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Abstract—Rate-distortion (R-D) modeling of video coders has
always been an important issue in video streaming; however, few
of the traditional R-D models and their performance have been
closely examined in the context of scalable (FGS-like) video. To
overcome this shortcoming, the first half of the paper models
rate-distortion of DCT-based fine-granular scalable coders and
derives a simple operational R-D model for Internet streaming ap-
plications. Experimental results demonstrate that this R-D result,
an extension of the classical R-D formula, is very accurate within
the domain of scalable coding methods exemplified by MPEG-4
FGS and H.264 progressive FGS. In the second half of the paper,
we examine congestion control and dynamic rate-scaling algo-
rithms that achieve smooth visual quality during streaming using
the proposed R-D model. In constant bitrate (CBR) channels, our
R-D based quality-control algorithm dramatically reduces PSNR
variation between adjacent frames (to less than 0.1 dB in sample
sequences). Since the Internet is a changing environment shared
by many sources, even R-D based quality control often cannot
guarantee nonfluctuating PSNR in variable-bitrate (VBR) chan-
nels without the help from an appropriate congestion controller.
Thus, we apply recent utility-based congestion control methods to
our problem and show how a combination of this approach and
our R-D model can benefit future streaming applications.

Index Terms—MPEG-4 FGS, quality control, rate distortion,
scalable streaming.

I. INTRODUCTION

RATE-DISTORTION (R-D) curves are useful not only in
source coding, but also in Internet video streaming. While

it is well-known that R-D based compression approaches can
adaptively select quantization steps and maximize video quality
under given buffer constraints [7], [22], R-D curves can also be
used during streaming rate control to optimally allocate bits in
joint source-channel coding [3], [13], avoid network congestion
[4], and achieve constant quality at the receiver [32], [37], [38].

Accurate modeling of R-D curves of real encoders and
channel characteristics of real communication systems (e.g.,
the Internet) is always challenging due to the diversity of source
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images and the inherent complexity of Internet-like channels
[28]. Typically, R-D modeling is undertaken using either the
empirical or the analytical approach, each of which has its own
benefits and drawbacks. The empirical approach obtains R-D
curves by interpolating between samples of a given
encoder [23]. The analytical approach derives R-D models
from the angle of information and/or quantization theory as-
suming certain (usually simplified) statistical and correlational
properties of the source [8], [11], [14]. While the empirical
approach usually results in better estimation of the curve, it
fundamentally lacks theoretical insight into the structure of the
coding system.

Thus, in order to accurately take into account complex statis-
tical structure and source correlation of real encoders, a third,
operational, type of R-D models is widely used in practice [4],
[11], [12]. An operational R-D model obtains the basic struc-
ture of the curve from a closed-form analytical expression, but
then parameterizes the equation according to several parameters
sampled from the actual system (e.g., [4], [11], [12]).

Although there are numerous applications of R-D modeling
in scalable Internet streaming [32], [34], [37], [38], the ma-
jority of current R-D models are built for images and/or non-
scalable video coders [5], [14]. To overcome this gap in the
current knowledge of scalable coding R-D systems and provide
future video streaming applications with accurate R-D models,
this paper derives two operational R-D models based on statis-
tical properties of scalable sources and existing models of bi-
trate [12]. Our first result applies to the enhancement layer of a
variety of scalable DCT coders (including FGS and PFGS) and
demonstrates that distortion is a function of both and its
logarithm :

(1)

where is the variance of the source and are constants.
Since this formula is too complicated for delay-constrained

streaming applications, our second R-D result is a polynomial
approximation of (1), which can be summarized as an opera-
tional extension of the traditional model :

(2)

where and are constants [different from those in (1)]
dependent on the properties of the source. During our journey
to obtain these results, we also offer a new model for the dis-
tribution of DCT residue and derive an accurate Markov model
for bitplane coding (more on this in the following sections).

With an accurate R-D model, we next address another im-
portant issue in video streaming, quality control. This is an im-
portant concern for end-users since human eyes are sensitive
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to quality fluctuation, which is often present in constant bi-
trate (CBR) coded base layers and in video streaming over vari-
able bitrate (VBR) channels. Thus, during streaming, the server
must rely on an efficient R-D model to rescale the enhancement
layer to both match the available bandwidth in the network and
smooth out visual quality fluctuations introduced by the base
layer [32], [37], [38].

While video streaming has strict quality-of-service (QoS) re-
quirements on bandwidth, delay, and packet loss, the current
best-effort Internet does not provide any QoS guarantees to end
flows. Therefore, congestion control is typically the only vi-
able solution that allows streaming applications to avoid sub-
stantial packet loss, share the bottleneck routers fairly, and offer
a pleasant video quality to end-users. Many current conges-
tion controllers for streaming applications are built on top of
TCP-friendly schemes and usually exhibit difficulty in main-
taining a smooth channel due to their large rate fluctuations [1],
[9] and asymptotic instability.

We take a different approach and extend the continuous-feed-
back congestion control methods proposed by Kelly et al. [19].
We study their performance in constant-quality network
streaming and show that the resulting controller is stable under
arbitrarily delayed feedback and offers end-flows exponential
convergence to link utilization (in contrast to TCP’s linear
rate of convergence). This is one of the first papers to apply
provably stable active queue management (AQM) congestion
control [36] in constant-quality video streaming.

The rest of the paper is organized as follows. In Section II,
we give a brief overview of related work. Section III provides
the big picture of R-D modeling of scalable coders, presents a
detailed analysis of distortion under bitplane quantization, and
derives an accurate R-D model for scalable video systems. Sec-
tion IV provides a simple operational R-D model that is suitable
for real-time streaming. In Section V, we introduce Kelly’s con-
gestion controller and describe our quality control algorithm.
Finally, Section VI concludes this paper.

II. RELATED WORK

In this section, we briefly overview the work related to R-D
modeling and quality-control during streaming.

A. R-D Modeling

We describe several closed-form R-D functions commonly
used in video coding in this subsection. Recall that the most
well-known R-D result stems from classical Shannon’s work [5]
and early developments in quantization theory [28]:

(3)

where denotes MSE distortion, is the bitrate of the coded
sequence, and is the variance of the source. While directly
applicable only to a small set of sources, this model is still
widely used in video streaming [12], [32].

Shannon’s classical model is the basis for many operational
R-D models and is often extended to account for non-Gaussian
distributions and nontrivial source correlation [11], [12]:

(4)

where is the correlation coefficient of the data and is a
source-dependent scaling parameter (1.4 for Gaussian, 1.2 for
Laplacian, and 1 for uniform sources).

Distortion depends only on the statistical properties of the
signal (i.e., its distribution); however, the rate also depends on
the correlation among the input symbols [11], which explains
the independent derivations of and often used in
the literature. For uniform quantizers (UQ), the classical model
is often decomposed into two separate models with respect to
quantizer step : distortion and rate . Under uni-
form quantization, both models can be summarized as [11]

(5)

where is 12 for small . To account for a wider range of ,
parameter typically needs to be empirically adjusted based on
samples of the R-D curve or other source parameters [11].

For Laplacian sources with density , the
R-D function can also be written in terms of the mean absolute
difference (MAD) distortion [31]:

(6)

where is some constant. Using Taylor expansion of (6),
Chiang et al. [4] propose an operational R-D model for Lapla-
cian sources and apply it to the MSE distortion :

(7)

where parameters and are obtained from samples of the em-
pirical R-D curve.

Using a Cauchy density function to model DCT coefficients,
Kamaci et al. [17] build a slightly different R-D model for H.264
video coders:

(8)

where and are some properly selected constants.
In another recent development, He et al. [12] propose a uni-

fied -domain R-D model, in which the bitrate is estimated by
a linear function of the percentage of zero coefficients in each
video frame. In this framework, distortion for each is com-
puted directly using the DCT coefficients without any modeling.

Besides the above operational models, there are purely empir-
ical ways to estimate R-D curves. Among the numerous studies,
e.g., Lin et al. [23] use cubic interpolation of the empirical
curve and Zhao et al. [37] apply similar methods to FGS-related
streaming algorithms.

B. Quality Control in Streaming

The MPEG-4 standard [26] has adopted Fine Granular Scal-
ability (FGS) into its streaming profile and motivated the de-
velopment of new scalable compression paradigms such as pro-
gressive FGS (PFGS) [35]. Both FGS and PFGS consist of a
single base layer and one enhancement layer that contains the
residual signal coded using embedded DCT. Due to nonsta-
tionary characteristics of video sources (such as scene changes),
the base layer often exhibits significant quality fluctuation that
needs to be smoothed out by the server, which must properly
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select (for each frame) the fraction of the FGS layer that should
be transmitted over the network.

Many approaches have been proposed to achieve constant
quality in video streaming, e.g., Wang et al. [32] use (4) to es-
timate the R-D curve of PFGS and propose an optimal bit allo-
cation scheme that reduces quality fluctuation based on the es-
timated R-D curve, the authors of [37] apply a similar method
to FGS video, while Zhao et al. [38] obtain the R-D curve em-
pirically and adopt Newton’s search method to achieve constant
quality during transmission of video over the Internet.

III. SCALABLE R-D MODELING: THE BIG PICTURE

A. Preliminaries

Due to its flexibility and strong adaptability to channel
conditions, scalable coding techniques are widely applied in
video coding and transmission. Scalable coding can be further
grouped into coarse-granular (e.g., spatial scalability) and
fine-granular (e.g., FGS). While the former method provides
quality improvements only when a complete enhancement
layer has been received, the latter continuously improves
video quality with every additionally received codeword of
the enhancement layer bitstream [33]. In this paper, we target
fine granular scalable coders due to their progressive quality
improvement during streaming. Both FGS and PFGS use
bitplane coding, which considers each input value as a binary
number instead of a decimal integer. During video streaming,
bitplanes are transmitted from the most significant to the least
significant thus resulting in gradual quality improvement as
streaming rates increase. The enhancement layer in FGS is
used only for reconstruction purposes while that in PFGS also
serves for motion-compensated prediction (MCP) of the pixels
in adjacent frames.

In scalable streaming applications, R-D curves can be em-
ployed to decide the proper scaling of the enhancement layer
to both match the channel capacity and achieve smooth video
quality at the receiver. Although there are many R-D based
streaming solutions [32], [34], [37], [38], to our knowledge, the
theoretical foundation behind the shape of R-D curves of scal-
able coders has not been investigated thoroughly.

In what follows, we describe the structure of a DCT-based
scalable coder and explain why distortion in the enhancement
layer is sufficient to model the end-user visual quality. Then we
derive an R-D function based on source statistical properties and
a -domain bitrate model [12]. We use FGS [22] and PFGS [35]
as typical examples during the discussion.

In a scalable coder, we assume that the rate of the base layer
is and its distortion is . Furthermore, we assume that the
server transmits bits from the enhancement layer (in addi-
tion to bits from the base layer) and achieves a combined
distortion . While the traditional approach is to model the dis-
tortion as a function of the total bitrate , several
simplifications of this framework are possible. First, since the
server during streaming is only able to chop the enhancement
layer according to user requirements or network conditions, we
are concerned only with the rate of the enhancement layer
instead of the total bitrate . Second, as we show below, en-
hancement-layer distortion created at the server by discarding

Fig. 1. Block diagram of a typical scalable coding system.

several least-significant bitplanes during transmission is suffi-
cient for estimating the actual end-user distortion .

To better understand this scenario, we illustrate the encoding
and decoding process of a scalable coder in Fig. 1. In the figure,
symbol represents the original frame, is the predicted frame,
and is the reference frame. Symbol refers to the predicted
error frame in the base layer, is the input to the enhance-
ment layer, and and are the quantization errors in the base
and enhancement layers, respectively. Symbol stands for the
reconstructed image in the base layer and is the final recon-
structed image including both base and enhancement layer in-
formation. We use blocks labeled ILC in the figure to represent
ideal lossless coding, which includes DCT/IDCT and entropy
encoding/decoding, and blocks labeled MCP for motion esti-
mation and compensation in the base layer.

With the above notation, we have the following lemma.
Lemma 1: The total distortion of a scalable coder is equal

to the distortion caused in the enhancement layer.
Proof: Since is the final reconstructed image in Fig. 1,

the total distortion of a scalable coder can be written as
. Recalling that , and

, where is the quantization error during enhancement-layer
processing, total distortion becomes

Since quantization errors are the main reason for distortion in
most lossy coding systems [14], we have and therefore

.
Based on the above lemma, we model the enhancement layer

distortion to capture the distortion of the whole coding system.
Furthermore, it is well known that in an ideal encoder-decoder
system, spatial-domain distortion and DCT-domain distor-
tion are equal [14]. Thus, we develop the distortion
model in the DCT domain throughout the paper, since the
statistical properties of DCT residue are more mathematically
tractable than those of the original signal. Note, however, that
we verify our model using the actual distortion observed by the
end-user, which includes the DCT/IDCT round-off errors.

B. Distortion Model

Recall that in an image/video coder, the distortion mostly
comes from quantization errors, even in a lossy predictive coder
[11], [33]. In a nonscalable coder or the base layer, the distortion
comes from applying a uniform (usually) mid-point quantizer to
each DCT coefficient (different quantizers are often applied to
different frequencies) [10], [11]. On the other hand, embedded
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Fig. 2. Distribution of DCT residue fitted with a mixture Laplacian model in
frame 0 of CIF Foreman. Sequence coded at 128 kb/s (base layer) and 10 fps
using MPEG-4 FGS. (a) Full range; (b) log-scale positive tail.

coders such as FGS use bitplane coding, in which all coeffi-
cients are transmitted bit-by-bit from the most-significant bit-
plane (MSB) to the least-significant bitplane (LSB). This can be
viewed as applying a quantizer with step , where is
the total number of bitplanes in the frame and is the current bit-
plane number.1 For example, assuming that the maximum DCT
coefficient is 40, is 6 and takes the values equal to 32, 16,
8, 4, 2, 1 for bitplanes 1 through 6, respectively.

Since a uniform quantizer is widely applied in video coders
for its approximate optimality in the high bitrate case [7], model
(5) is popular due to its simplicity and accuracy under these as-
sumptions. However, when the output rate is not high enough,
(5) requires complex adjustments to to achieve satisfying re-
sults [11], [30]. Instead of coping with empirical parameter ad-
justments, we will derive an accurate distortion model based on
source statistical properties.

As discussed earlier, the input to the enhancement layer is the
DCT residue between the original signal and the reconstructed
image of the base layer [26]. Our previous work [6] shows that
the PMF (probability mass function) of DCT residue follows a
mixture Laplacian distribution with density:

(9)

where random variable represents the DCT residue, is the
probability to obtain a sample from one of the two Laplacian
components (e.g., the low-variance Laplacian distribution), and

and are the shape parameters of the corresponding Lapla-
cian distributions. The parameters of (9) can be optimally esti-
mated using a variety of methods, such as the Expectation-Max-
imization (EM) algorithm [2]. As an example, Fig. 2 shows that
the mixture Laplacian distribution (9) accurately models both
the peak and the tail of the actual PMF (numerous additional
examples omitted for brevity).

With the help of (9), we can now focus on understanding the
properties of distortion caused by bitplane coding. The
proof of the following lemma can be found in [6].

1While traditional quantizers implement mid-point reconstruction, bitplane
coding can be viewed as a floor function applied to the result. MPEG-4 FGS has
an option for “quarter-point” reconstruction, in which the decoder adds�=4 to
the result. For brevity, we omit�=4 in all derivations; however, it can be shown
that our final result holds for quarter-point quantizers as well.

Fig. 3. (a) Spatial-domain distortion D in frame 0 of CIF Foreman and D
estimated from model (10). (b) Average absolute PSNR error of UQ model (5)
and our model (10) in CIF Coastguard. Both sequences coded at 128 kb/s (base
layer) and 10 fps using MPEG-4 FGS.

Lemma 2: For Laplacian sources with PMF ,
and , the MSE distortion after uniform quantization

with step is

(10)

where is given by

(11)

Notice that when , (10) produces and when
, the distortion increases to , where

is the variance of a Laplacian distribution. A distortion model
for a mixture-Laplacian distribution is easily constructed by lin-
early combining (10) with the corresponding probability and

as shown in (9). The result of applying model (10) to
frame 0 in CIF Foreman is plotted in Fig. 3(a), which shows a
very good match and additionally demonstrates that is al-
most the same as spatial-domain distortion .

We extensively analyzed the performance of model (10) in
other sequences and found that it was very accurate. Fig. 3(b)
compares the performance of (10) to that of the classical model
(4) and UQ model (5) in FGS-coded CIF Coastguard. The error
in the figure is computed for each frame in the PSNR domain
and then averaged over all bitplanes. As the figure shows, (10)
maintains the average error below 0.8 dB, while the errors in the
other two methods average between 2 and 6 dB.

Note, however, that this form of averaging can be misleading
since large errors in the last bitplane (where they do not matter
due to high signal PSNR) may skew the result obtained from the
other bitplanes. Thus, in Table I, we examine the average errors
for each bitplane over the entire CIF Foreman sequence (sim-
ilar results hold for Coastguard and Carphone, both of which
are omitted for brevity). As the table shows, the PSNR error is
quite small for all bitplanes except the last one where approxi-
mation (10) is the weakest and results in the largest discrepancy
between the model and the data. It is also worthwhile to note that
a 1-dB error in a signal reconstructed at 56 dB is not noticeable,
as well as that 0.15-dB errors in 30 dB signals are relatively
minor. Finally note that (10) applies to any Laplacian source
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TABLE I
ESTIMATION ACCURACY OF (10) IN CIF FOREMAN

regardless of reconstruction points and whether the source con-
tains FGS residue or base-layer DCT coefficients.

C. R-D Model

Notice that the traditional R-D model is typically
obtained under the assumptions of an infinite block length and
high-resolution (i.e., small ) quantization that allows the PMF
of the signal in each -bin to be approximated by a constant
[14], [28]. Neither of these two assumptions generally holds in
practice, especially in cases of sharply decaying PMF of DCT
residue (which is not constant even in small bins) and low-bi-
trate streaming (which inherently relies on high ).

To better understand this situation, we evaluate the accuracy
of models (4) and (7), which are extensions and/or improve-
ments of the traditional R-D model. Fig. 4 shows the R-D curves
produced by (4) (labeled as “classical” in the figure) and (7) (la-
beled as “Chiang et al.”). Note the log-scale of the -axis, which
is used here to demonstrate that (7) exhibits bending and pro-
duces negative values of for sufficiently large (this cannot
be shown in the PSNR figure, so the curve simply stops).

Due to the unsatisfied accuracy of current R-D models, we de-
rive an alternative R-D model based on source statistical prop-
erties and a -domain bitrate model [12].

Lemma 3: For Laplacian sources, distortion can be
expressed in closed form as:

(12)

where constants only depend on the shape of the distri-
bution and -domain constant [12].

Proof: First recall that He et al. [12] demonstrated in
numerous simulations that in a variety of image and video
coding methods, rate was proportional to the percentage
of nonzero coefficients in the source data:

(13)

where is a constant. While we do not offer a deeper analytical
treatment of (13) at this time, we utilize this empirical fact in our
subsequent derivations, especially since this model holds very
well for scalable coders (not shown here for brevity, but veri-
fied in simulations). Next notice that for Laplacian distributed
sources, the percentage of nonzero coefficients is

(14)

Fig. 4. R-D models (4), (7), and the actual R-D curve in CIF Foreman. Se-
quence coded at 128 kb/s (base layer) and 10 fps using MPEG-4 FGS. (a) Frame
0; (b) frame 84.

where is the shape parameter of the Laplacian distribution and
is the quantization step. Inserting (13) into (14), we express
in terms of rate :

(15)

Combining this result (15) with our earlier distortion model
(10), we have

(16)

where is:

(17)

Expanding (17) and combining it with (16), we notice that

(18)

where is the variance of the source. This observation makes
perfect sense since distortion should not be larger than [5]
and should equal zero when (i.e., the quantization
step and there is no loss of information). After absorbing
the various constants and neglecting small terms, we have the
desired result in (12).

Estimation of for FGS sources is very simple. Once the
FGS layer is coded, the number of bits in each bitplane
can be easily obtained by scanning the FGS layer for bitplane
start codes (whose location can also be saved during encoding).
Computing the percentage of zeros in each bitplane directly
from the DCT residue, the encoder can build the curve

and estimate its linear slope . Simulation results in
Fig. 5 show that model (12) outperforms traditional R-D models
and maintains high accuracy in a variety of FGS-coded video
frames.

The result in (12) shows that the R-D curve of scalable coders
(mixture Laplacian sources) is both complex and highly non-
linear in both the MSE and PSNR domains. Nevertheless, this
model provides valuable insight into the coding process and sug-
gests the shape of the resulting R-D curve. For practical pur-
poses, this model is still rather complex and hard to use for R-D
analysis due to the numerous nonlinear terms in (17). Thus, we
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Fig. 5. Comparison between several popular R-D models and logarithmic
model (12). Both sequences coded at 128 kb/s (base layer) and 10 fps. (a) CIF
foreman (MPEG-4 FGS); (b) CIF carphone (MPEG-4 FGS).

examine an even simpler operational model in the next section
and use it for quality control in the subsequent parts of the paper.

IV. SQUARE-ROOT R-D MODEL

Notice that the previously derived distortion model is too
complicated for further analytical manipulation. Thus, we use
the theory of coconvex/comonotone approximation [21] to sim-
plify the equations. As shown in [21], if function
change its convexity finitely many times in a given interval, we
can estimate by polynomials that are coconvex with it, i.e.,
polynomials that change their convexity exactly at the points
where does.

In the next two subsections, we show how to use coconvex
approximation theory to represent the distortion and bitrate as
different polynomial functions of bitplane .

A. Simple Bitrate Model

We start with the following supplementary result.
Lemma 4: Function for is monotonically

increasing, changes convexity no more than once, and remains
in [0, 1) for all bitplanes .

Proof: Combining (13) with (14) and keeping in mind that
, we have

(19)

Taking the first two derivatives of (19), we have

(20)

(21)

Analysis of (21) shows three important points: (a) for ,
the function remains strictly convex in the entire interval, (b)
for , the function remains strictly concave, and (c)
for the remaining values of , there is exactly one point

, in which the function changes convexity.
Using the theory of coconvex/comonotone approximation

[21], an accurate polynomial approximation of would
require a cubic curve to match the possible change in convexity
of the curve (the rest of the error is small since (19) exhibits a
good degree of smoothness). However, for Laplacian source,
we have , where the source standard deviation is

Fig. 6. Quadratic model (22) and the traditional linear model in CIF Foreman.
Sequence coded at 128 kb/s (base layer) and 10 fps using MPEG-4 FGS. (a)
Frame 0; (b) frame 84.

always larger than in video sequences. Thus,
and a quadratic approximation is accurate enough to estimate

in this range. We therefore approximate (19) with

(22)

where constants can be estimated from empirical data.
To better understand this operational model, we conducted nu-
merous experiments and found that while cubic polynomials
were a very good match to , quadratic functions also per-
formed extremely well. Fig. 6 shows one such example for two
frames in CIF Foreman together with a linear fit derived from
model (5).

B. Simple Quality (PSNR) Model

Since PSNR is a popular quality measure in real video appli-
cations, we convert into the PSNR domain here and reduce it
to a simpler formula through a series of approximations. Recall
that PSNR is a logarithmic function of distortion :

(23)

Substituting distortion function (10) into (23), we have the
following lemma.

Lemma 5: For Laplacian distributed source with PDF
[0, 1], function is monoton-

ically increasing for and changes convexity no more
than once for integer .

Proof: Taking the derivative of (23), we have

(24)

where and .
It is obvious that , , and the last item of

(24) is positive. Whether the first item of (24) is positive or not
depends on if in the first item is negative or not. Note
that when , . Thus,

(25)
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Fig. 7. Comparison between the original Laplacian model (10) and simple
model (27). (a) � = 0:5; (b) � = 0:12.

and we have for .
Further taking the second derivative of , we get

(26)

where and .
Analysis of (26) shows that: (a) for , (b)

when , and (c) for . In other
words, function changes convexity only once for integer

.
Since the working range of video coders is , we

can simply use a quadratic polynomial of the bitplane number
to approximate (23) [21]:

(27)

for some constants .
We also calculate the approximation error of the quadratic

function. Assume that represents the fact that func-
tion changes convexity times in its range and
means that polynomials are coconvex with . Then the ap-
proximation error is [21]:

(28)

where

(29)

is the set of polynomials of degree not exceeding , and

(30)
with in (22) and (27).

To verify this approximation, we conducted a series of tests
by fitting the simplified model (27) to the PSNR calculated from

Fig. 8. CIF Foreman fitted with linear, quadratic, and SQRT model (31). Se-
quence coded at 128 kb/s (base layer) and 10 fps using MPEG-4 FGS. (a) Frame
39; (b) frame 73.

the original model (10) and found them to be an almost per-
fect match. The quality of the fit is illustrated on two different
Laplacian distributions in Fig. 7. The left side of the figure
shows a low-variance (large ) case and the right side of the
figure shows a high-variance (small ) case; both matched the
quadratic model (27) with very high accuracy.

C. SQRT Model

We next combine our proposed bitrate result in (22) with the
earlier distortion model in (27) to obtain a final usable R-D
model. After inverting the polynomial in (22), inserting
into (27), and dropping insignificant terms, we obtain the model
that we call Square Root (SQRT):

(31)

where constants and are estimated from at least two
(R,D) samples, and for uncorrelated
(or weakly correlated) sources such as those in FGS coders.
Parameter and are strongly negative-correlated (e.g., the
0-lag cross-correlation coefficient between these two parame-
ters is 0.99 in the CIF Foreman sequence).

Recall that the traditional R-D framework (3) converted to
PSNR quality becomes a linear function of rate . However,
as shown in Fig. 8 for two different frames of CIF Foreman,
the actual R-D curve often cannot be modeled by a straight line
over the entire range of . In fact, even a heuristically selected
quadratic curve in the figure (used here only for illustration pur-
poses) is incapable of modeling the entire range of the bitrate.
Both linear and quadratic models exhibit significant discrepancy
that reaches as high as 5 dB. However, the figure demonstrates
that the SQRT model (31) has a much better fit than was pos-
sible before.

To better understand the estimation accuracy of the different
models discussed so far, we compare the SQRT model (31),
Chiang’s model (7), the UQ model (5), the model based on
Cauchy distribution (8), and the classical model (4) in various
video sequences. Fig. 9 shows the average absolute error be-
tween the actual R-D curve in the PSNR domain and each of
the models in several FGS-coded sequences. For example, in the
Foreman sequence, the error in SQRT averages 0.25 dB, while
it stays as high as 2–8 dB in the other four models. We find that
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Fig. 9. Average absolute PSNR error in MPEG-4 FGS. Test sequences coded
at 128 kb/s (base layer) and 10 fps. (a) CIF foreman; (b) CIF coastguard; (c)
CIF mobile; (d) CIF carphone.

TABLE II
AVERAGE ABSOLUTE PSNR ERROR (dB)

our model significantly outperforms traditional models, which
often require estimation of the same number of parameters.

We next test (31) using six additional sequences with different
contents and compression rates. In Table II, the base layer of SIF
Mobile is coded at 256 kb/s and that of the other five streams at
128 kb/s (all examples use 10 fps). Experimental results in the
table demonstrate that the SQRT model is very accurate in a
variety of FGS-coded video sequences.

We finally examine the accuracy of SQRT in H.264 PFGS.
Recall that PFGS uses prediction in the enhancement layer
to achieve better compression in sequences with high degrees
of temporal correlation. Assuming that all predicted bits are
transmitted to the client, our derivations and models are appli-
cable to PFGS. Fig. 10 shows that model (31) also significantly
outperforms the traditional R-D models in H.264 PFGS. The
figure demonstrates that UQ, Cauchy, and Chiang’s model
exhibit large error variations in these sequences, which happens
because PFGS not only uses the enhancement layer for predic-
tion but also for reconstruction, which is beyond the range of
these models.

Fig. 10. Average absolute PSNR error in H.264 PFGS. Test sequences coded
at 128 kb/s (base layer) and 10 fps. (a) CIF mobile; (b) CIF coastguard.

Fig. 11. (a) Base layer quality of MPEG-4 FGS-coded CIF Foreman. (b) Com-
bined R-D curves in a two-frame sequence given target rate R and constant
quality/distortion D .

We conclude this section by noting that (31) takes the fol-
lowing simple shape in the distortion domain:

(32)

where and is proportional to the source variance. Note
that the parameters of (32) can be estimated from several em-
pirical samples and that this model is a generalization
of the traditional R-D function in which .

V. R-D BASED QUALITY CONTROL IN INTERNET STREAMING

In streaming applications, fluctuating visual quality is often
unpleasant to the humans, who are normally used to relatively
constant quality found in broadcast TV, VCR, and DVD pro-
gramming [37], [38]. However, due to the inherent nature of
current video coding schemes, the base layer usually suffers
from substantial quality fluctuation as shown in Fig. 11(a) for
Foreman CIF (note a 6-dB drop in quality within just a 10-s
fragment).

Therefore, one of the goals of streaming servers is often to se-
lect such quantities of the enhancement layer that provide con-
stant PSNR quality at the receiver. Furthermore, by rescaling
the enhancement layer according to its R-D curve, the server
can not only provide low fluctuation of video quality, but also
match the available bandwidth in the network. The latter goal
is achieved by coupling rate-scaling decisions with congestion
control. In what follows in this section, we first describe very
simple R-D based constant-quality streaming and then examine
asymptotically stable congestion control methods that provide
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Fig. 12. Comparison in CBR streaming between our R-D model, the method
from [32], and rate control in JPEG2000 [16]. (a) CIF foreman; (b) CIF coast-
guard.

a foundation for oscillation-free transport of video over the In-
ternet.

A. Quality Control Algorithm

As we mentioned earlier, rate control is one popular appli-
cation of R-D models. The main question here is how to scale
the FGS layer to both match the available bandwidth (total
bits allowed for the entire sequence) and achieve certain con-
stant quality after decoding. We illustrate the solution to this
problem using Fig. 11(b) and a simple sequence consisting of
two frames. First, the server inverts the result in (31) or (32) and
obtains two curves (one for each frame). Second, it gen-
erates the combined rate curve , which shows
the amount of total bits required to achieve constant in both
frames. Knowing , the combined curve needs to be inverted
one more time to obtain the value of that corresponds to the
total required bitrate . The size of individual frames is then
given by and as the final step.

For longer sequences, the server adds the R-D curves of all
frames and obtains a combined function , which is con-
strained by

(33)

where is the R-D function of frame , is the number
of frames in the sequence, and the frame at which the server
decides to change its rate in response to congestion signals.
Partial summation in (33) is important since congestion con-
trol often changes its rate in the middle of actual streaming and
(33) needs to be recomputed every time such a change is en-
countered. Finding the root of (33) involves inverting and
evaluating

(34)

Once is known, each enhancement layer frame is scaled
to and then transmitted to the receiver. Even though
the new R-D framework does not lead to a closed-form solu-
tion for , each of the individual curves can be generated
with high accuracy using only a 3-point interpolation and the
resulting function can be computed (and then inverted)
very efficiently.

Fig. 13. Performance of our quality control in CBR channels with SQRT and
classical R-D models. (a) QCIF table tennis; (b) QCIF stefan.

In Fig. 12, we illustrate this simple rate control algorithm ap-
plied to the SQRT R-D model assuming that the channel ca-
pacity is fixed (variable channel rates are studied in the next sec-
tion). The figure shows simulation results using Foreman CIF
with 768 kb/s available in the network for the enhancement layer
in comparison with two other rate-control methods—those pro-
posed in the JPEG2000 [16] image coding standard and in Wang
et al. [32]. Experimental results show that the new R-D frame-
work can be successfully used to both dramatically reduce un-
desirable quality fluctuation during streaming and to relieve the
server from expensive interpolation. The variance in PSNR be-
tween adjacent frames in the SQRT curve is only 0.04 dB in
Fig. 12(a) and 0.004 dB in Fig. 12(b).

To demonstrate the importance of an accurate R-D model
in quality control, we also compare simulation results of our
quality control scheme (34) coupled with the proposed SQRT
model (31) and the classical R-D model (4) in two sequences. In
Fig. 13, we show that our SQRT model generates much smaller
quality variation than the classical model in both QCIF Table
Tennis and QCIF Stefan.

Many constant quality control approaches in related work
stop after solving the problem for CBR channels [32], [37], [38].
We, on the other hand, find that neither the exact method of
scaling the enhancement layer (this section), nor the underlying
R-D model (the previous section) is very important if the appli-
cation relies on any of the wide variety of AIMD-style conges-
tion control methods. Hence, we feel that with goals of constant-
quality streaming, it becomes more important to continue the
research into the area of smooth congestion control, which is a
pre-requisite to actual implementation of any of these methods.
Unfortunately, the current Internet does not provide an environ-
ment where smooth (asymptotically stable) sending rates can
be easily achieved; however, there are promising classes of con-
gestion controllers for the future Internet that may fulfill these
requirements. One such class is studied next.

B. Congestion Control Overview

There are many challenges facing Internet streaming appli-
cations, all of which stem from the lack of quality-of-service
(QoS) guarantees in the transport layer. One of the primary
impediments to high-quality delivery of real-time video to the
end-user is the variable channel bandwidth. Notice that even
though end-to-end paths often experience relatively stationary
conditions (in terms of the number of competing flows, average
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long-term packet loss, etc.), current congestion control methods
built on top of a variety of TCP-friendly schemes cannot asymp-
totically converge (from a control-theoretic point of view) to a
single stationary rate or provide a smooth “virtual” channel to
the video application.

Recently, a major effort has been dedicated to developing
smoother congestion control methods for multimedia streaming
(e.g., TFRC [9] and binomial algorithms [1]). Nevertheless,
these methods are not asymptotically stable, nor do they have
any stationary points in the feasible operating range of a typical
application.

In this section, we study continuous-feedback congestion
controllers proposed by Kelly et al. [19] and investigate
whether their performance provides the necessary foundation
for achieving the goals of this paper.

C. Kelly Controls

Recall that TCP and classical binary-feedback methods (such
as AIMD and binomial algorithms) rely on packet loss in order
to increase or decrease their rates. Since the decision about
changing the current rate is binary, we can summarize their
control functions as follows:

(35)

where is the rate at time , is the current packet loss rate,
is the increase function, and is the decrease func-

tion. Notice that with a reasonable choice of functions and
, the right side of (35) does not have roots, which means that

the equation does not have stationary points. Since (35) cannot
be stabilized, it must oscillate or diverge. It is easy to show that
under certain mild conditions on and , (35) oscillates
around the equilibrium (equal-share) rate. The amount of oscil-
lations depends on the choice of and and typically
leads to a tradeoff between the size of oscillations and the speed
of response to congestion signals.

What is interesting about binary-feedback methods is that
they typically do not possess any methods that can force the os-
cillations to asymptotically decay to zero, even under stationary
cross-traffic conditions. Therefore, we seek alternative methods
that provide this functionality and are provably stable under both
immediate and delayed feedback. One such alternative is given
by Kelly’s congestion control framework called proportional
fairness [19]:

(36)

where is the utility function of the end-user,
and are constants, and is the price that the flow pays for
using resource (router) along the end-to-end path . Kelly’s
controls have received significant attention in the theoretical net-
working community [15], [19], [20], [25]; however, their appli-
cation in real networks or streaming applications has been lim-
ited.

Several modifications to the original framework (36) are nec-
essary to make this controller practical. First, it is common to
use packet loss as the continuous feedback (instead of the price)
simply because the current Internet is still best-effort and prices

are a meaningless metric for individual routers. Second, instead
of summing up the packet loss experienced by all routers of an
end-to-end path, it sometimes makes more sense to use the max-
imum packet loss among these routers in order to match the rate
of the application to the bandwidth of the slowest link in the
path:

(37)

Expanding (36) using a single feedback of the most-con-
gested resource and converting the system into the discrete do-
main, we have a more application-friendly version of the con-
troller:

(38)

where is the flow number, is its round-trip delay, and
is the backward feedback delay from router to user . Note
that this version of Kelly controls includes max–min changes
to the feedback and an extra delay applied to the additive term

in (38).
Full analysis of this framework is beyond the scope of this

paper, but the following important result is available in [36].
Lemma 6: Discrete controller (37), (38) is asymptotically

stable and fair regardless of round-trip delays , the exact
shape of packet loss , or feedback delays as long as

.
Our final issue to address is the shape of packet loss .

While (37) and (38) can operate in the end-to-end context where
is estimated by the receiver, we find that involvement of ex-

plicit feedback significantly improves the performance of this
controller. To accomplish such a functionality, each router per-
forms a very simple operation of counting the total arriving
traffic into each queue, dividing the result by the fixed duration
of the control interval, and inserting feedback into packets
passing through the queue:

(39)

where is the set of flows passing through resource and is
the speed of the resource (i.e., its outgoing bandwidth). Notice
that the router does not need to count the number of flows or
estimate their individual rates . This means that the feedback
is based on the aggregate flow rate rather than indi-
vidual flow statistics. For additional implementation discussion,
see [18].

It is also possible to demonstrate that the convergence rate of
Kelly controls is at least exponential, which makes this frame-
work appealing for future high-speed networks. We illustrate
this result in Fig. 14, in which and .
The figure shows that it takes 8 steps for a single-flow to fill a
1.5-mb/s T1 bottleneck and it takes only 16 steps for the same
flow to fill a 10 gb/s link. Note that both flows reach within 5%
of link capacity in just 6 RTT steps.

D. SQRT Quality Control in VBR Networks

We finish this section by examining the PSNR quality curves
when the target rate is not know a-priori, but is instead sup-
plied by real-time congestion control (38), (39). We obtained
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Fig. 14. Exponential convergence of (38). (a) C = 1:5 mb=s; (b)
C = 10 gb=s.

Fig. 15. (a) Comparison of AIMD and Kelly controls over a 1 mb/s bottleneck
link. (b) Kelly controls with two flows starting in unfair states.

the traces of fromns2 simulations and then applied them to
the video scaling algorithm offline. We should point out that one
limitation of this approach is that we did not take into account
the effect of lost packets during the simulation on the quality
of the stream. This is reasonable in streaming scenarios where
the application protects its packets by FEC or some form of re-
transmission. Since in Kelly controls, the amount of packet loss

in the steady state is fixed and known to the end flow once
it reaches the equilibrium [36], it becomes easy to send enough
FEC to cover the exact amount of lost data.

To set a baseline example, Fig. 15(a) compares TCP-like
AIMD control with modified framework (38), (39) using PSNR
quality curves. In this simulation, a single flow is run over a
bottleneck resource of capacity and round-trip
delay 100 ms. As the figure shows, both controls at first follow
the PSNR of the base layer since there is not enough discovered
bandwidth to send any FGS data. Once this stage is passed, both
controls achieve high PSNR; however, the difference is that
AIMD backs off by half upon every packet loss, while Kelly
controls eventually stabilize at a fixed rate. Rate fluctuation in
AIMD results in periodic jumps (sometimes as high as 4 dB)
throughout the entire sequence.

Fig. 15(b) shows another scenario where two Kelly flows
are sharing the same bottleneck link under identical 100-ms
round-trip delays. in the figure is started with
and is started with its base-layer bandwidth. As seen in
the figure, the two flows converge to a fair allocation at approx-
imately s and then follow the same flat quality curve that
is perfectly fair.

Fig. 16. PSNR comparison of (a) two flows with different (but fixed) round-trip
delays D and (b) two flows with random round-trip delays.

The next issue to examine is whether different round-trip de-
lays have any effect on fairness. Fig. 16(a) shows a scenario
in which two flows with different RTTs start in the same unfair
states as before. The corresponding delays are 400 and 100 ms;
however, this has little effect on the resulting fairness as both
flows stabilize at 34.5 dB around .

We finally examine the effect of random time-varying feed-
back delays on our quality-control framework, in which the
round-trip delay is now uniformly random between 100 and 400
ms and the initial states are as before. Fig. 16(b) shows that al-
though the convergence is somewhat slower than in the previous
examples, both flows manage to achieve stable quality after con-
vergence. This confirms our earlier result regarding stability of
(38), and (39) under arbitrary delays.

In summary, Kelly controls converge to equilibrium without
oscillation and then stay there as long as the number of flows
at the bottleneck remains fixed. When new flows join or
leave, the transition between fair (equilibrium) points is mono-
tonic in most situations. This provides a nice foundation for
video-on-demand and other entertainment-oriented video ser-
vices where each flow is long-lived and can take full advantage
of this smooth congestion control framework.

VI. CONCLUSION

This paper presented a detailed analysis of distortion in fine-
granular scalable coders and provided an accurate R-D model
for FGS-like sequences. After obtaining an efficient operational
R-D model, we applied it to Internet streaming for quality con-
trol purposes and demonstrated in simulations that our algo-
rithm worked well at achieving constant quality not only in CBR
networks, but also in VBR channels coupled with congestion
control. To overcome the limitations of TCP-friendly methods,
we used modified Kelly controls and showed that they could
achieve stable sending rates in practical network environments
and provided an appealing framework for future high-speed net-
works.
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