Probabilistic Near-Duplicate Detection Using Simhash

Sadhan Sood, Dmitri Loguinov

Presented by Matt Smith

Internet Research Lab Department of Computer Science and Engineering Texas A&M University

27 October 2011

- Introduction
- Motivation and Objectives
- Simhash
- Bit Order
- Experiments and Results
- Conclusions and Future Work

Introduction

- Similarity matching is a common task in data mining; we are often interested in knowing which documents of a collection are "similar" to each other
- Usually involves representing documents by *d*dimensional feature vectors and comparing those, but all-to-all comparison is infeasible for large collections
- Approximation algorithms such as *simhash*, trading some precision and recall for speed, are a promising technique for use on large collections

Introduction

- Simhash replaces a document's feature vector with a fixed-size fingerprint that preserves cosine similarity of the original vector space
- Main challenge: quickly find all pairs of fingerprints within a certain Hamming distance *h* of each other

- Introduction
- Motivation and Objectives
- Simhash
- Bit Order
- Experiments and Results
- Conclusions and Future Work

Motivation

- A *feature vector* represents the subset of features present in a given document u of the collection, each feature being described by a real-valued weight
- Given typical values for average feature count and storage required per feature (e.g., 141 and 8 bytes respectively), all-to-all comparisons are completely infeasible
- A conversion to a fixed-size fingerprint of the feature vector (as done by Simhash) helps with storage and computational complexity concerns
 - Manku et al. [2007] showed that 64 bits is generally enough to capture similarity of much larger feature vectors

Motivation

- Even with the much faster Hamming distance calculation on this fingerprint, a sub-quadratic technique will be very desirable:
 - (Table is across all *n* pairs of crawled webpages)

n	Cosine s	(u,v)	Hamming $H(x, y)$		
	Time	RAM	Time	RAM	
1M	91 days	1.1 GB	$34 \min$	8 MB	
64M	1,020 years	70 GB	97 days	512 MB	
8B	261K years	9 TB	68 years	64 GB	

Objectives

- We consider two classes of matching problems
- Clustering: given one page, find all of its matches or near-duplicates
- Duplicate elimination: determine if there exists at least one match in the collection, without finding all matching documents
 - Can allow us to improve performance significantly by skipping the exhaustive search

- Introduction
- Motivation and Objectives
- Simhash
- Bit Order
- Experiments and Results
- Conclusions and Future Work

- The simhash algorithm operates as follows:
 - Initialize a vector W of weights to 0
 - Each feature *i* (word on a webpage, etc) is hashed with a uniformly random function
 - For each bit *j* of hash φ_i , add or subtract the feature weight w_i to/from W_i based on whether the bit is 0 or 1

Example:	Feature	Hash	weight				
	word ₁	0101	0.05	-0.05	+0.05	-0.05	+0.05
	$word_2$	1101	0.02	+0.02	+0.02	-0.02	+0.02
	word ₃	0001	0.01	-0.01	-0.01	-0.01	+0.01
	$word_4$	1110	0.03	+0.03	+0.03	+0.03	-0.03
	$word_5$	0100	0.05	-0.05	+0.05	-0.05	-0.05
	$word_6$	0011	0.09	-0.09	-0.09	+0.09	+0.09
	Σ weight			-0.15	+0.05	-0.01	+0.09
	simhash			0	1	0	1

- Next, we examine the issue of which bits are likely to differ between "similar" documents
 - Or, put another way, how likely it is for a given bit in the simhash to flip given minor changes to a document
 - Details of the model can be found in the paper; we just give an illustrative example here
 - Main observation: examining the simhash weight vector, typically discarded, gives us insight into the bit-flipping question
- The bit with the smallest absolute weight value is the one most likely to be flipped by small changes to the document – called a "weak" bit

 Consider making changes to the document represented in the previous table with simhash value 0101:

Feature	Hash	weight				
word ₁	0101	0.05	-0.05	+0.05	-0.05	+0.05
word ₂	1101	0.02	+0.02	+0.02	-0.02	+0.02
word ₃	0001	0.01	-0.01	-0.01	-0.01	+0.01
$word_4$	1110	0.03	+0.03	+0.03	+0.03	-0.03
$word_5$	0100	0.05	-0.05	+0.05	-0.05	-0.05
word ₆	0011	0.09	-0.09	-0.09	+0.09	+0.09
Σ weight			-0.15	+0.05	-0.01	+0.09
simhash			0	1	0	1

• Removing two unimportant features (e.g., with the lowest weights):

	Feature	Hash	weight					
	$word_1$	0101	0.05	-0.05	+0.05	-0.05	+0.05	single bit
	word ₂	1101	0.02	+0.02	+0.02	-0.02	+0.02	change
-	word ₃	0001	0.01	-0.01	-0.01	-0.01	+0.01	
	$word_4$	1110	0.03	+0.03	+0.03	+0.03	-0.03	
	$word_5$	0100	0.05	-0.05	+0.05	-0.05	-0.05	
	word ₆	0011	0.09	-0.09	-0.09	+0.09	+0.09	
	Σ weight			-0.16	+0.04	+0.02	+0.06	
	simhash			0	1	<1	1	

- Removing two important features (e.g., with higher than average weights):
 - Note that bit 3 still flips, as last time

Feature	Hash	weight					
word ₁	0101	0.05	-0.05	+0.05	-0.05	+0.05	two
word ₂	1101	0.02	+0.02	+0.02	-0.02	+0.02	cha
word ₃	0001	0.01	-0.01	-0.01	-0.01	+0.01	
word ₄	1110	0.03	+0.03	+0.03	+0.03	-0.03	
word ₅	0100	0.05	-0.05	+0.05	-0.05	-0.05	
word ₆	0011	0.09	-0.09	-0.09	+0.09	+0.09	
Σ weight			-0.05	-0.05	+0.09	+0.09	
simhash			0	0	<1	1	

two-bit change

- Introduction
- Motivation and Objectives
- Simhash
- Bit Order
- Experiments and Results
- Conclusions and Future Work

- If we only want to search to a Hamming distance h =
 1; the problem is trivial
 - Simply generate a table with the simhash entries sorted by increasing absolute value of bit weight
 - However, in practice we want a larger maximum distance so how do we determine which is the optimal second bit to flip?
 - E.g., given an initial single bit flip with weight 0.01, do we next try the bit with -0.5, or the two-bit combination (-1.9, 0.01)?

- Here we sort the bits of document u's hash according to the absolute value of their weight, and for convenience refer to "bit i" as the bit with the i-th lowest weight
- We then build a Volatility Ordered Set Heap (VOSH), which sorts bit combinations according to flip probability
 - Height of this heap corresponds to *b*, the # of hash bits
 - Details and algorithm are in the full paper, Section 5.1-5.2

- Main properties of this heap:
 - A parent node represents a better flip combination than its children; i.e., more likely to flip given small changes to u
 - Left child increments the last bit of the parent
 - Right child, if exists, increments the bit to the left of any gap in bit positions of the parent

Figure 2: Top five levels of three volatility heaps.

- We must decide at runtime which of the siblings at a given level in this heap is optimal, when we know the weight vector of the query simhash
- Additional max-heap is used to represent the "frontier" of yet-unexplored nodes
 - By calculating the expected change in value for flipping the bits represented in each node
 - At each step, the higher value node (i.e., the sibling that "lost" in the comparison) is placed, along with its children, in the max-heap

- Using b = 64 and h between 1 and 3, we examine the VOSH-based approach on 8M simhash pairs and compare it to randomly flipping bits
 - For h = 1, 30% of matches are found after only one flip;
 80% after 4 flips, and 100% in 17 or fewer (vs. 64)
 - -h = 2, 100% of matches found in 152 vs. 2016 flips

20

- Similar results for h = 3 (675 flips vs. 41,664)
- This difference increases with *h*, and as recall decreases

- Introduction
- Motivation and Objectives
- Simhash
- Bit Order
- Experiments and Results
- Conclusions and Future Work

- Dataset: 70M web pages from IRLbot web crawl (April 2008)
 - Feature weights calculated by normalized TF-IDF score of each word *i* on page *u*
 - Simhash fingerprint calculated with 64-bit MurmurHash function
 - We compare our approach (PSM) to *Block Permuted Hamming Search* (BPHS), using the parameters suggested in the Manku paper
 - We normalize our RAM usage to BPHS' number of tables metric, see section 8.4 in the paper

Method	Tables	Time (sec)	Queries/sec
$BPHS_A$	4	65	154K
	10	53	189K
PSM_A	1.06	15.5	645K
	1.125	14.4	694K
	1.25	14.4	694K
	1.5	13.5	741K
	2	13.1	765K
$BPHS_F$	4	54	185K
	10	26	385K
PSM_F	1.06	6.9	1.4M
	1.125	6.7	1.5K
	1.25	6.4	1.56M
	1.5	6.26	1.6M
	2	6.25	1.6M

Table 2: Comparison of PSM to BPHS (online mode, 10M queries, 60M existing hashes).

Scalability as dataset increases in size:

Figure 7: Scalability with dataset size (online mode, 10M queries, 60M existing hashes).

- Batch mode throughput
 - RAM usage is less important, but still smaller than BPHS

- Introduction
- Motivation and Objectives
- Simhash
- Bit Order
- Experiments and Results
- Conclusions and Future Work

Conclusions and Future Work

- By utilizing the weight vector usually discarded during simhash calculation, we can generate a model to predict which bits will be most likely to be flipped in near-duplicates
 - Result is a huge decrease in search time vs. exhaustive search, and the gap only widens if we're willing to sacrifice a little recall
- Future work involves analysis of feature selection techniques to improve clustering results, further overhead reduction