Wavelet and Time-Domain Modeling of Multi-Layer VBR Video Traffic

1

Min Dai, Dmitri Loguinov Texas A&M University

Agenda

Background

- Importance of traffic modeling
- Goals of traffic modeling
- Preliminary knowledge of video traffic
- Challenges & Current Status
- Our Work
 - Modeling single-layer video traffic
 - Modeling multi-layer video traffic
- Conclusion

Importance of Traffic Modeling

- Properly allocate network resources
- Evaluate protocols and effectively design networks
- Use as traffic descriptor to achieve certain Quality of Service (QoS) requirements
- Analyze and characterize a queue or a network

Goals of Traffic Modeling

- Capture the characteristics of video frame size sequences
 - The marginal probability density function (PDF) of frame sizes
 - The autocorrelation function (ACF) of video traffic
- Accurately predict network performance
 - Buffer overflow probabilities
 - Temporal burstiness

Agenda

Background

- Importance of traffic modeling
- Goals of traffic modeling
- Preliminary knowledge
- Challenges & Current Status
- Our Work
 - Modeling single-layer video traffic
 - Modeling multi-layer video traffic
- Conclusion

Challenges

- The PDF is different among I, P, and B-frame sizes
- VBR video traffic exhibits both long range dependency (LRD) and short range dependency (SRD).
- Single-layer and base layer video traffic:
 Coexistence of inter- and intra-GOP correlation
- Multi-layer video traffic:
 - Strong cross-layer correlation

Current Status

- It is hard to capture both LRD and SRD properties of the autocorrelation function of video traffic
- Little work has considered the intra-GOP correlation
- Most existing models only apply to single-layer VBR video traffic
- Current multi-layer traffic models do not capture the cross-layer correlation

Agenda

Background

- Importance of traffic modeling
- Goals of traffic modeling
- Preliminary knowledge
- Challenges & Current Status
- Our Work
 - Modeling single-layer video traffic
 - Modeling multi-layer video traffic
- Conclusion

<u>Our Work</u>

Wavelet Decomposition

• Wavelet function generates the detailed coefficients $\{D_j\}$ and scaling function generates the approximation coefficients $\{A_j\}$, where j is the decomposition level.

A typical wavelet decomposition.

Wavelet Decomposition (cont.)

The ACF structures of $\{D_3\}$ and $\{A_3\}$ (left). The PDF of I-frame sizes and that of $\{A_3\}$ (right).

Modeling I-Frame Sizes

- Estimate the coarsest approximation coefficients $\{A_J\}$:
 - Prior work *independent* random Gaussian or Beta variable
 - Our model *dependent* random variables with marginal Gamma distribution
- Estimate detailed coefficients $\{D_j\}$ at each level:
 - Prior work *i.i.d.* Gaussian random variables
 - Our model *i.i.d. mixture Laplacian* random variables

Estimate Detailed Coefficients

14

Performance Comparison

The ACF structure of the actual and that of the synthetic traffic in a long range (left) and short range (right).

<u>Our Work</u>

Modeling P/B-Frame Sizes

- Assume that GOP structure is fixed, e.g., IBBPBBPBBPBB
- Definition: In the *n*-th GOP,
 - $-\phi^{I}(n)$ the I-frame size
 - $-\phi_i^P(n)$ the size of the *i*-th P-frame
 - $-\phi_i^B(n)$ the size of the *i*-th B-frame
- For example, $\phi_3^P(10)$ represents the size of the third P-frame in the 10-th GOP

Intra-GOP Correlation

 Most previous work does not consider intra-GOP correlation and estimates P and Bframe sizes as *i.i.d.* random variables

• However, intra-GOP correlation is important and has similar structures between $\phi_i^P(n)$ and $\phi^I(n)$, with respect to different *i*.

Intra-GOP Correlation (cont.)

The correlation between different B-frame sequences and the Iframe sequence (left). That between different P-frame sequences and the I-frame sequence (right). 19

Modeling P-Frame Sizes

• The size of the *i*-th P-frame in the *n*-th GOP:

 $\phi_i^P(n) = a \tilde{\phi}^I(n) + \tilde{v}(n), \quad \text{where} \quad a = \frac{r(0)\sigma_P}{\sigma_I},$

- Process $\tilde{\phi}^{I}(n) = \phi^{I}(n) - E[\phi^{I}(n)]$, and $\tilde{v}(n)$ is independent of $\tilde{\phi}^{I}(n)$.

- Parameters σ_P and σ_I are the standard deviation of $\{\phi_i^P(n)\}$ and $\{\phi^I(n)\}$, respectively.
- Parameter r(0) is the lag-0 correlation coefficient.

Performance Comparison

The correlation between $\phi_1^P(n)$ and $\phi^I(n)$ in Star Wars. 21

Agenda

Background

- Importance of traffic modeling
- Goals of traffic modeling
- Preliminary knowledge
- Challenges & Current Status
- Our Work
 - Modeling single-layer video traffic
 - Modeling multi-layer video traffic
- Conclusion

Our Work

Modeling Enhancement Layer

- We estimate I-frame sizes in wavelet domain
- We estimate P and B-frame sizes using the crosslayer correlation:

 $\begin{aligned} \varepsilon_i^P(n) &= a\phi_i^P(n) + \tilde{w}_1(n), \\ \varepsilon_i^B(n) &= a\phi_i^B(n) + \tilde{w}_2(n), \end{aligned} \quad \text{where } a = r(0)\frac{\sigma_{\varepsilon}}{\sigma_{\phi}}. \end{aligned}$

- where $\varepsilon_i^P(n)$ is the size of the *i*-th P-frame, and $\varepsilon_i^B(n)$ is the size of the *i*-th B-frame
- Parameter r(0) is the lag-0 cross correlation coefficient, σ_{ε} and σ_{ϕ} are the standard deviation of the enhancement layer sequence and its corresponding base layer sequence.

Performance

The cross correlation in the original and synthetic *The silence of the Lambs*.

Model Accuracy Study

QQ plots

Verify the distribution similarity between the original traffic and the synthetic one

QQ plots for the synthetic single-layer Star Wars (left) and the synthetic enhancement layer *The Silence of the Lambs* (right).

Model Accuracy Study (cont.)

Leaky-bucket simulation

- Examine how well the traffic model preserves the temporal information of the original traffic
- Implementation: Pass the original and synthetic traffic through a generic buffer with capacity c and drain rate d
- Evaluation metric:

$$e = rac{|p-p_{model}|}{p}$$

• where p is the actual packet loss ratio and $p_{\rm model}$ is the synthetic one.

Model Accuracy Study (cont.)

The loss ratio *p* of the original and synthetic *The Silence of the Lambs* enhancement layer Comparison of several models in H.26L coded *Starship Troopers* 28

Conclusion

- This paper proposes a traffic model applicable to both single-layer and multi-layer VBR video traffic.
- The presented traffic modeling framework captures both LRD and SRD properties of video traffic.
- This framework accurately describes the intra-GOP correlation and the cross-layer correlation.