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MotivationMotivationMotivation
•

 
Many applications use external-memory (EM) 
algorithms to process datasets larger than RAM

•
 

This often requires concurrent I/O with multiple files
━

 

Sorting (merging/distribution)
━

 

MapReduce
 

computation
━

 

Graph mining
━

 

Database join/group/aggregate queries

•
 

Parallel I/O is challenging because large-scale
 

storage 
frequently uses arrays of HDDs
━

 

High sequential read/write transfer
 

speed (Sr
 

, Sw

 

), but large
 seek delays, i.e., switching

 
between files is expensive
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MotivationMotivationMotivation
•

 
Long history of EM research [Aggarwal88], [Vitter94], 
[Dementiev08], [Blelloch15], [Shatnawi15], [Arge17]
━

 

Does not account for seeking and not concerned with runtime
━

 

More recent theory [Bender19] goes to the other extreme and 
assumes that every I/O incurs a seek

•
 

Instead, a realistic EM model should
━

 

Focus on the
 

runtime of the application
━

 

Explicitly account for the fact that EM algorithms perform 
bursts of sequential I/Os interleaved with random seeks

•
 

We fill this void by introducing a novel I/O model called
 bowtie streaming and modeling its performance
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Bowtie StreamingBowtie StreamingBowtie Streaming
•

 
Definition: a stream is an external data object without 
support for random access

•
 

Definition: a n
 

×

 
m

 
bowtie 

is an EM computation 
that runs a user-supplied 
function f, which

 reads from n
 

input streams, 
each at some average rate λin

 

, and writes to m
 

output 
streams, each at some other rate λout

•
 

A bowtie is called high-latency if the inter-stream seek 
delay δ

 
is non-negligible compared to the time spent 

sequentially accessing each file 



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

7

Bowtie StreamingBowtie StreamingBowtie Streaming
•

 
Let N

 
be the total amount of data across all streams, 

with fraction α
 

coming from input, and M < N the 
amount of memory available to the I/O scheduler

•
 

Definition: assuming s
 

is the total number of stream 
switches, the runtime of a bowtie application is

•
 

It is often more useful to view performance in terms of 
the average sequential run length L

 
= N/s

•
 

Definition: the throughput of a bowtie application is
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Bowtie StreamingBowtie StreamingBowtie Streaming
•

 
The optimal solution to an n

 
×

 
m

 
bowtie may require a 

decomposition into smaller bowties
━

 

A 6x4 case may be 
split into three 2x1 
merge bowties, 
followed by a 3x2 
interconnect, 
and then two 1x2 
distribution bowties

━

 

But can we do better and under what conditions?

•
 

Objective: assuming a d-pass 
bowtie with

 
rate λi

 

in level i, 
maximize the

 
overall throughput
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Optimizing Run LengthOptimizing Run LengthOptimizing Run Length
•

 
The first step is to optimize single-pass bowtie 
performance, which translates into maximizing L

•
 

Discussion here focuses on one particular scenario; 
see the paper for the other four
━

 

In distribute-from-file,
 

data from
 a single input stream is split

 into m
 

destinations

•
 

Most existing methods (Spark, Hadoop, STXXL, 
[Vitter94]) perform I/O on demand, i.e., without 
buffering ahead, minimizing seeks, or taking into 
account memory size M
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Optimizing Run LengthOptimizing Run LengthOptimizing Run Length
•

 
Baseline memory-aware approach:
━

 

Split memory in half between input and output
━

 

Read M/2

 
from input, distribute the data, empty

 
all buckets

•
 

Theorem: the baseline algorithm yields L
 

= M/(m+1)

━

 

But we can do even better with a new formalism

•
 

Definition: the buffer of pending data for each stream i
 is called a bucket and its size at time t

 
is Xi

 

(t), where 


 
Xi

 

(t)

 
·

 
M

•
 

Definition: a bucket game is an in-memory scheduler 
that decides which buffer(s) to empty when the 
memory is exhausted (i.e., 

 
Xi

 

(t) =

 
M)
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Optimizing Run LengthOptimizing Run LengthOptimizing Run Length
•

 
Note that the bucket game assumes negligible 
buffering on the reader side (e.g., two blocks)

•
 

The
 

objective is to design a scheduler that
 

achieves 
the largest

 
L

━

 

If ei
 

is the set of buckets emptied during step i, each bucket 
game is described by some vector q

 
= (e1

 

, e2

 

, …)

━

 

Selection of optimal q
 

for general cases is complicated, but is 
tractable for certain

 
scenarios of interest

•
 

Emptying the single largest bucket seems like a 
reasonable solution, but we consider a more general 
problem that removes the c

 
≥

 
1

 
largest buckets

━

 

A
 

simulation is available at gabrielrstella.com/buckets.php
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Optimizing Run LengthOptimizing Run LengthOptimizing Run Length
•

 
Theorem: the 1 ×

 
m

 
bucket-game system of 

recurrences converges to a unique steady state whose 
run

 
length

 
is optimized by 

•
 

Theorem: The optimal run 
length for the 1 ×

 
m

 
bowtie 

is 
━

 

This is almost 4x
 better than baseline 

━

 

With m
 

= 64

 
files

 
and 

memory size M
 

= 16

 
GB, the

 
baseline

 
gets L

 
= 252

 
MB, 

c

 
= 1

 
yields

 
500 MB, while

 
the optimal approach

 
with c

 
= 8

 reaches L
 

= 809 MB
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Multi-Pass OptimizationMultiMulti--Pass OptimizationPass Optimization
•

 
Throughput λ(m)

 
begins relatively 

flat for small fan-out factors, but 
then exhibits a sharp decline after some threshold
━

 

To increase performance at large n
 

+ m, multiple passes 
over the data are usually beneficial

•
 

Idea: use dynamic programming to find the
 

optimal set 
of intermediate bowties that minimizes the total runtime

•
 

Alg 1: find optimal
 

n

 
×

 
1

 
and 1

 
×

 
m

 
bowties under 

arbitrary λ
 

functions

•
 

Alg 2: determine the best
 

interconnect
 

i

 
 ×

 
j

 
that

 creates the optimal
 

(n
 

→ i

 
 ×

 
j

 
→ m) multi-pass bowtie

sudden 
drop
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Multi-Pass OptimizationMultiMulti--Pass OptimizationPass Optimization
•

 
Example: for

 
an

 
1

 
×

 
m

 
bowtie, the algorithm finds a list

 of split factors
 

(m1

 

, …,

 
md

 

), where                     , such 
that the total throughput [i

 

1/λ(mi

 

)]—1

 
is maximized

━

 

The single-pass solution runs λ(m) ∼

 
1/m

 
as m→∞, while 

the multi-pass has much better scalability λ(m) ∼

 
1/log(m)

•
 

Consider a
 

1 ×
 

8000 bowtie outputting 64 TB using 
M

 
= 8

 
GB

 
on

 
a 24-HDD RAID system

 
with sequential 

I/O speed Sr
 

=

 
Sw

 

= 4 GB/s
 

and seek delay δ
 

= 10 ms
━

 

Prior
 

work often suggests one
 

pass, which runs @ 208
 

MB/s
━

 

Binary splits, another alternative that appears in related work,
 require 13 passes, which gives

 
273 MB/s

━

 

The optimal split vector
 

(90, 89),
 

however, pushes 1353
 

MB/s
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I/O TracingI/O TracingI/O Tracing
•

 
Due to CPU bottlenecks and various OS-related side-

 effects (fragmentation, buffering) in most real systems, 
comparison of I/O performance is complex

•
 

We develop a novel I/O measurement platform that:
━

 

Intercepts and records all I/O calls from a process and its 
children (with negligible measured performance impact)

━

 

Merges and converts log files into a single list of instructions
━

 

Replays the I/Os in a standalone,
 

performance-optimized, and 
defragmented

 
file system

•
 

This enables not only analysis
 

of process
 

I/O patterns 
(e.g., seek counts, run length L), but also a systematic 
evaluation of throughput λ

 
across the methods
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Java FrameworksJava FrameworksJava Frameworks
•

 
We start with

 
Hadoop

 
and Spark, two popular Apache 

data-processing
 

frameworks (24 HDD, 160 TB RAID)

•
 

Even though the volume delivers 4 GB/s sequential 
speed, the replay was 2 orders of magnitude slower
━

 

Hadoop
 

spawned 2K
 

processes that executed
 

2.83 TB of I/O 
across 569M API calls, including 11M calls to CreateFile

━

 

Spark required 511 GB
 

of I/O and issued 20.5M calls to 
CreateFile, interacting with 16K unique filenames

Java Framework Results Sorting 100 GB
Framework RAM (GB) Sort (hr) Replay (min) Seeks L (Bytes)

Hadoop 25 6.6 90 415M 517
Spark 10 10.2 32 34M 6316
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C++ FrameworksC++ FrameworksC++ Frameworks
•

 
To build on the theory developed earlier, our platform  
Tuxedo Tuxedo implements

 
optimal multi-pass I/O-scheduling

 for general bowties
━

 

We test it by constructing a sorting application for large files
 consisting of 64-bit uniform keys

━

 

The in-memory
 

component runs an m-way depth-first-search 
distribution bowtie, followed by the Vortex framework 
[Hanel20] that sorts memory-size chunks at the leaves

•
 

Benchmarks also include
━

 

STXXL:
 

an open-source high-performance EM algorithm
 

suite
━

 

nsort:
 

popular commercial sorting software that has been 
used as the backbone of several large sorting systems
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C++ FrameworksC++ FrameworksC++ Frameworks

•
 

Tuxedo achieves 2-3 orders of magnitude larger L
━

 

This
 

benefit gets larger as M increases

•
 

Note that in the three highlighted cases, Tuxedo 
exhibits perfect linear scaling with M

Average

 

Sequential Run Length L

 

(MB/seek)
RAM (GB) Input (GB) STXXL nsort Tuxedo

1 8 3.9 1.5 260
2 128 4.0 1.9 98
2 1024 3.6 1.0 115
2 8192 1.3 0.8 49
8 512 4.0 1.8 396
8 4096 4.0 1.7 55

20 1280 4.0 1.9 993
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C++ FrameworksC++ FrameworksC++ Frameworks

•
 

When looking at just the bowtie I/O scheduling, 
Tuxedo is up to 17x faster
━

 

Our performance will continue to get better when
 

given more 
memory and/or

 
faster storage hardware

Replay Bowtie

 

Rate λ

 
(MB/s)

RAM (GB) Input (GB) STXXL nsort Tuxedo
1 8 599 207 2,962
2 128 381 213 2,114
2 1024 367 112 1,350
2 8192 187 86 1,010
8 512 382 198 2,881
8 4096 355 177 1,891

20 1280 372 188 3,297
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C++ FrameworksC++ FrameworksC++ Frameworks
•

 
We finish with

 
full

 
sort results

•
 

When comparing sort
 

and replay
 

rates, the numbers 
here will be significantly

 
lower for several reasons:

━

 

Sort rates are calculated as αN/T

 
(only input is counted)

━

 

Sort
 

times include both the bowtie passes and the run-
 formation phase (replays are bowtie-only)

━

 

STXXL and nsort
 

are both heavily CPU-bottlenecked

•
 

Tuxedo’s
 

low
 

computational cost makes our
 

full sorts 
only

 
~10% slower than the corresponding replays
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C++ FrameworksC++ FrameworksC++ Frameworks
Sort Rate (MB/s)

RAM (GB) Input (GB) STXXL nsort Tuxedo
1 8 57 56 561
2 128 56 69 554
2 1024 51 50 434
2 8192 39 32 343
8 512 56 55 650
8 4096 55 73 528
20 1280 55 55 688

•
 

Tuxedo’s
 

7-12x
 

improvement over the existing
 

systems 
offers an appealing big-data engine for various EM 
tasks (e.g., analytics, graph mining, databases)

•
 

Questions?
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