alleviate congestion in a single step. Thus, schemes with latg§ection (WRED) and weighted fair queueing (WFQ) on all
[ usually need multiple back-to-back decrease steps to mowginterfaces to reflect the current setup of backbone routers.
the system below the efficiency line in Fig. 2. Our assumptions The server supplied the client with real-time bandwidth-scal-
above do not model this behavior. The actual resulting packfifle MPEG-4 video, which included an fine-granular scalable
loss in these schemes turns out to be higher than pred_icted(by_;s) enhancement layer [42] and a regular base layer. At any
(37) and the convergence time is sometimes substantially fiine ¢, the server was able to adapt its streaming rate to the rate
creased. Hence, from this perspective, larger valuésu not  requested by the client, as long as it was no less than the rate of
desirable. the base layeb, and no more than the combined rate of both

The only value ofi that guarantees ideal scalability amonggyers,
TCP-friendly schemes (i.ek,+ 1 = 1 andl + 2k +1 =0)iS  Wwe used a 10-min MPEG-4 video sequence with the base
quite high and equals 3. In practice, this scheme converges VRRYer coded ab, = 14 kb/s and the enhancement layer coded
slowly and may not be a feasible solution for the real Interngfy to the maximum rat,..x = 1190 kb/s. Note that two
Among non-TCP-friendly schemes, values ofose to 1.0force concurrent flows were needed to fully load the bottleneck link.
k to come close te-1.0 (becausé+ 2k + 1 must still remain  Hence, our experiments below do not cover the case f1,
zero), which also results in slower convergence to fairness £y, is defined as the ratio of, to p».
sumk + [ approaches zero. During the experiment, the client applied a simple

SValues oft + 1 close to zero mean that the system makes very small (if anpACKe€t-bunch estimation technique [3], [41] to the server's
steps toward the fairness line and, thus, converges very slowly. video packets. To simplify the estimation of the bottleneck

A. Choice of Powers Functions
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Fig. 7. The histogram of bandwidth estimates with (a) 2 and (b) 32 AIMD(1, 1g+00
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bandwidth, the server sent its packets in bursts of a predefinggl g packet-loss increase factor for the Cisco experiment.
length. A bandwidth sample was derived from each burst that

contained at least three packets.
To establish a baseline performance, Fig. 7(a) plots tA@00 bytes for all schemes. Note that TFRC was the only pro-

histograms of IP bandwidth estimates obtained by twigcol .that used real-time measurements of the RTT in its com-

AIMD(1, 1/2) flows over the topology in Fig. 6 (both flows Putation of the rate.

used a fixed value oA = MTU/RTT equal to 30 kb/s). The efficiency and aggressiveness parameters of the ISCC

As the figure shows, the flows measured the IP bottlenegkhemes were set with the same goal in mind to maintain low

bandwidth to be 1510 kb/s, which is very close to the actuitial packetlos,: mp = 2 andm; = 20. These parameters

T1 rate of 1544 kb/s (the discrepancy is easily explained by tgearanteed that each flow did not decrease its rate by more than

data-link/physical layer overhead on the T1 line). Furthermor&/2 and did not probe for new bandwidth more aggressively than

both flows were in perfect agreement, and 99.5% of estimaf®¥ 5% (i.e., 1/20) of the current sending rate.

of each flow were between 1500 and 1520 kb/s. The results of the experiment are summarized in Fig. 8,
Fig. 7(b) shows the histograms of bandwidth estimat&#ich shows packet-loss increase factqr for six different

obtained by 32 simultaneous AIMD(1, 1/2) flows running oveschemes and values afbetween 2 and 50. The results of the

the same topology and with the same value of MRIT. This experiment show that all nonscalable schemes maintained a

time, the majority of estimates lie in the proximity of 1490 kb/ssteady packet-loss increase to well over 15%. For example,

and 95.5% of estimates are contained between 1400 dHP reachedpso = 45%, SQRT 28%, AIMD 25%, and TFRC

1620 kb/s (i.e., within 7% of 1510 kb/s). The lower accuracgl%.

of bandwidth estimation in the second case is explained by theRecall that our simulation suggested that —1.2 was ade-

lower average sending rate of each flow (i.e., 36 kb/s compargdate for thd = 2 schemes. In practice, however, the value of

to 559 kb/s in the first case) and higher overall packet loss. k£ = —1.2 turned out to be insufficient to balance out the large
positive value ot in the scalability powek+2k+1, as shown in
C. Scalability Results Fig. 8. Contrary to simulation results, ISCEL.2,2) maintained

. L a steady packet-loss increase for all values @ind reached a
In our rate-based streaming application, all flows used Slorvélasonabl high loss ra — 19%. The overall scalabilit
start at the beginning of each transfer; however, the results belg y hg 1o = o Y

exclude the behavior of the network during the transient ph gfthe scheme using a least-squares fit of a power function was

€ 0.85
and focus on the steady-state performance of the schemeag) fﬁnd to ben™™.

the interval starting 10 s after the last flow finished its slow ;)r;(t)/he otherr]hand, packet Io?z OHSAGF(S'Z) cIimbe(];j_ only
start and ending when the first flow terminafethis interval t0 2.3% over the same range of flowsA least-squares fit sug-

as 520—600 s lona (dependina on the number of flows) ad§Sts that the increase in packet loss was slovv_ but noticeable.
N g (depending y W) ven though ISCC{1.5,2) was not able to achieve constant

included a combined transfer of approximately 60 000 packets. ) Tl .
During the experiment, we tried to select the parameters of gcket loss in practice, it did show a sgbstantlally better per-
schemes so that the average packet loss of two competing fl gignance than any other scheme. The discrepancy between the

using each scheme was between 0.3% and 0.6%. Using af&g&atinuous fluid model for ISCC studied earlier in this paper
value of A = MTU/RTT equal to 100 Kb/s, this constraint re_and experimental results is easily explained by delayed and lost
’ eedback, nonuniform packet loss, and errors in measuring the

sulted in selecting the following parameters: AIMD(0.19, 1/2 e of (.

SQRT(0.18, 1/2), and 1IAD(0.10, 1/2). The value of thidU ) . .
variablein TEFRC's equation [11] was selected to be 180 bytes, As expected, high packet loss during the experiment resulted

whereas the actual packet size used during the experiment {:&12rge number of underflow events, which are produced when
a frame is missing from the decoder buffer at the time of its de-

coding. Recall that underflow events in the base layer are most
"Flows were started with a 1.5-s delay. severe, because each one of them results in a “freeze-frame”
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TABLE |
SUMMARY OF EXPERIMENTAL RESULTS

VIl. CONCLUSION

In this paper, we studied the binary-feedback class of rate-

Scheme p2 Pso 850  Scalesas  Efficiency based congestion control and derived very simple conditions on
HAD(.10,}/2) ~ 0.29%  447% 1569  nl:%® 4% increase and decrease functions that guarantee monotonic con-
SQRT(0.18,11/2) o.zez/o 27.8;% 105.8 nii? 85% vergence to fairness (i.e., asymptotic stability of the fairness
?]]:I:g((fé;?‘ /) g;g;’ ;3;0;0 jgz 21:30 ;;;" ppint)..lnterestingly, our derivatio_ns show that AIMD i; the only
ISCC122)  069%  120% 174 n085 $0% binomial controller wnh monotonic convergence to falr'ne.ss. We
1SCC(-15.2) 057%  23% 41 1,049 779 also showed that all binomial controls with a nonmultiplicative

decrease function suffered from reduced link utilization as the

number of flowsn increased.

effect. If an enhancement frame is not received, or is receivet#
partially by the time of its decoding, such underflow even

are not severe, because the base layer can be played with Et'?q

the enhancement layer or even with partially received enhan?é(-
ment-layer pictures. !
Under the worst conditions (i.en, ~ 50), our data show
that the nonscalable protocols maintained a “frozen” picture be:
tween 13% and 68% of the corresponding session. These resu
indicate that high packet loss is very harmful to video appli-
cations even in the presence of low RTTs (50-200 ms), Iarge
startup delays (3 s in our case), and an efficient packet-lq(s
recovery mechanism (our retransmission scheme was able
recover all base-layer packets before their deadlines until 10
rates exceeded approximately 15%).
On the other hand, ISCE(L.2,2) recovered all base-layer
frames before their deadlines, but had some missing enhance
ment-layer frames. ISCE{(1.5,2) recovered all base-layer an
all enhancement-layer pictures before their decoding deadlinﬁﬁ
representing an ideal streaming situation for the end user.
Table | summarizes our observations during the experim
and further shows that both ISCC schemes maintained a re%
sonably high average efficiency (for the comparison to be me
ingful, we selected the value af when all flows achieved ap-
proximately the same packet loss, ise+ 2). The table shows
that ISCC's efficiency was in fact better than that of both AIMD
and lIAD.
We further experimented with random early detection (RED)

n the second half of this paper, we studied the origin of sig-
ificant packet-loss increase in rate-based binomial schemes as
umber of flows becomes large. This phenomenon is caused
e reduction of the fair-share bandwidth allocated to each
ow by a factor ofn and unchanged (or even greater) overshoot
of this fair bandwidth during the increase phase. One implica-
tion of this result for ISPs is that they should scale their band-
wl'{jth proportionally to the number of users (flows) that their
nef?/vorks support.

To overcome rapid packet-loss increase, we developed and
tgdied anew class of ideally scalable controllers (ISCC), which
gep the amount of overshoot proportional to the amount of data
sent by a flow during each oscillation cycle. Even though ISCC
oﬁ‘?ers much better packet-loss characteristics under a variety of
simulation and real-life scenarios, its requirement for end flows
to measure the bottleneck bandwidth and slower convergence
f largen leave room for future research.

Among non-ISCC binomial schemes, our conclusion is that
éar controls of AIMD offer the most robust behavior across
a wide range of paths, lowest packet loss, and fastest conver-
nce to fairness under a variety of conditions. Non-AIMD bi-
mial schemes may possess a certain level of appeal (such as
Aoother rates); however, their use in rate-based applications
leads to rapid packet-loss increase, which may turn out to be a
serious drawback in practical implementations.
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same topology, we enabled Cisco’s WRED on all T1 interfaces
and used the default parameters suggested by Cisco Internet-
work Operating System (I0S). Interestingly, RED did not have
any major impact on packet-loss increase curves in Fig. 8 or thd!
average efficiency. However, we did notice a slightimprovement[z]
in fairness between the individual flows. Little overall effect of
Cisco’s WRED on congestion control and/or link utilization has
also been noticed in [8] and [34].

In this section, we found that traditional schemes (including (4]
AIMD, IIAD, SQRT, and TFRC) are poorly suited for rate-
based protocols that do not utilize self-clocking. Furthermore, [5]
we observed that ideally scalable schemes promise to provide
constant packet-loss scalability not only in simulation but also
in practice. Nevertheless, further study is required in this aream
to understand the tradeoffs between the different valuéaiod
k, as well as establish whether slower convergence to fairness
found in simulation has any strong implications in large net- 8]
works (i.e., in the real Internet).
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