Statistical Analysis and Distortion Modeling of MPEG-4 FGS

Min Dai

Electrical Engineering Texas A&M University, TX 77843

Dmitri Loguinov

Computer Science Texas A&M University, TX 77843

Hayder Radha

Electrical and Computer Engineering Michigan State University, MI 48824

Background

- Rate-distortion (R-D) theory
 - The fundamental tradeoff in the design of any lossy compression system

- R-D function:
 - A bound on achievable (or theoretically possible) distortion for a given coding rate
 - A powerful tool in Internet streaming

Background (cont.)

- Scalable coding is widely applied in Internet streaming
 - Provides the capability of recovering video information by partially decoding the compressed bitstream
 - Fine Granular Scalability (FGS) has been chosen in the MPEG-4 standard
- Fine granular scalability (FGS):
 - One low-bitrate base layer (BL) to provide a low, but guaranteed quality
 - One high-bitrate enhancement layer (EL) to provide fine quality improvement
 - EL can be truncated at any codeword

<u>Motivation</u>

- Current status:
 - No current closed-form R-D model can capture all the complexities of a real encoder
 - No specific work has been done on R-D modeling of scalable video coding for Internet streaming
- Goals in this paper:
 - Understand the statistical properties of FGS input and propose a more accurate statistical model for it
 - Study the bitplane coding process in FGS and derive a closed-form distortion model

Related work on Statistical Models

- Input to FGS EL:
 - DCT residue between the original image and the reconstructed image from BL
- The two most popular models of DCT residue:

– Zero-mean Gaussian distribution:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}}$$

- Laplacian distribution (double exponential):

$$f(x) = \frac{\lambda}{2} e^{-\lambda |x|}$$

Related work on Statistical Models

 The PMF of DCT residue with Gaussian and Laplacian estimations in frame 0 of the Foreman CIF sequence (left).
 Logarithmic scale of PMFs for the positive residue (right).

Proposed Statistical Model

• Mixture Laplacian model:

$$f(x) = p \frac{\lambda_0}{2} e^{-\lambda_0 |x|} + (1-p) \frac{\lambda_1}{2} e^{-\lambda_1 |x|}$$

where λ_0 denotes the small variance Laplacian distribution and λ_1 denotes the large variance Laplacian distribution

We use the Expectation-Maximization (EM) algorithm to obtain Maximum-likelihood (ML) estimation for parameters { *p*, λ₀, λ₁ }

Results of Proposed Model

• The real PMF and mixture Laplacian (left) and the logarithmic scale of the positive part (right)

More Results

 The weighted absolute error of estimation in Foreman CIF (left) and Coastguard CIF (right)

All test sequences are coded at 10fps and 128 kb/s in the base layer

Current Distortion Models

• Classical model:

$$D = \varepsilon^2 \sigma_X^2 2^{-2R}$$

where ε^2 is a signal-dependent constant, σ_X^2 denotes the signal variance and *R* is the bitrate

• A variation of the classical model (proposed by Chiang *et al.* in 1997):

$$R = aD^{-1} + bD^{-2}$$

where parameters *a*, *b* are obtained empirically

• Distortion model for Uniform Quantizer (UQ): $D(\Lambda) = \Lambda^2 / \beta$

$$\mathcal{L}(\Delta) = \Delta / \mathcal{P}$$

where Δ is quantization step and β equals 12

Performance of Current Models

 Performances of current models in frame 0 (left) and frame 252 of Foreman CIF (right)

A more Accurate Distortion Model

• For each component in the mixture-Laplacian model, the distortion is:

$$D_{i}(\Delta) = \frac{-1}{(1 - e^{-\lambda_{i}\Delta})} \left\{ e^{-\lambda_{i}(\Delta - 1)} \left[\left(\Delta - 1 + \frac{1}{\lambda_{i}} \right)^{2} + \frac{1}{\lambda_{i}^{2}} \right] - \frac{2}{\lambda_{i}^{2}} \right\}, i = 0, 1$$

• Final version:

$$D(\Delta) = p \cdot D_0(\Delta) + (1-p) \cdot D_1(\Delta)$$

where Δ is the quantization step of each bitplane in the FGS EL and *p* is the probability of Laplacian component 0

Experimental Results

 The average absolute errors in Foreman CIF (left) and Coastguard CIF (right)

Conclusion

- This paper proposed an accurate statistical model
 for DCT residue
- Based on this statistical model, we derived a closed-form distortion function for FGS EL
- In summary, this paper provides a good starting point for further research on FGS streaming