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ABSTRACT

In this paper, we analyze statistical and rate-distortion (R-D) prop-
erties of MPEG-4Fine-Granular Scalability (FGS), which has re-
cently become an important scalable compression framework and
a de-facto standard for Internet video streaming. We first propose
a novel statistical model of DCT residue that accurately captures
the properties of the input to the MPEG-4 FGS enhancement layer.
Our results show that FGS residue concentrates a lot of probabil-
ity mass near zero and cannot be accurately modeled by Gaussian
or Laplacian distributions. We then model the distortion of each
bitplane based on the proposed statistical framework and further
demonstrate that our R-D model significantly outperforms current
distortion models.

1. INTRODUCTION

Internet video streaming is an important research area in network-
ing and video communities. To provide an error-resilient and band-
width scalable solution to Internet video applications,Fine Gran-
ular Scalability (FGS) has recently been chosen as the stream-
ing profile of the ISO/IEC MPEG-4 standard [11], [13]. Due to
the inherent nature of rate control in the base layer, multi-layered
encoders often produce base layers with highly fluctuating visual
quality [15], [16]. In order to reduce quality fluctuation and match
the video sending rate to the capacity of the network channel dur-
ing streaming, the server often must rely on accurate estimation of
therate-distortion (R-D) curve of the video to decide how to scale
the enhancement layer.

Recall that the FGS layer contains the DCT residue left over
from the base layer, which means that the distortion in the FGS
layer alone describes the distortion of the combined signal at the
receiver. Therefore, for FGS-coded sequences, R-D modeling of
the enhancement layer is sufficient to describe the visual quality
observed by the user and has been repeatedly used in the past
to achieve constant-quality scaling during transmission [14], [15],
[16].

There are two approaches for estimating the R-D curve of
a video encoder: the empirical approach and the analytical ap-
proach. Theempirical approach is to construct the R-D curve
based on interpolating between several sampled values of rate and
distortion [7], [15], [16]. Theanalytical approach is to build a
mathematical model of the source and/or encoder by analyzing
statistical properties of the video data [4], [5]. Although the empir-
ical approach is generally easy to apply, it does not give us much
insight into the video coding process and its high computational
requirements during streaming typically place a burden on stream-
ing servers.

On the other hand, current closed-form analytical approaches
develop closed-form solutions only for certain types of distribu-
tions (e.g., memoryless Gaussian) [6], and thus are not very ac-
curate on most real input sequences [14]. Even though additional
(heuristic) parameters estimated from the actual data can be added
to obtain more accurate R-D curves [4], [5], no currently available
closed-form model can capture all of the complexities of a real
encoder. Furthermore, present analytical approaches are mostly
developed for non-scalable video and are applied at thebase layer
[4], [5]; no specific work has been done on R-D modeling of FGS
for Internet streaming applications.

There are many applications of R-D modeling of FGS (includ-
ing R-D optimizations during streaming and constant-quality rate
adaptation), which we consider to be beyond the scope of this pa-
per. Our primary goal in this paper is tounderstand statistical
properties of DCT residue andstudy the bitplane-coding process
of the FGS enhancement layer. Our secondary goal is to derive
an accurate distortion model for each bitplane since we find that
the amount of work done in this important direction still remains
rather scarce.

In this work, we study the properties of MPEG-4 FGS [11],
[13] and propose a novel model that describes the statistical fea-
tures of the input to the enhancement layer of MPEG-4 FGS. Based
on this analysis, we subsequently build a distortion model for bit-
plane coding, which is significantly more accurate than the existing
methods for a variety of FGS video sequences.

This paper is organized as follows. In section 2, we analyze
and model statistical properties of the input to MPEG-4 FGS. Sec-
tion 3 provides the analysis of bitplane coding and describes the
proposed distortion model. Section 4 concludes this paper.

2. STATISTICAL MODEL OF DCT RESIDUE

For successful R-D modeling, correct estimation of statistical prop-
erties of source data is certainly an important factor. The enhance-
ment layer input to the FGS encoder is the DCT residue between
the original image and the reconstructed image in the base layer.
Thus, we start with modeling the DCT residue and address the dis-
tortion issue in the following sections.

2.1. Statistical Properties

Gaussian and Laplacian (double exponential) distributions are the
two most popular statistical models for DCT coefficients ([1], [6])
and DCT residue (e.g., [14]). However, it is possible that these
models are widely applied only because of their mathematically
tractability rather than their accuracy in modeling the actual data.
We investigate this issue below and find that the Laplacian model
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Fig. 1. The PMF of DCT residue with Gaussian and Laplacian es-
timations (left). Logarithmic scale of PMFs for the positive residue
(right). Frame 0 of Foreman CIF coded at 10 fps and 128 kb/s in
the base layer.

tracks the real DCT residue much better than the Gaussian model;
however, since FGS data contains a pronounced peak at zero, a
single Laplacian distribution is insufficient to completely describe
statistical characteristics of DCT coefficients in the FGS layer.

To analyze the statistical properties of real DCT residue, we
examined different FGS coded sequences. An example of what
we observed is shown in Fig. 1. As Fig. 1 (left) shows, both the
Gaussian and Laplacian distributions fail to accurately model the
sharp peak in the center of theprobability mass function (PMF)
of the DCT residue. Fig. 1 (right) shows the logarithmic scale
of the real PMF for the positive residue together with that of the
Gaussian and Laplacian estimations. From this figure, we can see
that the tail of the Gaussian distribution decays too quickly and the
Laplacian distribution cannot describe the “bending” shape of the
real PMF.

Also notice that in Fig. 1 (right), the tail of the log-scaled PMF
of DCT residue is approximately a straight line, which means that
the tail of the histogram can be modeled by an exponential distri-
bution (recall that straight lines on log scale are exponential func-
tions); however, the central part of the PMF (the peak)cannot be
modeled by thesame exponential distribution. To capture the sharp
peaks and heavy tails, we next propose amixture Laplacian model,
which is a linear combination of two Laplacian distributions.

2.2. Mixture Laplacian Model

Consider the value of DCT residue as a random variableX and de-
fine a hidden stateS that decides from which of the two Laplacian
distributionsX is drawn. Label the two states with binary num-
bers 0 (small variance) and 1 (large variance). Hence, the PMF of
X is a mixture of two Laplacian distributions:

p(x) =
∑

n=0,1

p(S = n)p(x|S = n)

=
∑

n=0,1

p(S = n)
λn

2
e
−λn|x|

= p
λ0

2
e
−λ0|x| + (1 − p)

λ1

2
e
−λ1|x|, (1)

whereλ0 andλ1 are the shape parameters of the two Laplacian
distributions. The small-variance conditional PMFp(x|S=0) con-
centrates the mass near zero, whereas the large-variance condi-
tional PMFp(x|S=1) spreads out the rest of the mass across larger
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Fig. 2. Real PMF and mixture Laplacian (left). Tails on logarith-
mic scale of mixture Laplacian and real PMF (right). Frame 0 of
Foreman CIF coded at 10 fps and 128 kb/s in the base layer.
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Fig. 3. The weighted absolute error of Gaussian estimation, Lapla-
cian estimation and the mixture Laplacian estimation in Foreman
CIF (left) and Coastguard CIF (right).

values. It should be pointed out that our model is more than a sim-
ple curve fitting method; we use the Expectation-Maximization
(EM) algorithm to obtain the Maximum-likelihood (ML) estimate
for parameters{λ1, λ2, p(S=0)}.

Fig. 2 (left) shows the mixture-Laplacian estimation and the
real PMF of the DCT residue for frame 0 in Foreman CIF coded at
10 fps and 128 kb/s in the base layer. Fig. 2 (right) is the logarith-
mic scale of the mixture Laplacian and the real PMF. As illustrated
in the figures, the mixture Laplacian distribution fits very well both
the peak and the tail. The discrepancy at the end of the tail typi-
cally does not affect the accuracy of source modeling since very
few samples are contained there (only 0.04% in frame 0).

We also illustrate the weighted absolute error (i.e., the absolute
error times the real PMF at each value of DCT residue) of these
models for Foreman CIF and Coastguard CIF in Fig. 3. Both
sequences are coded at 10 fps and 128 kb/s in the base layer.

Experimental results show that straightforward application of
classical (e.g., Gaussian and Laplacian) statistical models to DCT
residue in FGS does not necessarily lead to accurate estimation.
However, the mixture-Laplacian distribution follows over 99% of
the real data with exceptional accuracy.

3. DISTORTION MODEL FOR BITPLANE CODING

There are two major difficulties in modeling the distortion us-
ing traditional rate-distortion theory. First, many sources possess
such complicated statistical properties that there are no closed-
form models for them, and sometimes sources even exhibit non-
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stationarity. Second, traditional rate-distortion theory often relies
on certain approximations to build mathematically tractable R-D
functions, which in turn do not model real R-D curves well. For
example, thei.i.d. (independent, identically distributed) source as-
sumption discards the correlation structure existing in real coders,
while the high-resolution assumption (i.e., the histogram of the
source data is constant in each quantization bin [10]) does not hold
for large quantization steps∆. Hence, any direct application of
classical R-D models is often not accurate and requires estimations
of several empirical parameters as mentioned in the introduction.

3.1. Previous Distortion Models

In the traditional rate-distortion theory, the distortion function is
established based on the mutual information as a measure of the
transmission of information from the source to the user [6]. Straight-
forward derivations using the classical model [4] results in distor-
tion D being an exponential function of rateR: D = EeαR, where
α is a constant andE is a function of the power spectrum density
(PSD) of the coefficients. Based on thei.i.d. memoryless source
assumption, the classical model is simplified to [6], [12], [14]:

D = ε
2
σ

2
X2−2R

, (2)

whereσ2
X denotes signal variance andε2 is a source dependent

parameter equal to one for uniform distribution, 1.4 for Gaus-
sian distribution, and 1.2 for Laplacian distribution [4]. In reality,
few source data are memoryless, and thus some content-dependent
heuristic parameters are added in (2) to provide a better modeling
of the R-D curve [4], [14].

An alternative approach based on the Laplacian assumption
of source data and a Taylor expansion of the classical model (2) is
proposed by Chianget al. [1], where rateR is a linear combination
of 1/D and 1/D2:

R = aD
−1 + bD

−2
, (3)

and parametersa, b are obtained from multiple empirical samples
of the R-D curve.

Finally, a classical distortion model built for uniform quantiz-
ers (UQ) is often used for a variety of sources due to its simplicity
[4]:

D(∆) =
∆2

β
, (4)

whereβ is 12.
To illustrate the accuracy of these models, we plot the R-D

curve for frame 0 and frame 252 of Foreman CIF in Fig. 4. From
the figures, we observe that a large mismatch exists between these
models and the real R-D curve. The mismatch can be explained
from two angles. First, all classical models are built on the as-
sumption of a single statistical distribution of the input source data,
while the statistical properties of FGS are not accurately modeled
by a single distribution function. Second, bitplane coding applied
in FGS has specific characteristics that make it different from reg-
ular quantizers used in the base layer.

3.2. Bitplane Coding

A video-coding scheme usually has three stages: transform cod-
ing, quantization, and then entropy coding [8]. In current image
and video coding standards, such as MPEG-2, H.263, and MPEG-
4 (base layer), each DCT coefficient is quantized by a different
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Fig. 4. Classical model (2), Chiang’s model (3), real R-D curve,
and UQ model (4) for frame 0 of CIF Foreman (left). Same exper-
imental results for frame 252 of CIF Foreman (right).
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Fig. 5. Bitplane coding (left). Uniform quantizer (right).

uniform quantizer, and then a run-level coding technique is ap-
plied to the quantized DCT coefficients. Since the distortion in
run-level coding is controlled by the quantization step size, many
studies [4], [5] focus on modeling the distortion function of uni-
form quantizers.

FGS usesbitplane coding, which considers each input value as
a binary number instead of a decimal integer. During FGS stream-
ing, transmission of bitplanei is similar to applying a quantizer
with a quantization level∆ equal to 2max layer−i. Although bit-
plane coding appears to be similar to the uniform quantizer, they
are somewhat different. In a uniform quantizer, the reconstruction
points are midway between quantization levels [3], while in bit-
plane coding, the data is reconstructed at exactly1 the quantization
levels themselves as shown in Fig. 5.

3.3. Proposed Model

Let Y be a random variable at the input, distortionD is measured
by the Mean Square Error (MSE) that is defined asE[(Y − Ŷ )2],
whereŶ is a distorted version ofY [2]. For any quantization step
∆, the discrete source MSE function is given by [4]:

D(∆) =
N/∆
∑

k=0

(k+1)∆−1
∑

n=k∆

(n − k∆)2p(n)+

+
−1
∑

k=−N/∆

(k+1)∆−1
∑

n=k∆

(n − (k + 1)∆)2p(n),

(5)

whereN=2max layer+1.

1Note that the MPEG-4 FGS standard allows quarter-point quantizers;
however, this option can be turned off and it further does notcontribute to
the understanding of the rest of the paper. We omit it for clarity.
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Since we deal with zero-mean, symmetric exponential data,
i.e.,p(n) = aeb|n|, (5) can be simplified as:

D(∆) = 2
N/∆
∑

k=0

∆−1
∑

i=0

(k∆ + i − k∆)2p(k∆ + i)

= 2a
N/∆
∑

k=0

ebk∆
∆−1
∑

i=0

i2ebi.

(6)

Furthermore, sincek andi are independent of each other, we
compute terms

∑

ekb∆ and
∑

i2ebi separately. Notice that the
first term is a geometric series and can be expanded to:

N/∆
∑

k=0

e
bk∆ =

1 − eb(N+1)∆

1 − eb∆
≈

1

1 − eb∆
, (7)

while
∑

i2ebi can be estimated using integration:

∆−1
∑

i=0

i2ebi ≈
∆−1
∫

0

x2ebxdx =

= eb(∆−1)

b

[

(∆ − 1)2 − 2(∆−1)
b

+ 2
b2

]

− 2
b3

.

(8)

Combining (7) and (8), the distortion modelD(∆) becomes:

D(∆) = 2a
(1−eb∆)b

×

×
(

eb(∆−1)
[

(

∆ − 1 − 1
b

)2
+ 1

b2

]

− 2
b2

)

.
(9)

For the mixture Laplacian function (1), the final distortion for-
mula is simply a linear combination of two functions in (9). In the
first function,a = pλ0

2
andb = −λ0, while in the second function

a = (1 − p)λ1
2

andb = −λ1.

3.4. Experimental Results

To demonstrate the accuracy of classical model (2), UQ model
(4), and our model (9), we examine theaverage absolute error
(measured in dB and averaged across all bitplanes) of these models
in Foreman CIF and Coastguard CIF. The two charts in Fig. 6 show
that both the classical and the UQ distortion models are much less
accurate in the FGS enhancement layer than the more advanced
model examined in this work.

Finally, note that additional experiments using other FGS se-
quences confirm that our model significantly outperforms the clas-
sical and UQ models; however, due to a lack of space, we cannot
present these results here.

4. CONCLUSION

This paper posed a question of how well traditional R-D models
approximate characteristics of MPEG-4 FGS and possibly other
scalable (embedded) coders. We found that much better mod-
els can be build if one takes into account the shape of typical
PMFs found in real DCT residue. This work proposed a mixture-
Laplacian statistical model for DCT residue and derived an ac-
curate closed-form distortion function for such sources. Besides
advancing the generic understanding of R-D properties of FGS,
this paper also provides a good starting point for further research
on FGS streaming. For instance, this simple but efficient distor-
tion model allows servers to implement better congestion control
[9] and achieve constant quality in real-time streaming over the
Internet.
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Fig. 6. The average absolute error of classical model (2), UQ
model (4), and our model in Foreman CIF (left) and Coastguard
CIF (right).
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