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Bayesian Wavelet Shrinkage With Edge
Detection for SAR Image Despeckling
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Abstract—1In this paper, we present a wavelet-based despeckling
method for synthetic aperture radar images and derive a Bayesian
wavelet shrinkage factor to estimate noise-free wavelet coefficients.
To preserve edges during despeckling, we apply a modified ratio
edge detector to the original image and use the obtained edge
information in our despeckling framework. Experimental results
demonstrate that our method compares favorably to several other
despeckling methods on test images.

Index Terms—Minimum mean square error (MMSE) estima-
tion, ratio edge detector, stationary wavelet transform (SWT),
wavelet shrinkage.

1. INTRODUCTION

YNTHETIC aperture radar (SAR) images provide useful
S information for many applications, such as oil slick
pollution monitoring and internal coastal wave detection
[1]. However, many imaging systems produce images with
speckles, which reduce the detectability of targets and impede
further investigation of SAR images. Thus, speckle reduction
(despeckling) has become an important issue in SAR image
processing. Many algorithms have been developed for de-
speckling, including the Lee filter [2], the Frost filter [3], the
Gamma MAP filter [4], and their variations [1], [5]. These
standard filters usually perform well in despeckling; however,
they typically exhibit limitations in preserving sharp features
and/or details of the original image [6].

To overcome these disadvantages, wavelet-based techniques
have been widely utilized in SAR image processing [6]-[9].
Wavelet denoising methods usually apply hard thresholding
or soft thresholding (i.e., shrinkage factor) to the detailed
wavelet coefficients of noisy images [10]. Since speckles in
SAR images are multiplicative in nature, many wavelet-based
despeckling approaches apply the log-transform to SAR images
to statistically convert the multiplicative noise to additive noise
before performing further wavelet denoising [6], [9], [11]. After
wavelet denoising, an exponential operation is employed to
convert the log-transformed images back to the nonlogarithmic
format [9]. However, the mean of log-transformed speckle
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noise does not equal to zero [12] and thus requires correction
to avoid extra distortion in the restored image.

There are also several wavelet-based techniques that avoid
the log-transform [7], [8], [13], [14]. Sveinsson et al. [13]
directly apply the enhanced Lee filter in the discrete wavelet
transform (DWT) domain to reduce the presence of speckles.
Xie et al. [14] propose a low-complexity wavelet denoising
process based on the minimum mean square error (MMSE)
estimation. Although DWT is widely applied in the area of
signal denoising and image compression, the downsampling
operation in DWT results in a time-variant translation and has
difficulties preserving original image discontinuities in the
wavelet domain [8].

Another approach involves the stationary wavelet trans-
form (SWT), which is a time-invariant transform commonly
used for denoising purposes [15], [16]. In [8], Foucher et al.
use the Pearson distribution to model the probability density
function (pdf) of SWT wavelet coefficients and reconstruct
the despeckled image using the maximum a posteriori (MAP)
criterion. Although this algorithm has sound performance, the
high computational complexity of the Pearson distribution
makes this approach less appealing in practice. Similar to [14],
Argenti et al. [7] apply a local linear MMSE estimator in the
wavelet domain. The major differences between these two
methods are the wavelet transform applied (stationary [7] or
nonstationary [14]) and the specific estimation related to the
unknown noise-free signal in the wavelet domain [8].

In this paper, we propose an efficient SWT despeckling
method that preserves edges of the original image. We avoid
the log-transform and derive a novel wavelet shrinkage factor
based on the mixture-Gaussian distribution model of wavelet
coefficients. Since edge information is very useful in preserving
the edges during despeckling, we modify the ratio edge de-
tector in [17] to obtain necessary edge information with lower
computational complexity. Several typical images are used to
evaluate the despeckling performance of our method along with
some standard filters and several other wavelet-based methods
[91, [14].

This paper is organized as follows. In Section II, we describe
statistical properties of SAR images, the two-dimensional
(2-D) SWT algorithm, and a statistical model of wavelet coeffi-
cients. In Section III, we give a brief review of related work on
shrinkage factors, derive a wavelet shrinkage factor, and pro-
vide a mechanism to estimate noise-free wavelet coefficients.
In Section IV, a modified ratio edge detector is introduced.
Section V provides a description of our algorithm and shows
experimental results. Finally, a short conclusion is given in
Section VL.
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II. STATISTICAL MODELS FOR SAR IMAGES AND
CORRESPONDING WAVELET COEFFICIENTS

A. Statistical Models for SAR Images

In this paper, we only consider the statistical properties of
amplitude and intensity SAR images. Let X be the observed
signal (intensity or amplitude), Y be the noise-free signal, and
F be the speckle noise. Since speckle noise F' is multiplicative
in nature, the observed signal can be expressed as X = Y F'.
Next, recall that the observed intensity I of an L-look image
has the conditional pdf given by [1]

L
1 <£> $L7167L$/y 1)

Puy($|y) = m y

where z represents an observed intensity value, y is the corre-
sponding actual intensity value, and I'(+) is the gamma func-
tion. Amplitude A, which is the square root of intensity I, is
distributed with the following pdf [1]:

_ 2 L\" 2L—1 _—La%/y 2
PA|Y(37|3/)—m oy z e . 2)
Note that using L = 1 in (1) and (2) produces the distribution
of monolook intensity and amplitude, which are exponential and
Rayleigh distributions, respectively.

In an L-look intensity image, speckle noise F' is a unit-mean
gamma-distributed variable of order L and its pdf is given by
(8], [14]

LLfL—1-Lf
where f is a speckle noise random variable. Notice that for L. =
1, (3) simplifies to a unit-mean exponential distribution. In an
L-look amplitude image, the distribution of speckle noise F' is
obtained numerically, but its mean equals one and its variance
equals (4/m — 1)/L. For detailed information, the readers are
referred to [1] and [18].

B. Stationary Wavelet Transform

The main strength of SWT is its time-invariance property
[15], which is useful in many applications (e.g., breakdown-
points detection and denoising [19]). The SWT algorithm is
slightly different from that of DWT. Fig. 1 shows the 2-D SWT,
where H; and L; are the highpass and lowpass filters at level
7, respectively. Also, note in the figure that L L is the original
image and that the output LL; of each level j is fed into the
input of the next level j 4+ 1. As shown in Fig. 1, filters H; and
L; are upsampled by two from filters H;_; and L;_1 (j > 1).
Since SWT does not include downsampling operations, it is a
redundant transform.

C. Statistical Models of Wavelet Coefficients

Wavelet coefficients of SAR images typically exhibit strong
non-Gaussian statistics [8], [12]. Chang ef al. [20] model
wavelet coefficients with a generalized Gaussian distribution
(GGD), which matches well histograms of typical SAR images.
However, GGD is not analytically easy to work with due to its
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Fig. 1. Two-dimensional SWT algorithm.
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Fig. 2. Histogram of DWT wavelet coefficients from Bedfordshire and the
mixture-Gaussian model.

complex structure. Among alternative methods, a mixture den-
sity of two zero-mean Gaussian distributions has been proposed
due to its relatively simple form and high accuracy in modeling
the distribution of wavelet coefficients [21]. Assuming that
Wx represents the noisy wavelet coefficients, its mixture pdf
is given by

pwy(wx) = Y p(S = k)p(wx|S = k) Q)

k=0,1

where p(wx|S = k) is a zero-mean Gaussian distribution and
S = 0 or 1 represents each Gaussian component in the mixture
distribution.

We demonstrate two typical examples in Figs. 2 and 3 to show
the performance of the mixture-Gaussian model in matching
the distribution of DWT and SWT wavelet coefficients of a
real SAR image (taken in Bedfordshire, southeast England).
In the figures, the mixture Gaussian distribution is labeled as
“mix_PDF” and the two pure Gaussian components are labeled
as “Gauss_1" and “Gauss_2,” respectively. As the figures show,
the mixture-Gaussian model follows the actual histograms very
well (note that a small discrepancy near zero does not reduce
the effectiveness of the model). Based on the mixture-Gaussian
model, we build a denoising method in the following section.
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III. BAYESIAN WAVELET ESTIMATE

In this section, we derive a novel wavelet shrinkage factor and
use it to estimate noise-free wavelet coefficients. Recall that in
the wavelet domain, multiplicative speckle noise can be con-
verted into additive noise without the use of the log-transform
[71, [8], [14]

Wy = W[X] = W[YF]
—WIY]+ W [Y(F - 1)]
=Wy + Wg (5)

where Wp is an additive signal-dependent noise equal to
WY (F — 1)]. Shrinkage estimate of the noise-free wavelet
coefficient Wy is Wy = nWx, where 1 is the shrinkage factor.
The shrinkage factor is often clipped at zero and the estimated
wavelet coefficients can be written as Wy = max(0,7)Wx
[7], [14]. Based on the MMSE criteria, the optimal shrinkage
factor 7’ is obtained by minimizing the mean square error
between Wy and Wy

n' = argmin K/ [(W) — Wy)g} (6)
n

which has the MMSE solution in the form of

,_ B[W3] -~ B[WxWs)
TSR v

To calculate 7/, it is necessary to estimate all unknown parame-
tersin (7) [7], [14]. In the rest of this section, we briefly overview
several methods of calculating the shrinkage factor and derive a
novel estimator of 7’.

A. Related Work

In (7), it is difficult to precisely estimate F[WxWg] due to
the dependence of noise W upon Wx . Xie et al. [14] assume

that the wavelet basis functions are short enough and then com-
pute E[WxWpg] as

N—-1N-1

EWxWg] = 0124*5 Z Z h;hgyp%q ®)

p=0 ¢q=0
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where h and & denote the wavelet filters applied to the row and
column of the original image, respectively, 0‘24,3 is the variance
of noise Wp, and unknown noise-free signal Y is estimated
from the coefficients in the LL subband.

Different from [14], Argenti et al. [7] apply a local linear
MMSE estimator to obtain Wy~

E [Wi]
E[W}i]) W

_ E[WZ] - E[Wg]
=max | 0, E[W)%]

Wy max (0,

) Wx. ©)

For a random pixel n, E[W 3] at decomposition level j is esti-
mated by [7]

BIWE] = 175 3 Wi B[X (n=i)7]

+> > Hy(i)H(k)
ik ki

where H; is the highpass filter at level j, random process u
equals I’ — 1, and R, is the autocorrelation function of noise
u. Notice that (10) applies only to one-dimensional signals and
that 2-D images require much more filtering and multiplications.
Furthermore, (10) involves the estimation of unknown param-
eter I,,,,. Both of these observations show that the computation
of (9) is rather expensive.

B. Novel Shrinkage Factor

To avoid high computational complexity, we derive the
shrinkage factor from another perspective.

Lemma 1: Based on a mixture-Gaussian model of wavelet
coefficients, the MMSE estimate of noise-free wavelet coeffi-
cients Wy is

2 2
Wy = Z p(S = k|wx)7gwx 5 TWo yy
k=0,1 Twx

Y

where o7, _ is the variance of the noisy wavelet coefficients Wx
in the corresponding state S and p(S = k|wx) is calculated
based on the Bayes rule

p(wx|S = k)p(S = k)
p(wx) '

Proof: Recall that Wx = Wy + Wp in (5). After re-
placing Wx with Wy + Wg in E[WxWpg], we have

p(S = klwx) = (12)

EWxWg] = E[WyWg] + E [W3]. (13)

Since the speckle-noise random variable F' is usually
normalized

E[F] =1
E[F — 1] =o0.

(14)
15)

Thus, due to the highpass nature of wavelet functions, we have
E[Wpg] = 0. Furthermore, because of the zero-mean mixture-
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Gaussian distribution model of Wy, its expectation E[Wx] is
also zero. Therefore, we obtain

E W3] =0y, (16)
E W3] =0ty (17)
Since Wy and Wp are statistically independent
E[WyWg| = E[Wy|E[Wg] =0 (18)
and E[WxWpg] becomes
EWxWg| =0+ E [W3] = oy, - (19)

Combining (16), (17), and (19), the new shrinkage factor 7’ is
given by

!/

B E [W‘%] - E[W\'WB] _ U%VX - 0"2/1,73
- EWE] oty

(20)

which represents both (7) and (9) based on a mixture-Gaussian
model of wavelet coefficients. Combining (20) with (4), we ob-
tain an estimate of noise-free wavelet coefficients Wy , as shown
in (11). [ ]
The unknown probabilities in (12) are calculated with the ex-
pectation—maximization (EM) algorithm [22].

C. Parameter Estimation

Notice that in (11), all parameters except 0124,3 can be easily
estimated from the observed noisy signal. In the following ex-
position, we derive o}, using the results of [8].

Lemma 2: After the SWT transform, the variance of noise in
the wavelet domain 0124,3 equals

Vipk + ofy,
o, :___T;YE:JLC% (1)

where px = E[X], the normalized standard deviation of noise

CF equals y/1/L for intensity images and /(4/m — 1)/ L for

amplitude images (L > 1), and parameter ¥; is defined as

2 2(j—1)
U = <Z(hk)2) (Z(gz)2> 22)

k l

where h and g are the highpass and lowpass filters at decompo-
sition level 7, respectively.

Proof: Based on the statistical properties of SWT trans-
form and SAR images, Foucher et al. [8] estimate U%;VB as

oy, = Yin3- CF (14 CF) (23)
where 1y = E[Y] and C2 is

YT U (1402
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Fig. 4. Eight flat-slope directions.

The normalized standard deviation of noisy wavelet coefficients
C Wx is
OWwWx

Cywy = (25)
[15¢

Recall that E[X] = E[Y] with normalized speckle noise F'.
Inserting (24) and (25) into (23), we obtain

v, (1+CF) + O, — ¥,Ck

=W,;ui CF
s U, (1+C3)

U%V,;
W+ T
=r&Ch i &5

F
~ CR(Ynk + oy, )
B (14+C%)

(26)

which is the same as (21). [ |

IV. RATIO EDGE DETECTOR

Since edge information is important in preserving image de-
tails during despeckling [7], [8], our algorithm employs a mod-
ified edge detector whose details are presented in this section.
Recall that Touzi et al. [17] propose a ratio edge detector, which
operates as following. Assuming P, and P; are the arithmetic
means of pixel values of the two nonoverlapping neighborhoods
on the opposite sides of pixel ¢, the ratio detector r equals

R,
TZ{R*.

where R is Py / P,. The authors of [17] apply a moving window
to each pixel, compute ratio r in four directions (i.e, horizontal,
vertical, and two diagonal), and then choose the best edge direc-
tion according to certain thresholds. To obtain locally optimal
detection, the window size and thresholds are adjusted adap-
tively for each pixel, which dramatically increases the compu-
tational complexity of the method.

To achieve efficient edge detection with low computational
cost, we use a fixed-size window and a uniform threshold in
each test image, but add more detection directions. Besides the
four directions that already exist in the original edge detector,
we add eight flat-slope directions, which are shown in Fig. 4.

Due to high correlation between the conditional probability
p(r|P1/P>) and edge directions, we choose the direction with

R<1

R>1 @7
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Fig. 5.
original edge detector [17] and (b) that of our edge detector.

With a uniform threshold and a fixed window size, the result of (a) the

the highest conditional probability as the most likely edge di-
rection. For an L-look SAR image, p(r|Py/P,) is given by [17]

"t

Py _m“"M_IF(ZM)
P ) [(M)?

where n equals 1 for intensity images and 2 for amplitude im-
ages, d is the width of the window, and M = dL(d — 1)/2.
In Fig. 5, we compare the performance between the modified
edge detector and the original edge detector [17] in a 125 x
125 two-look amplitude SAR image using a uniform threshold
and a fixed window size. Even though the original edge de-
tector performs well in [17], Fig. 5(a) shows that this method no
longer provides pleasing edge detection results in the low com-
putational complexity case (i.e., a uniform threshold and a fixed
window size). Fig. 5(b) shows that our edge detector preserves
existing edges and produces fewer false edges in the homoge-
neous areas.

V. ALGORITHM AND EXPERIMENTAL RESULTS

In this section, we describe our despeckling framework and
show experimental results. Since it is possible for wavelet
shrinkage to blur edges, we combine Bayesian wavelet
shrinkage described earlier in the paper with the edge detector
of the last section. The modified edge detector is applied to
noisy SAR images, and two thresholds (7j, 171) are chosen
(To < Ty) according to the content of the image. If the value
of the ratio detector r of a pixel ¢ is lower than Tj, the pixel is
considered to be an edge point, and we assume that Wy equals
Wx at the corresponding decomposition level. If r is higher
than 77, pixel 7 is considered to be in a homogeneous neigh-
borhood, and Wy is set to zero. Otherwise, Wy is computed
according to (11). Finally, an inverse SWT is applied to obtain
the despeckled image. A fixed-size 3 x 3 moving window is
applied in our algorithm to estimate the local statistics of the
original image and the Haar wavelets are used in all filtering.
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TABLE 1
ENL FOR THE TEST REGIONS

Methods Bedfordshire ~ GAC CNES

(L=2) (L=1) (L=4)
Original 1.7531 0.9602  3.6608
Ours 11.6007 10.1169 23.2824
Frost [3] N/A 2.5025  11.7991
Gamma [4] 11.9903 5.9489  31.6857
Lee [5] 5.1268 48645  19.9440
Non-log SWT shrinkage [7] 9.4276 6.7963  22.4557
Log-transformed DWT shrinkage [9] N/A 2.1483  19.2614
Non-log DWT shrinkage [14] 8.8833 5.1830  22.5434
Weibull [24] N/A 3.6259  7.5303

We evaluate the performance of our algorithm in three im-
ages:! a two-look X-band amplitude image (Bedfordshire), a
monolook intensity image (GAC), and a four-look synthesized
amplitude image (CNES). We use equivalent number of looks
(ENL) for comparison purposes. ENL is widely applied to mea-
sure the smoothing effects of despeckling methods. It is defined
as ENLy? /o2, where  and o2 are the mean and the variance of
intensity value over a uniform image area [1]. The value of ENL
theoretically equals the number of look of an intensity image.

In Table I, we compare the smoothing performance (ENL)
between our method and several popular despeckling methods
in typical homogeneous areas of three test images. Specifically,
Table I includes the results of several shrinkage methods:
nonlog-transformed SWT shrinkage [7], log-transformed DWT
shrinkage [9], and nonlog-transformed DWT shrinkage [14].
The nonlog-transformed methods [7], [14] use Daubechies-4
wavelets and two-level decomposition? in test images.

The size of a test region is important, since it should be large
enough to provide a robust estimation of the value of ENL and
to allow the homogeneity hypothesis to hold in that region [23].
In our simulation, we set test region size to 50 x 50 pixels ac-
cording to the texture structure of the test images. The Silogic
company and CNES provide results of several methods (i.e., see
[3]1, [9], and [24]), which we show in Table I; however, results
of these methods are not available (N/A) for the Bedfordshire
image. Also, notice that we convert the test regions of the am-
plitude-formatted Bedfordshire and CNES images to intensity
to calculate the ENL.

Table I demonstrates that our method has good performance
in the homogeneous areas for both multilook and monolook im-
ages. Table I also shows that the Gamma MAP filter performs
better than our method in multilook images in terms of ENL.
However, recall that ENL is not a good measure of despeckling
performance of a method in heterogeneous areas of an image.
Thus, we next discuss the actual despeckled images to show the
subjective quality of several methods from Table I.

Since the Bedfordshire image is a real SAR image (the CNES
image is synthesized) and has richer characteristics than the
GAC image, we display some experimental results of the Bed-
fordshire image. Fig. 6 is the original image. Fig. 7 shows that
the Gamma MAP filter exhibits strong blurring effects. Fig. 8

IThe first image is Bedfordshire in Southeast England. The second one is a
target detection image provided by the German Aerospace Center (GAC), and
the third one is a synthetic image from the French Space Agency (CNES).

2In these two methods, high decomposition level tends to generate
over-smoothed despeckled images.
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Fig. 8. Result of a nonlog-transformed DWT shrinkage method [14].

indicates that the nonlog-transformed DWT shrinkage method
[14] performs better in homogeneous areas than in heteroge-
neous areas. In Fig. 9, which is the despeckled image of the
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Fig. 10. Result of our method.

nonlog-transformed SWT shrinkage method [7], we still ob-
serve speckle noise in homogeneous areas. Fig. 10 shows that
our method smoothes the homogeneous area (e.g., the upper part
of the image), but also keeps the edges (e.g., the bottom left
corner).

VI. CONCLUSION

In this paper, we presented a wavelet-based despeckling
method for SAR images. We derived a novel shrinkage factor
and described an efficient ratio edge detector. Experimental
results demonstrate that our algorithm has a good despeckling
performance in SAR images and typically preserves even the
minor edges. In future work, we plan to further improve the
performance of this despeckling method by including other
techniques, such as the iteration process or simulated annealing.
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