
C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

11

Probabilistic Near-Duplicate 
Detection Using Simhash

 

Probabilistic NearProbabilistic Near--Duplicate Duplicate 
Detection Using SimhashDetection Using Simhash

Sadhan Sood, Dmitri Loguinov 
Presented by Matt SmithPresented by Matt Smith

Internet Research LabInternet Research Lab
 Department of Computer Science and EngineeringDepartment of Computer Science and Engineering

 Texas A&M UniversityTexas A&M University

27 October 201127 October 2011



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

2

AgendaAgendaAgenda

•
 

Introduction

•
 

Motivation and Objectives

•
 

Simhash

•
 

Bit Order

•
 

Experiments and Results

•
 

Conclusions and Future Work



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

33

IntroductionIntroductionIntroduction

•
 

Similarity matching is a common task in data mining; 
we are often interested in knowing which documents 
of a collection are “similar”

 
to each other

•
 

Usually involves representing documents by d-
 dimensional feature vectors and comparing those, 

but all-to-all comparison is infeasible for large 
collections

•
 

Approximation algorithms such as simhash, trading 
some precision and recall for speed, are a promising 
technique for use on large collections



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

44

IntroductionIntroductionIntroduction

•
 

Simhash replaces a document’s feature vector with a 
fixed-size fingerprint that preserves cosine similarity 
of the original vector space

•
 

Main challenge: quickly find all pairs of fingerprints 
within a certain Hamming distance h of each other



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

5

AgendaAgendaAgenda

•
 

Introduction

•
 

Motivation and Objectives

•
 

Simhash

•
 

Bit Order

•
 

Experiments and Results

•
 

Conclusions and Future Work



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

66

MotivationMotivationMotivation

•
 

A
 

feature vector represents the subset of features 
present in a given document u of the collection, each 
feature being described by a real-valued weight

•
 

Given typical values for average feature count and 
storage required per feature (e.g., 141 and 8 bytes 
respectively), all-to-all comparisons are completely 
infeasible

•
 

A conversion to a fixed-size fingerprint of the feature 
vector (as done by Simhash) helps with storage and 
computational complexity concerns
━

 

Manku et al. [2007] showed that 64 bits is generally enough 
to capture similarity of much larger feature vectors



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

77

MotivationMotivationMotivation

•
 

Even with the much faster Hamming distance 
calculation on this fingerprint, a sub-quadratic 
technique will be very desirable:
━

 

(Table is across all n pairs of crawled webpages)



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

88

ObjectivesObjectivesObjectives

•
 

We consider two classes of matching problems

•
 

Clustering: given one page, find all of its matches or 
near-duplicates

•
 

Duplicate elimination: determine if there exists at 
least one match in the collection, without finding all 
matching documents
━

 

Can allow us to improve performance significantly by 
skipping the exhaustive search



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

9

AgendaAgendaAgenda

•
 

Introduction

•
 

Motivation and Objectives

•
 

Simhash

•
 

Bit Order

•
 

Experiments and Results

•
 

Conclusions and Future Work



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

1010

SimhashSimhashSimhash

•
 

The simhash algorithm operates as follows:
━

 

Initialize a vector W of weights to 0
━

 

Each feature i (word on a webpage, etc) is hashed with a 
uniformly random function

━

 

For each bit j of hash φi

 

, add or subtract the feature weight 
wi to/from Wj based on whether the bit is 0 or 1

•
 

Example: Feature Hash weight

word1 0101 0.05 -0.05 +0.05 -0.05 +0.05

word2 1101 0.02 +0.02 +0.02 -0.02 +0.02

word3 0001 0.01 -0.01 -0.01 -0.01 +0.01

word4 1110 0.03 +0.03 +0.03 +0.03 -0.03

word5 0100 0.05 -0.05 +0.05 -0.05 -0.05

word6 0011 0.09 -0.09 -0.09 +0.09 +0.09

Σ

 

weight -0.15 +0.05 -0.01 +0.09

simhash 0 1 0 1



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

1111

SimhashSimhashSimhash

•
 

Next, we examine the issue of which bits are likely to 
differ between “similar”

 
documents

━

 

Or, put another way, how likely it is for a given bit in the 
simhash to flip given minor changes to a document

━

 

Details of the model can be found in the paper; we just give 
an illustrative example here

•
 

Main observation: examining the simhash weight 
vector, typically discarded, gives us insight into the 
bit-flipping question

•
 

The bit with the smallest absolute weight value is the 
one most likely to be flipped by small changes to the 
document –

 
called a “weak”

 
bit



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

1212

SimhashSimhashSimhash

•
 

Consider making changes to the document 
represented in the previous table with simhash value 
0101:

Feature Hash weight
word1 0101 0.05 -0.05 +0.05 -0.05 +0.05
word2 1101 0.02 +0.02 +0.02 -0.02 +0.02
word3 0001 0.01 -0.01 -0.01 -0.01 +0.01
word4 1110 0.03 +0.03 +0.03 +0.03 -0.03
word5 0100 0.05 -0.05 +0.05 -0.05 -0.05
word6 0011 0.09 -0.09 -0.09 +0.09 +0.09
Σ

 

weight -0.15 +0.05 -0.01 +0.09
simhash 0 1 0 1



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

1313

SimhashSimhashSimhash

•
 

Removing two unimportant features (e.g., with the 
lowest weights):

Feature Hash weight
word1 0101 0.05 -0.05 +0.05 -0.05 +0.05
word2 1101 0.02 +0.02 +0.02 -0.02 +0.02
word3 0001 0.01 -0.01 -0.01 -0.01 +0.01
word4 1110 0.03 +0.03 +0.03 +0.03 -0.03
word5 0100 0.05 -0.05 +0.05 -0.05 -0.05
word6 0011 0.09 -0.09 -0.09 +0.09 +0.09
Σ

 

weight -0.16 +0.04 +0.02 +0.06
simhash 0 1 1 1

single bit

 
change



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

1414

SimhashSimhashSimhash

•
 

Removing two important features (e.g., with higher 
than average weights):
━

 

Note that bit 3 still flips, as last time

Feature Hash weight
word1 0101 0.05 -0.05 +0.05 -0.05 +0.05
word2 1101 0.02 +0.02 +0.02 -0.02 +0.02
word3 0001 0.01 -0.01 -0.01 -0.01 +0.01
word4 1110 0.03 +0.03 +0.03 +0.03 -0.03
word5 0100 0.05 -0.05 +0.05 -0.05 -0.05
word6 0011 0.09 -0.09 -0.09 +0.09 +0.09
Σ

 

weight -0.05 -0.05 +0.09 +0.09
simhash 0 0 1 1

two-bit

 
change



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

15

AgendaAgendaAgenda

•
 

Introduction

•
 

Motivation and Objectives

•
 

Simhash

•
 

Bit Order

•
 

Experiments and Results

•
 

Conclusions and Future Work



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

1616

Bit OrderBit OrderBit Order

•
 

If we only want to search to a Hamming distance h = 
1; the problem is trivial
━

 

Simply generate a table with the simhash entries sorted by 
increasing absolute value of bit weight

•
 

However, in practice we want a larger maximum 
distance –

 
so how do we determine which is the 

optimal second bit to flip?
━

 

E.g., given an initial single bit flip with weight 0.01, do we 
next try the bit with -0.5, or the two-bit combination (-1.9, 
0.01)?



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

1717

Bit OrderBit OrderBit Order

•
 

Here we sort the bits of document u’s hash according 
to the absolute value of their weight, and for 
convenience refer to “bit i”

 
as the bit with the i-th 

lowest weight

•
 

We then build a Volatility Ordered Set Heap (VOSH), 
which sorts bit combinations according to flip 
probability
━

 

Height of this heap corresponds to b, the # of hash bits
━

 

Details and algorithm are in the full paper, Section 5.1-5.2



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

1818

Bit OrderBit OrderBit Order

•
 

Main properties of this heap:
━

 

A parent node represents a better flip combination than its 
children; i.e., more likely to flip given small changes to u

━

 

Left child increments the last bit of the parent
━

 

Right child, if exists, increments the bit to the left of any gap 
in bit positions of the parent



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

1919

Bit OrderBit OrderBit Order

•
 

We must decide at runtime which of the siblings at a 
given level in this heap is optimal, when we know the 
weight vector of the query simhash

•
 

Additional max-heap is used to represent the 
“frontier”

 
of yet-unexplored nodes

━

 

By calculating the expected change in value for flipping the 
bits represented in each node

━

 

At each step, the higher value node (i.e., the sibling that 
“lost”

 
in the comparison) is placed, along with its children, in 

the max-heap



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

2020

Bit OrderBit OrderBit Order

•
 

Using b = 64 and h between 1 and 3, we examine the 
VOSH-based approach on 8M simhash pairs and 
compare it to randomly flipping bits
━

 

For h = 1, 30% of matches are found after only one flip; 
80% after 4 flips, and 100% in 17 or fewer (vs. 64)

━

 

h = 2, 100% of matches found in 152 vs. 2016 flips



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

2121

Bit OrderBit OrderBit Order

•
 

Similar results for h = 3 (675 flips vs. 41,664)

•
 

This difference increases with h, and as recall 
decreases



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

22

AgendaAgendaAgenda

•
 

Introduction

•
 

Motivation and Objectives

•
 

Simhash

•
 

Bit Order

•
 

Experiments and Results

•
 

Conclusions and Future Work



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

2323

Experiments and ResultsExperiments and ResultsExperiments and Results

•
 

Dataset: 70M web pages from IRLbot web crawl 
(April 2008)
━

 

Feature weights calculated by normalized TF-IDF score of 
each word i on page u

━

 

Simhash fingerprint calculated with 64-bit MurmurHash 
function

•
 

We compare our approach (PSM) to Block Permuted 
Hamming Search (BPHS), using the parameters 
suggested in the Manku paper
━

 

We normalize our RAM usage to BPHS’
 

number of tables 
metric, see section 8.4 in the paper



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

2424

Experiments and ResultsExperiments and ResultsExperiments and Results



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

2525

Experiments and ResultsExperiments and ResultsExperiments and Results

•
 

Scalability as dataset increases in size:



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

2626

Experiments and ResultsExperiments and ResultsExperiments and Results

•
 

Batch mode throughput
━

 

RAM usage is less important, but still smaller than BPHS



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

27

AgendaAgendaAgenda

•
 

Introduction

•
 

Motivation and Objectives

•
 

Simhash

•
 

Bit Order

•
 

Experiments and Results

•
 

Conclusions and Future Work



C
om

pu
te

r S
ci

en
ce

, T
ex

as
 A

&
M

 U
ni

ve
rs

ity

2828

Conclusions and Future WorkConclusions and Future WorkConclusions and Future Work

•
 

By utilizing the weight vector usually discarded during 
simhash calculation, we can generate a model to 
predict which bits will be most likely to be flipped in 
near-duplicates
━

 

Result is a huge decrease in search time vs. exhaustive 
search, and the gap only widens if we’re willing to sacrifice 
a little recall

•
 

Future work involves analysis of feature selection 
techniques to improve clustering results, further 
overhead reduction


	Slide Number 1
	Agenda
	Introduction
	Introduction
	Agenda
	Motivation
	Motivation
	Objectives
	Agenda
	Simhash
	Simhash
	Simhash
	Simhash
	Simhash
	Agenda
	Bit Order
	Bit Order
	Bit Order
	Bit Order
	Bit Order
	Bit Order
	Agenda
	Experiments and Results
	Experiments and Results
	Experiments and Results
	Experiments and Results
	Agenda
	Conclusions and Future Work

