
C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

1

On High-Latency Bowtie Data StreamingOn HighOn High--Latency Bowtie Data StreamingLatency Bowtie Data Streaming

Gabriel StellaGabriel Stella, Dmitri

Loguinov

Internet Research Lab (IRL)

Department

of Computer Science and Engineering
Texas A&M University

December 18, 2022

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

2

AgendaAgendaAgenda
••

MotivationMotivation

•

Bowtie Streaming

•

Optimizing Run Length

•

Multi-Pass Optimization

•

Experiments

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

3

MotivationMotivationMotivation
•

Many applications use external-memory (EM)
algorithms to process datasets larger than RAM

•

This often requires concurrent I/O with multiple files
━

Sorting (merging/distribution)
━

MapReduce

computation
━

Graph mining
━

Database join/group/aggregate queries

•

Parallel I/O is challenging because large-scale

storage
frequently uses arrays of HDDs
━

High sequential read/write transfer

speed (Sr

, Sw

), but large
 seek delays, i.e., switching

between files is expensive

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

4

MotivationMotivationMotivation
•

Long history of EM research [Aggarwal88], [Vitter94],
[Dementiev08], [Blelloch15], [Shatnawi15], [Arge17]
━

Does not account for seeking and not concerned with runtime
━

More recent theory [Bender19] goes to the other extreme and
assumes that every I/O incurs a seek

•

Instead, a realistic EM model should
━

Focus on the

runtime of the application
━

Explicitly account for the fact that EM algorithms perform
bursts of sequential I/Os interleaved with random seeks

•

We fill this void by introducing a novel I/O model called
 bowtie streaming and modeling its performance

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

5

AgendaAgendaAgenda
•

Introduction

••

Bowtie StreamingBowtie Streaming

•

Optimizing Run Length

•

Multi-Pass Optimization

•

Experiments

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

6

Bowtie StreamingBowtie StreamingBowtie Streaming
•

Definition: a stream is an external data object without
support for random access

•

Definition: a n

×

m

bowtie

is an EM computation
that runs a user-supplied
function f, which

 reads from n

input streams,
each at some average rate λin

, and writes to m

output
streams, each at some other rate λout

•

A bowtie is called high-latency if the inter-stream seek
delay δ

is non-negligible compared to the time spent

sequentially accessing each file

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

7

Bowtie StreamingBowtie StreamingBowtie Streaming
•

Let N

be the total amount of data across all streams,

with fraction α

coming from input, and M < N the
amount of memory available to the I/O scheduler

•

Definition: assuming s

is the total number of stream
switches, the runtime of a bowtie application is

•

It is often more useful to view performance in terms of
the average sequential run length L

= N/s

•

Definition: the throughput of a bowtie application is

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

8

Bowtie StreamingBowtie StreamingBowtie Streaming
•

The optimal solution to an n

×

m

bowtie may require a

decomposition into smaller bowties
━

A 6x4 case may be
split into three 2x1
merge bowties,
followed by a 3x2
interconnect,
and then two 1x2
distribution bowties

━

But can we do better and under what conditions?

•

Objective: assuming a d-pass
bowtie with

rate λi

in level i,
maximize the

overall throughput

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

9

AgendaAgendaAgenda
•

Introduction

•

Bow Streaming

••

Optimizing Run LengthOptimizing Run Length

•

Multi-Pass Optimization

•

Experiments

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

10

Optimizing Run LengthOptimizing Run LengthOptimizing Run Length
•

The first step is to optimize single-pass bowtie
performance, which translates into maximizing L

•

Discussion here focuses on one particular scenario;
see the paper for the other four
━

In distribute-from-file,

data from
 a single input stream is split

 into m

destinations

•

Most existing methods (Spark, Hadoop, STXXL,
[Vitter94]) perform I/O on demand, i.e., without
buffering ahead, minimizing seeks, or taking into
account memory size M

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

11

Optimizing Run LengthOptimizing Run LengthOptimizing Run Length
•

Baseline memory-aware approach:
━

Split memory in half between input and output
━

Read M/2

from input, distribute the data, empty

all buckets

•

Theorem: the baseline algorithm yields L

= M/(m+1)

━

But we can do even better with a new formalism

•

Definition: the buffer of pending data for each stream i
 is called a bucket and its size at time t

is Xi

(t), where

Xi

(t)

·

M

•

Definition: a bucket game is an in-memory scheduler
that decides which buffer(s) to empty when the
memory is exhausted (i.e.,

Xi

(t) =

M)

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

12

Optimizing Run LengthOptimizing Run LengthOptimizing Run Length
•

Note that the bucket game assumes negligible
buffering on the reader side (e.g., two blocks)

•

The

objective is to design a scheduler that

achieves
the largest

L

━

If ei

is the set of buckets emptied during step i, each bucket
game is described by some vector q

= (e1

, e2

, …)

━

Selection of optimal q

for general cases is complicated, but is
tractable for certain

scenarios of interest

•

Emptying the single largest bucket seems like a
reasonable solution, but we consider a more general
problem that removes the c

≥

1

largest buckets

━

A

simulation is available at gabrielrstella.com/buckets.php

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

13

Optimizing Run LengthOptimizing Run LengthOptimizing Run Length
•

Theorem: the 1 ×

m

bucket-game system of

recurrences converges to a unique steady state whose
run

length

is optimized by

•

Theorem: The optimal run
length for the 1 ×

m

bowtie

is
━

This is almost 4x
 better than baseline

━

With m

= 64

files

and

memory size M

= 16

GB, the

baseline

gets L

= 252

MB,

c

= 1

yields

500 MB, while

the optimal approach

with c

= 8

 reaches L

= 809 MB

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

14

AgendaAgendaAgenda
•

Introduction

•

Bowtie Streaming

•

Optimizing Run Length

••

MultiMulti--Pass OptimizationPass Optimization

•

Experiments

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

15

Multi-Pass OptimizationMultiMulti--Pass OptimizationPass Optimization
•

Throughput λ(m)

begins relatively

flat for small fan-out factors, but
then exhibits a sharp decline after some threshold
━

To increase performance at large n

+ m, multiple passes
over the data are usually beneficial

•

Idea: use dynamic programming to find the

optimal set
of intermediate bowties that minimizes the total runtime

•

Alg 1: find optimal

n

×

1

and 1

×

m

bowties under

arbitrary λ

functions

•

Alg 2: determine the best

interconnect

i

 ×

j

that

 creates the optimal

(n

→ i

 ×

j

→ m) multi-pass bowtie

sudden
drop

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

16

Multi-Pass OptimizationMultiMulti--Pass OptimizationPass Optimization
•

Example: for

an

1

×

m

bowtie, the algorithm finds a list

 of split factors

(m1

, …,

md

), where , such
that the total throughput [i

1/λ(mi

)]—1

is maximized

━

The single-pass solution runs λ(m) ∼

1/m

as m→∞, while

the multi-pass has much better scalability λ(m) ∼

1/log(m)

•

Consider a

1 ×

8000 bowtie outputting 64 TB using
M

= 8

GB

on

a 24-HDD RAID system

with sequential

I/O speed Sr

=

Sw

= 4 GB/s

and seek delay δ

= 10 ms
━

Prior

work often suggests one

pass, which runs @ 208

MB/s
━

Binary splits, another alternative that appears in related work,
 require 13 passes, which gives

273 MB/s

━

The optimal split vector

(90, 89),

however, pushes 1353

MB/s

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

17

AgendaAgendaAgenda
•

Introduction

•

Bowtie Streaming

•

Optimizing Run Length

•

Multi-Pass Optimization

••

ExperimentsExperiments

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

18

I/O TracingI/O TracingI/O Tracing
•

Due to CPU bottlenecks and various OS-related side-

 effects (fragmentation, buffering) in most real systems,
comparison of I/O performance is complex

•

We develop a novel I/O measurement platform that:
━

Intercepts and records all I/O calls from a process and its
children (with negligible measured performance impact)

━

Merges and converts log files into a single list of instructions
━

Replays the I/Os in a standalone,

performance-optimized, and
defragmented

file system

•

This enables not only analysis

of process

I/O patterns
(e.g., seek counts, run length L), but also a systematic
evaluation of throughput λ

across the methods

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

19

Java FrameworksJava FrameworksJava Frameworks
•

We start with

Hadoop

and Spark, two popular Apache

data-processing

frameworks (24 HDD, 160 TB RAID)

•

Even though the volume delivers 4 GB/s sequential
speed, the replay was 2 orders of magnitude slower
━

Hadoop

spawned 2K

processes that executed

2.83 TB of I/O
across 569M API calls, including 11M calls to CreateFile

━

Spark required 511 GB

of I/O and issued 20.5M calls to
CreateFile, interacting with 16K unique filenames

Java Framework Results Sorting 100 GB
Framework RAM (GB) Sort (hr) Replay (min) Seeks L (Bytes)

Hadoop 25 6.6 90 415M 517
Spark 10 10.2 32 34M 6316

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

20

C++ FrameworksC++ FrameworksC++ Frameworks
•

To build on the theory developed earlier, our platform
Tuxedo Tuxedo implements

optimal multi-pass I/O-scheduling

 for general bowties
━

We test it by constructing a sorting application for large files
 consisting of 64-bit uniform keys

━

The in-memory

component runs an m-way depth-first-search
distribution bowtie, followed by the Vortex framework
[Hanel20] that sorts memory-size chunks at the leaves

•

Benchmarks also include
━

STXXL:

an open-source high-performance EM algorithm

suite
━

nsort:

popular commercial sorting software that has been
used as the backbone of several large sorting systems

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

21

C++ FrameworksC++ FrameworksC++ Frameworks

•

Tuxedo achieves 2-3 orders of magnitude larger L
━

This

benefit gets larger as M increases

•

Note that in the three highlighted cases, Tuxedo
exhibits perfect linear scaling with M

Average

Sequential Run Length L

(MB/seek)
RAM (GB) Input (GB) STXXL nsort Tuxedo

1 8 3.9 1.5 260
2 128 4.0 1.9 98
2 1024 3.6 1.0 115
2 8192 1.3 0.8 49
8 512 4.0 1.8 396
8 4096 4.0 1.7 55

20 1280 4.0 1.9 993

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

22

C++ FrameworksC++ FrameworksC++ Frameworks

•

When looking at just the bowtie I/O scheduling,
Tuxedo is up to 17x faster
━

Our performance will continue to get better when

given more
memory and/or

faster storage hardware

Replay Bowtie

Rate λ

(MB/s)

RAM (GB) Input (GB) STXXL nsort Tuxedo
1 8 599 207 2,962
2 128 381 213 2,114
2 1024 367 112 1,350
2 8192 187 86 1,010
8 512 382 198 2,881
8 4096 355 177 1,891

20 1280 372 188 3,297

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

23

C++ FrameworksC++ FrameworksC++ Frameworks
•

We finish with

full

sort results

•

When comparing sort

and replay

rates, the numbers
here will be significantly

lower for several reasons:

━

Sort rates are calculated as αN/T

(only input is counted)

━

Sort

times include both the bowtie passes and the run-
 formation phase (replays are bowtie-only)

━

STXXL and nsort

are both heavily CPU-bottlenecked

•

Tuxedo’s

low

computational cost makes our

full sorts
only

~10% slower than the corresponding replays

C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

24

C++ FrameworksC++ FrameworksC++ Frameworks
Sort Rate (MB/s)

RAM (GB) Input (GB) STXXL nsort Tuxedo
1 8 57 56 561
2 128 56 69 554
2 1024 51 50 434
2 8192 39 32 343
8 512 56 55 650
8 4096 55 73 528
20 1280 55 55 688

•

Tuxedo’s

7-12x

improvement over the existing

systems
offers an appealing big-data engine for various EM
tasks (e.g., analytics, graph mining, databases)

•

Questions?

	On High-Latency Bowtie Data Streaming
	Agenda
	Motivation
	Motivation
	Agenda
	Bowtie Streaming
	Bowtie Streaming
	Bowtie Streaming
	Agenda
	Optimizing Run Length
	Optimizing Run Length
	Optimizing Run Length
	Optimizing Run Length
	Agenda
	Multi-Pass Optimization
	Multi-Pass Optimization
	Agenda
	I/O Tracing
	Java Frameworks
	C++ Frameworks
	C++ Frameworks
	C++ Frameworks
	C++ Frameworks
	C++ Frameworks

