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Motivation 

• Scalable coding is widely applied in Internet 
streaming.
– Fine Granular Scalability (FGS) has been chosen in 

MPEG-4 standard

– Study the statistical properties of FGS encoder and 
propose a more accurate statistical model for it

• The Rate-distortion (R-D) theory is a powerful tool 
in Internet streaming.
– Choose appropriate compression schemes 

– Optimally allocate bits in joint source-channel coding

– Rate adaptation in the Internet
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Motivation (cont.)

• R-D theory (cont.): 
– No current closed-form R-D model has been developed 

for scalable coding
– Derive an R-D model for scalable video coding

• Constant quality control: 
– Another application of R-D model in Internet streaming 
– Human eyes are sensitive to quality fluctuation 
– Many video sequences have severe quality fluctuations  
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Motivation (cont.)

• Most existing CQ methods in scalable streaming 
are limited to the constant bitrate (CBR) case. 
– Channel bandwidth is varying in a real network 

– Congestion control is necessary to allow fair and efficient 
usage of network bandwidth

• Most existing congestion control methods  (e.g., 
AIMD) are not proven to be asymptotically stable.
– Kelly’s continuous-feedback congestion control

– Combine our R-D model with Kelly’s control in Internet 
streaming
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Overview of this Talk

• Background on rate-distortion theory and FGS 
scalable coding

• A big picture of this work
– R-D modeling of an FGS encoder

– Kelly’s control

– Constant quality control

• Experimental results

• Conclusion
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Background 
• Rate-distortion (R-D) theory

– The theoretical discipline that treats data compression 
from the viewpoint of information theory 

A typical R-D curve

R 
Theoretical  
 R(D)

D 

Operational        
R(D)

• Theoretical R-D model:
– A lower bound for any encoder given a statistical 

distribution of the source 
– Often unachievable in the real world

• Operational R-D model
– An achievable bound for a practical encoder
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Background (cont.)

• Scalable coding:
– Provides the capability of recovering image or video 

information by partially decoding the compressed 
bitstream

• Fine granular scalability (FGS): 
– One low bitrate base layer (BL)  to provide a low but 

guaranteed level of quality

– One high bitrate enhancement layer (EL) to provide finer 
quality improvement

– EL can be truncated at any codeword 
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Background (cont.)

FGS at the Server FGS at the DecoderFGS at the Encoder

BL

EL

Portion of  the FGS EL 
transmitted in the Internet



9

A Big Picture
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Related work on Statistical Models
• Input to FGS EL: 

– DCT residue between the original image and the 
reconstructed image from BL

• The two most popular models for DCT residue:
– Zero-mean Gaussian distribution: 
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Related work on Statistical Models
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• The PMF of DCT residue with Gaussian and Laplacian
estimations (left). Logarithmic scale of PMFs for the positive 
residue (right). All testing sequences shown in this paper are 
coded at 10fps and 128 kb/s in the base layer
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Proposed Statistical Model
• Mixture Laplacian model:
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where λ0 denotes the small variance Laplacian distribution 
and λ1 denotes the large variance Laplacian distribution 

• Use Expectation-Maximization (EM) algorithm to 
give Maximum-likelihood (ML) estimation for 
parameters { p, λ0, λ1 }



13

Proposed Statistical Model (cont.) 

• Real PMF and mixture Laplacian (left) and 
Logarithmic scale of the positive part (right)
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More Results

• The weighted absolute error of estimations in 
Foreman CIF (left) and Coastguard CIF (right)
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Current Distortion Models

• Classical model:
R

XD 222 2 −σε=
– where ε2 is a signal-dependent constant, σX

2 denotes 
the signal variance and R is the bitrate

• A variation of the classical model ( proposed by 
Chiang et al. in 1997):

21 −− += bDaDR
– where parameters a, b are obtained empirically
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Current Distortion Models (cont.)

• Distortion model for Uniform Quantizer (UQ):

β
∆
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where ∆ is quantization parameter (QP) and β equals 12
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Current Distortion Models (cont.)

• Performances of current models in frame 0 (left) 
and frame 252 of  Foreman CIF (right) 

30

40

50

60

70

0.E+00 2.E+05 4.E+05 6.E+05

FGS EL bits

PS
N

R
 (d

B
)

Chiang et al.
real PSNR
UQ
classical

20

30

40

50

60

70

0.E+00 2.E+05 4.E+05 6.E+05 8.E+05

FGS EL bits

PS
N

R
 (d

B
)

Chiang et al.
real PSNR
UQ
classical



19

A more Accurate Distortion Model

• For each Laplacian component in the mixture 
Laplacian model, the distortion is: 
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where ∆ is the quantization step of each bitplane in the 
FGS EL and p is the probability of related Laplacian 
component
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Results of Distortion Model

• The average absolute errors in Foreman CIF (left) 
and Coastguard CIF (right)
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Operational R-D model

• Peak Signal-to-Noise Ratio (PSNR) is the most 
popular quality measurement in video coding 

)/255(log10 2
10 DPSNR =

• Based on our distortion model, we found  that 
PSNR could be described with a quadratic 
function of bitplane number z ( z= log2(∆) )

2
1 2 3( )PSNR z d z d z d≈ + +
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Operational R-D model (cont.)

• In traditional R-D models, bitrate R is a linear 
function of the bitplane number z
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• Experimental results show that a quadratic function 
of z is a much better model of R

bazzR +=)(
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Operational R-D model (cont.)

Distortion model 
D(∆)

Quality PSNR (z) =
= d1z2 + d2z + d3

PSNR ~ log(D) 

Rate R(z) =
a1z2 + a2z + a3

CRBARPSNR ++=

cRbaRRD ++= 2)(
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Operational R-D model (cont.)

• The proposed R-D function is:

– where a, b, c are constants 

• Notice that the classical model is a special case of 
our model with a = -2 and b=0. 

cRbaRRD ++= 2)(

)(log2 22
22)( xRRD σε+−=
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Results of R-D models (1)

• The average absolute errors in Foreman CIF (left) 
and Coastguard CIF (right)
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Results of R-D models (2)

• The maximum absolute errors in Foreman CIF (left) 
and Coastguard CIF (right)
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Constant Quality in CBR
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• Notice that most CQ papers stop here, while the 
available bandwidth is varying in the real case
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Congestion Control

• Current status:
– AIMD, TFRC and binomial algorithms oscillate around 

the average rate

• Continuous-feedback controller is proposed by 
Kelly et al. in 1998 :

)log()(,))(()( rrUwhereprUr
dt
tdr

Pl
l =β−′α= ∑

∈

where r is the current sending rate and α, β are constants. U
is the utility function of the end user and pl is the price that 
the flow pays for using router l along the end-to-end path P
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Congestion Control (cont.)

• An application-friendly version:

)()()( trtp
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⋅⋅β−α=

• Bottleneck packet loss p is used as the feedback 
instead of prices 

∑
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where ri is the sending rate of the i-th flow passing    
through the bottleneck router l, Cl is the speed of router l
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Experimental Results (1)

• Comparison between a single AIMD flow and a 
single Kelly’s flow. Bottleneck bandwidth C is 
1mb/s and RTT=100ms 
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Experimental Results (2)

• Two Kelly flows are sharing the same bottleneck 
link C under identical delay

25

30

35

40

0 1 2 3 4 5 6 7 8 9
time (s)

PS
N

R
 (d

B
)

flow1
flow2
base



36

Experimental Results (3)

• Examine the effect of different round-trip delays 
(fixed and random) on fairness
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Experimental Results (4)

• Examine the situation n flows sharing the 
bottleneck bandwidth and each flow has a random 
delay

40 500

25

30

35

0 1 2 3 4 5 6 7 8 9
time (s)

PS
N

R
 (d

B
)

flow
base

0

100

200

300

400

0 2 4 6 8 10

time (s)

de
la

y 
D

 (m
s)

A single-flow PSNR when  n = 10 flows share a 10 mb/s 
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Conclusion to this Work

• This paper derives a simple but accurate 
operational R-D model based on the properties of 
FGS encoders

• Based on this R-D model, we show a simple 
algorithm that can achieve better constant quality 
in CBR for scalable streaming than many other CQ 
methods 

• Another contribution of this work is the successful 
combination of our R-D model with Kelly’s 
congestion control in Internet streaming
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Thank  You!
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