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ABSTRACT

After the emergence of numerous Internet streaming applications,
rate-distortion (R-D) modeling of scalable video encoders has be-
come an important issue. In this paper, we examine the perfor-
mance of existing R-D models in scalable coders by using the ex-
ample of MPEG-4 FGS and PFGS, and propose a novel R-D model
based on approximation theory. Experimental results demonstrate
that the proposed model is very accurate and significantly outper-
forms those in previous work.

1. INTRODUCTION

Since R-D curves are central to a wide range of video applications
(e.g., optimal bits allocation [15], constant quality control [17],
etc.), they continuously attract significant attention in research lit-
erature. R-D models can be classified into two categories based on
the theory they apply: models based on Shannon’s rate-distortion
theory [5] and those derived from high-rate quantization theory
[1]. The former assumes that sources are coded using very long
(infinite) blocks, while the latter assumes that the encoding rate is
arbitrarily high [14]. These two theories are complementary and,
as shown in [6], converge to the same lower boundD ∼ e−αR

when the input block size goes to infinity.
However, since block length cannot be infinite in real cod-

ing systems, it is widely recognized that classical rate-distortion
theory is often not suitable for accurate modeling of actual R-D
curves [14]. In addition, current transform-based encoders achieve
high compression ratios and often produce low-bitrate signals [13],
which means that the high-bitrate assumption of the quantization
theory no longer holds [2], [13]. Therefore, adjustable parameters
are often incorporated into the theoretical R-D models to keep up
with the complexity of coding systems and the diversity of video
sources (e.g., [9], [15]).

Recall that most current R-D models are built for images or
non-scalablevideo coders. The lack of scalable R-D modeling
is partially addressed in [3], which introduces a precise distortion
modelD(∆) for scalable coders; however, the issue of deriving
a complete R-D model remains open. To better understand R-D
curves of scalable coding systems and further develop useful tools
for streaming applications, in this paper, we complete the work of
[3] and examine R-D models from a different perspective. We first
derive a distortion model based on approximation theory and then
incorporate theρ-domain bitrate model [10] into the final result.
We also show that the unifyingρ-domain model is very accurate
in both Fine Granular Scalability (FGS) [12] and Progressive FGS
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(PFGS) [16] coders, where the former uses the enhancement layer
only for reconstruction purposes while the latter also utilizes it for
motion prediction.

Our work demonstrates that distortionD can be modeled by a
function of both bitrateR and its logarithmlog R:

D = σ2
x − (a log2 R + b log R + c)R, (1)

whereσ2
x is the variance of the source anda− c are constants.

This paper is organized as follows. In Section 2, we briefly
overview current R-D models and show their performance in scal-
able coders. In Section 3, we analyze distortion in scalable coders
and derive a novel R-D model from the angle of approximation
theory. We also demonstrate the accuracy of the proposed R-D
model in various scalable video sequences. Section 4 concludes
this paper.

2. RELATED WORK AND MOTIVATION

In this section, we give a brief overview of related work and an-
alyze the applicability of current R-D models to scalable coders.

2.1. Related Work

In rate-distortion theory, there are no explicit R-D models, but only
upper and lower bounds for general sources [11]:

Q2−2R ≤ D(R) ≤ σ2
G2−2R, (2)

whereQ is the entropy power andσ2
G is the variance of a Gaus-

sian distributed source. In contrast, there are two kinds of lower
bounds in high-rate quantization theory [8]: the minimum dis-
tortion D1(N) attainable for a constrained number of quantiza-
tion levelsN , and the minimum distortionD2(R) attainable for
a constrained bitrateR. However, in both quantization and rate-
distortion theory,D can be expressed as an exponential function
of bitrateR [6]:

D(R) ∼ Ke−αR, (3)

where parametersK, α > 0 are unspecified constants. Model (3)
is rarely used in practice and many video applications often rely
on its refinement [11], [15]:

D(R) = γε2σ2
x2−2R, (4)

whereγ is the correlation coefficient of the source andε2 is a
source-dependent scaling parameter (1.4 for Gaussian, 1.2 for Lapla-
cian, and 1 for uniform sources).

Based on approximation theory, Cohenet al. [2] derive an R-
D bound for wavelet-based compression schemes. This is the first
R-D bound that includes both bitrateR andlog R:

D(R) ≤ CR−2γ(log R)2γ , (5)
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Fig. 1. The actual R-D curve and its estimations for frame 3 in FGS-
coded CIF Foreman (left). The same simulation for frame 171 in the same
sequence (right).

where constantC and parameterγ are both positive. Since this
bound is specifically developed for wavelet-based coding schemes,
Mallat et al. [13] extend it to transform-based low bitrate images:

D(R) = CR1−2γ , (6)

whereγ ≈ 1, C > 0, and the parameters are adjusted with respect
to practical coding settings.

2.2. Motivation

A typical scalable coder includes one base layer and one or more
enhancement layers. Notice that in scalable streaming applica-
tions, the server is often concerned with the bitrateR of the en-
hancementlayer whereR varies from very low bitrate (e.g., less
than 0.5 bit/pixel) to high bitrate (e.g., 4 bits/pixel) depending on
streaming conditions [15], [17]. Thus, we examine the accuracy of
current R-D models for scalable coders, withR representing the
bitrate of the enhancement layer.

Without loss of generality, we use peak signal-to-noise ratio
(PSNR) to measure the quality of video sequences. With the PSNR
measure, it is well-known that the classical model (4) (labeled as
“classical” in all figures) becomes a linear function of coding rate
R:

PSNR = c log R + d, (7)

wherec andd are constants. Fig. 1 shows that PSNR is linear with
respect toR only when the bitrate is sufficiently high and also that
model (6) (labeled as “Mallat”) has much higher convexity than the
actual R-D curve. We observed similar results in other scalable se-
quences (not shown for brevity). While Fig. 1 is not an exhaustive
demonstration, it is not surprising that current popular R-D models
(4) and (6) are not directly applicable to scalable coders due to their
large range ofR. Given this discussion, we find that the research
community would benefit from an R-D model that can precisely
describe R-D curves of real scalable coders. We accomplish this
task in the next section.

3. R-D MODEL FOR SCALABLE CODERS

3.1. Preliminaries

It is well known that in an ideal orthogonal transform-based cod-
ing system, the distortion in the spatial domain is the same as that
in the transform domain [11]. Furthermore, recall that the distor-
tion in an ideal transform-based video coder is mostly introduced
by quantization errors [11]. Since uniform quantizers are widely
applied to video coders due to their asymptotic optimality [7], we

show the lower bound on distortion in quantization theory assum-
ing seminorm-based distortion measures (e.g., mean square error
(MSE)) and uniform quantizers.

If X, X̂ arek-dimensional vectors and the distortion between
X andX̂ isd(X, X̂) = ||X−X̂||r (where||·|| is a seminorm ink-
dimensional Euclidean space andr ≥ 1), the minimum distortion
for uniform quantizers is [8]:

D =
k

k + r

(
Vk

∆

)−r/k

, (8)

where∆ is the quantization step,Vk =
2πk/2

kΓ(k/2)
, andΓ is the

Gamma function. Whenr = 2, k = 1, we obtain the popular
MSE formula for uniform quantizers:

D =
∆2

β
, (9)

whereβ is 12 if the quantization step is much smaller than the
signal variance [9]. However, this assumption is not always valid
in real coders andβ often becomes an adjustable parameter [9].
In contrast to many previous studies based on rate-distortion and
quantization theory [9], [10], in what follows, we investigate the
distortion from the perspective of approximation theory and derive
a novel R-D model using analytical tools not commonly available
in related work.

3.2. Distortion Analysis

Assume that signalX is transformed into signalU by an orthog-
onal transform, which later becomeŝU after quantization. Since
a midtread uniform quantizer is commonly used in video coders,
coefficients between(−∆, ∆) are set to zero, where∆ is the quan-
tization step. We call the coefficients that are larger than∆ signif-
icant.

As we stated earlier, distortionD betweenX and the recon-
structed signal̂X equals that betweenU andÛ [11]. In the trans-
form domain, distortionD consists of two parts: 1) distortion
Di from discarding the insignificant coefficients in(−∆, ∆); and
2) distortionDs from quantizing the significant coefficients (i.e.,
those that have larger values than∆). Given this notation, we have
the following lemma.

Lemma 1. Assuming that the total number of transform coeffi-
cientsU is N and the number of significant coefficients isM , MSE
distortionD is:

D =
1

N

∑

|u|<∆

|u|2 +
M

N

∆2

12
, (10)

where∆ is the quantization step.

Proof. It is easy to understand that distortionDi is directly the
summation of the squares of insignificant coefficients:

Di =
∑

|u|<∆

|u|2. (11)

Since the high-resolution quantization hypothesis applies toM
significant coefficients [13], their average distortion is∆2/12 and
thus their total distortionDs is:

Ds =
∑

|u|≥∆

|u− û|2 =
M∆2

12
. (12)
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Fig. 2. Actual distortion and the estimation of model (13) for frame 3
in FGS-coded CIF Foreman (left). The average absolute error between
model (10) and the actual distortion in FGS-coded CIF Foreman and CIF
Carphone (right).
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Fig. 3. Bitrate estimation of the linear modelR(z) for frame 0 in FGS-
coded CIF Foreman (left) and frame 6 in PFGS-coded CIF Coastguard
(right).

Therefore, the average distortion for each coefficientD is:

D =
Di + Ds

N
, (13)

which, combined with (11)-(12), leads to the result in (10).

We definez = M/N to be the percentage of significant coef-
ficients in the following discussion. In Fig. 2, the left side shows
an example of actual distortionD and simulation results of model
(10) for frame 3 in FGS-coded CIF Foreman, and the right side
shows the average absolute error between model (10) and the ac-
tual distortion in FGS-coded CIF Foreman and Carphone sequences.
As we observe from the figure, model (10) is very accurate and
follows the actual distortion well. Furthermore, a less-than-0.5 dB
average error is rather minor since a video sequence usually has
quality above 30 dB.

3.3. R-D Modeling

To improve the unsatisfactory accuracy of current R-D models in
scalable coders, we derive an accurate R-D model based on source
statistical properties and a recentρ-domain model. Heet al. [10]
proposed a unifiedρ-domain model to estimate the bitrate of image
and non-scalable video coders, in which bitrateR is a linear func-
tion of the percentage of significant coefficientsz in each video
frame. We extensively examined the relationship betweenR and
z in various video frames and found this linear model holds very
well for scalable coders. Fig. 3 demonstrates two typical examples
of the actual bitrateR and its linear estimation in FGS and PFGS
video frames. Using theρ-domain model [10], we have our main
result as following.

Theorem 1. The distortion of scalable video coders is given by:

D = σ2
x −

(
a log2 R + b log R + c

)
R, (14)

for some constantsa− c.

Proof. Notice that the transform coefficientsU of scalable coders
often follow a mixture Laplacian distribution with density [3]:

f(x) = p
λ0

2
e−λ0|x| + (1− p)

λ1

2
e−λ1|x|. (15)

During the discussion, we first use pure Laplacian-distributed sources
for simplicity (i.e.,f(x) = λ

2
e−λ|x|), and then obtain the final ver-

sion of R-D model.
Since the coefficients inside the zero bin(−∆, ∆) are set to

zero after quantization, the average distortion of the insignificant
coefficients is:

Di

N
=

∆∫

−∆

x2 λ

2
e−λ|x|dx

=
2

λ2
− [(∆ +

1

λ
)2 +

1

λ2
]e−λ∆, (16)

whereN is the total number of coefficients andλ is the shape
parameter of the Laplacian distribution. Notice that for Laplacian
distributed sources, the percentage of significant coefficients is:

z = 1− 2

∆∫

0

λ

2
e−λxdx = e−λ∆. (17)

Thus, distortionD in (10) becomes:

D =
Di

N
+

z∆2

12
=

2

λ2
− ζe−λ∆ +

e−λ∆∆2

12
, (18)

whereζ = (∆ +
1

λ
)2 +

1

λ2
.

Next, recall that bitrateR(z) = γz, whereγ is some source-
dependent constant [10]. Thus, we express∆ in terms of rateR:

∆ = − 1

λ
log

R

γ
, 0 <

R

γ
≤ e−λ. (19)

Therefore, combining (19) with (18), distortionD is a function of
R andlog R:

D =
2

λ2
− 11τ2 + 24τ + 24

12λ2

R

γ
, (20)

whereτ = log γ − log R. We also notice that:

D =





2

λ2
= σ2

x, R = 0

0, R ≥ e−λγ
(21)

whereσ2
x is the variance of the source. This observation makes

perfect sense since distortionD should not be larger thanσ2
x [5]

and should equal zero whenR = e−λγ (i.e., the quantization step
∆ = 1 and there is no loss of information).

An R-D model for a scalable coder is simply a linear combi-
nation of (20), with corresponding probabilityp and distribution
parametersλ0, λ1 as shown in (15). After absorbing the various
constants, we have the desired result in (14).
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Fig. 4. Actual R-D curves and their estimations for frame 0 (left) and
frame 3 in FGS-coded CIF Foreman (right).
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  Fig. 5. The average absolute error in FGS-coded CIF Foreman (left) and
CIF Carphone (right).

3.4. Experimental Results

We apply the proposed model (14) to various scalable video frames
to evaluate its accuracy. Fig. 4 shows two examples of R-D curves
for I (left) and P (right) frames of FGS-coded CIF Foreman. As
shown in the figure, the low bitrate model (6) tends to under-
estimate distortion in general and saturates when bitrateR is large.
Fig. 4 also shows that while the classical model (4) over-estimates
the actual R-D curves, our model (14) tracks them with very high
precision.

To better understand the estimation accuracy of the proposed
model (14), we further compare it to models (4) and (6) in four
scalable video sequences. All results shown in this paper utilize
videos in the CIF format with the base layer coded at 128 kb/s and
10 frames/s. We contrast the performance of the proposed model
with that of the other two models in FGS-coded Foreman and Car-
phone in Fig. 5. Additionally, Fig. 6 shows the same comparison
in PFGS-coded Coastguard and Mobile. As both figures show,
model (14) keeps the average absolute error quite low compared
to that of the other models. Additional experimental results (not
shown here due to a lack of space) demonstrate that (14) signifi-
cantly outperforms other operational R-D models in a wide variety
of scalable sequences.

4. CONCLUSION

This paper analyzed the distortion of scalable coders and proposed
a novel R-D model from the perspective of approximation theory.
Given the lack of R-D modeling of scalable coders, we believe this
work will benefit both Internet streaming applications and theoret-
ical discussion in this area.
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  Fig. 6. The average absolute error in PFGS-coded CIF Coastguard (left)
and CIF Mobile (right).
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