
Probabilistic Near-Duplicate Detection Using Simhash

Sadhan Sood
Texas A&M University

College Station, TX 77843
sadhan@cs.tamu.edu

Dmitri Loguinov
∗

Texas A&M University
College Station, TX 77843
dmitri@cs.tamu.edu

ABSTRACT
This paper offers a novel look at using a dimensionality-
reduction technique called simhash [8] to detect similar doc-
ument pairs in large-scale collections. We show that this
algorithm produces interesting intermediate data, which is
normally discarded, that can be used to predict which of the
bits in the final hash are more susceptible to being flipped
in similar documents. This paves the way for a probabilistic
search technique in the Hamming space of simhashes that
can be significantly faster and more space-efficient than the
existing simhash approaches. We show that with 95% re-
call compared to deterministic search of prior work [16], our
method exhibits 4-14 times faster lookup and requires 2-10
times less RAM on our collection of 70M web pages.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering

General Terms
Algorithms

Keywords
Hamming distance, similarity, simhash, clustering

1. INTRODUCTION
Many clustering problems in data mining involve similar-

ity matching, which is a process of finding pairs of documents
in collection D that are similar (in some sense) to each other.
To decouple similarity from page semantics and ultimately
human judgement, it is common to preprocess the data by
extracting d-dimensional feature vectors (i.e., syntactic ele-
ments perceived to be important) from each page and solving
the matching problem on them.
When the number of dimensions d is large, many tradi-

tional clustering approaches [4], [12] are a Θ(n2) endeavor,
where n = |D|, that requires an all-to-all comparison across
the entire dataset. Since this is infeasible for collections

∗Supported by NSF grants CNS-0720571 and CNS-1017766.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

larger than a few thousand pages, another approach [6],
[8], [14] is to devise approximate algorithms that can com-
pute similarity using much smaller data structures and sub-
quadratic overhead. One promising technique in this cate-
gory, called simhash [8], [13], [16], relies on replacing feature
vectors with b-bit fingerprints that preserve cosine similarity
of the vector space.

The main challenge with simhash is to quickly find all
pairs of fingerprints within a certain Hamming distance h of
each other. For large collections (i.e., billions of pages), the
currently fastest and most space-efficient solution [16], which
we call Block-Permuted Hamming Search (BPHS), relies on
permuting chunks of each hash and performing lookups in
multiple similarly-permuted copies of the dataset. However,
since D must be replicated at least four times in RAM,
BPHS may be unsuitable for certain memory-constrained
systems. Even if enough RAM exists to hold 4n items, un-
less the number of copies is scaled with dataset size, the
search complexity of this method is still quadratic in n.

Noticing that simhash is already probabilistic in nature
and does not guarantee 100% recall on vector pairs, it makes
sense to ask whether by sacrificing a small additional per-
centage of recall one can reduce RAM consumption of BPHS,
speed up the search, and improve scalability as n → ∞. We
investigate this question next.

1.1 Our Contributions
We first analyze the construction process of simhash and

observe that certain bits are much more volatile (i.e., likely
to be flipped by modification of features) than others. This
leads to a conjecture that the Hamming-distance problem
on simhash can be solved efficiently by an iterative process
that intelligently searches to distance h within the volatile
bits and performs lookups in a single copy of the dataset,
keeping RAM overhead at the theoretical minimum.

Thus, the main question with using this approach is how
to design an efficient algorithm that decides which bits to
flip, in what order, and when to stop (if less than 100% recall
is desired). For a given page u, let pi(u) be the probability
that bit i of u’s hash is different from that in other pages
of the collection and S ⊆ {1, 2, . . . , b} be some subset of
hash bits. Then, the probability that there exists another
simhash that differs from u only in bits contained in S can
be estimated as:

p(u,S) =
∏
i∈S

pi(u)
∏
j /∈S

(1− pj(u)), (1)

where independence between the bits is assumed from the
simhash algorithm [8].

1

To maximize useful work and allow the search to stop
after k ≪

(
b
h

)
attempts, one requires a method for obtain-

ing the top-k subsets S (1 ≤ |S| ≤ h) in decreasing order
of their probability p(S), but with much lower complexity
than exponential needed to compute all possible values (1)
and sort them. To solve this problem, we offer a novel al-
gorithm we call Volatility Ordered Set Heap (VOSH), which
performs the job in the optimal Θ(k log k) time and Θ(k)
space. For the common setting h = 3 and b = 64 suggested
for large datasets [16], we compare VOSH with a matching
algorithm that flips bits in random order without repetition.
Our results show that for 100% recall, the former requires
61 times fewer attempts than the latter; for 80% recall, 151
times fewer; and for 50% recall, 347 times fewer.
We incorporate VOSH in a system we call Probabilistic

Simhash Matching (PSM) for finding similar documents in
large collections D under two modes of operation – online
and batch. The former case, assuming that D fits in RAM,
aims to minimize the latency of answering queries about
incoming pages u. The latter case, assuming that D is kept
on disk, aims to maximize the query throughput rate. We
compare our method against BPHS [16] in terms query speed
and RAM usage using a web collection with 70M documents.
For 95% recall, our results show that PSM requires 2 − 10
times less RAM, while being 5−14 times faster than BPHS.
We also model both approaches and show that with a fixed
number of copies of the dataset in RAM, PSM scales as
O(n logh(n) log logn) as opposed to BPHS’s Θ(n2).

2. RELATED WORK
The first approach to matching similar documents is to

convert them to some canonical form in which they become
exact duplicates. By removing certain tokens perceived dis-
pensable (e.g., high/low IDF words [9]) and hashing the re-
sulting page to a single fingerprint, similar documents can
be found in Θ(n logn) time using sorting.
Detecting similar pages over a general space of d-dimensional

feature vectors is a more challenging task, especially at non-
trivial scale. In the small number of dimensions d ≪ log2 n,
special data structures (e.g., R-tree [12], Kd-tree [4]) can
find near neighbors in Θ(n logn) time; however, their per-
formance deteriorates to that of an exhaustive search (or
worse) as d increases. Since web-scale collections usually
exhibit dictionaries with millions of unique words, each typ-
ically mapping to a feature, this approach is generally inap-
plicable to such cases.
A more viable solution for large d and n involves approx-

imate algorithms that sacrifice some precision and recall in
favor of manageable speed. These include Locality-Sensitive
Hashing (LSH) [14], Min-Wise Independent Permutations
[7], simhash [8], and many variations [2], [3], [6], [5], [10],
[13], [16], [18]. This is the direction we pursue below.

3. FUNDAMENTALS
We start by motivating the usage of fingerprints, analyze

the brute-force approach to finding near duplicates, and for-
mulate the problem we aim to solve.

3.1 Framework and Motivation
Since our focus is on large web crawls (i.e., billions of

pages), simhash’s low space and time complexity [16], as well
as high precision [13] compared to other hashing techniques

n Cosine s(u, v) Hamming H(x, y)
Time RAM Time RAM

1M 91 days 1.1 GB 34 min 8 MB
64M 1,020 years 70 GB 97 days 512 MB
8B 261K years 9 TB 68 years 64 GB

Table 1: Extrapolated delay to compute cosine sim-
ilarity and Hamming distance on all pairs (one core
of AMD Phenom II 2.8 GHz).

[7], are quite appealing. With this in mind, we next set up
the terminology and notation that will be needed later.

Let F = {1, 2, . . . , d} be the set of all unique features
across the entire collection and F(u) ⊆ F be the set of
features present on page u ∈ D. The number of features
f(u) = |F(u)| can vary from a few hundred to a few thou-
sand depending on which features are selected and the spe-
cific dataset. Each feature i ∈ F(u) is described by a certain
real weight wi(u) ∈ R, which measures the importance and
contribution of i to u. A combination of F(u) and weights
{wi(u)}i∈F(u) represents the feature vector of page u.

Define V to be the set of all feature vectors produced by
D and assume some similarity measure s : V2 → [0, 1] that
maps pairs of vectors to real numbers (i.e., values close to 0
indicate dissimilar documents and those close to 1 indicate
similar ones). In the context of shingles and min-wise hash-
ing [7], s(u, v) is usually Jaccard’s coefficient; however, for
simhash and non-integer weights it is more common to uti-
lize cosine similarity [8], which we also do below whenever
comparison in the vector space is needed.

To understand the scale at which similarity can be sought
in an all-to-all search among feature vectors, we have the fol-
lowing analysis. Each pair of vectors (u, v) requires f(u) +
f(v) operations, some of which can be quite expensive (e.g.,
multiplication for cosine similarity), for a total overhead of
E[f(u)]n2. Assuming ζ bytes are needed to store each fea-
ture index and its weight, the expected space requirement
of D is nE[f(u)]ζ. Using our dataset of webpages with
E[f(u)] = 141 and ζ = 8, the left side of Table 1 shows the
amount of time and RAM needed to find all duplicate vec-
tors under cosine s(u, v). Notice in the table that both space
and time are prohibitive, even for relatively small datasets.

To make storage and computation more reasonable, a sec-
ond level of approximation (i.e., simhash) is a one-way map-
ping V → {0, 1}b that converts feature vectors to b-bit binary
strings. Assuming H is the collection of hashes produced by
V, the main similarity metric on H is Hamming distance
H(x, y) whose benefit over s(u, v) lies in the fact that it can
be computed with a handful of CPU instructions [20].

Replacing each feature vector with its 64-bit simhash, the
right side of Table 1 shows an improvement in computational
speed by a factor of 3800 (i.e., from 70K pairs/sec to 268M
pairs/sec) and a reduction in space by a factor of 141, both
of which are substantial. While this solves the problem for
n up to a few million pages, the 3 months for medium-sized
collections and the 68 years for large datasets shown in the
table are still undesirable in practice. This explains our in-
terest in sub-quadratic techniques for computing Hamming
distances over large document sets.

3.2 Problem Formulation
There are two classes of matching problems we consider

in this paper. In the first class (e.g., clustering [11]), the

2

Algorithm 1 Simhash (u)

1: W ← array of b zeros
2: for i ∈ F(u) do ◃ Examine each feature
3: ϕi ← UniformHash(i) ◃ Compute b-bit hash
4: for j = 1 to b do ◃ Iterate through each bit
5: if ϕij = 1 then ◃ j-th bit of ϕi

6: W [j]←W [j] + wi ◃ Add feature weight
7: else
8: W [j]←W [j]− wi ◃ Subtract feature weight
9: end if
10: end for
11: end for
12: for j = 1 to b do ◃ Revisit all bits
13: if W [j] ≥ 0 then
14: B[j]← 1 ◃ Positive weight, set bit to 1
15: else
16: B[j]← 0 ◃ Negative weight, set bit to 0
17: end if
18: end for
19: return array B[1 . . . b] ◃ simhash

goal is to find all matches for a given page. Knowing pair-
wise similarity among pages, one can use separate clustering
algorithms, which we do not consider here, to combine the
various documents into groups.

Objective 1. Given x, find all y ∈ H s.t. H(x, y) ≤ h.

In the second class (e.g., duplicate elimination [13], plagia-
rism detection [19]), the goal is to determine if there exists
at least one similar page in the dataset, without finding all
matching documents, which often can save significant pro-
cessing overhead and increase performance.

Objective 2. Given x, find any y ∈ H s.t. H(x, y) ≤ h.

It should be noted that these goals are not specific to
what features are being used (e.g., individual words, shin-
gles, HTML tags, anchor text, URLs), their weights (e.g.,
frequency, TF-IDF, HTML highlight), dimensionality of the
vectors, or classification purpose.

4. UNDERSTANDING SIMHASH
We next explain the simhash construction algorithm and

dissect the properties of its hashes.

4.1 Algorithm
Recall that simhash is a feature fingerprinting technique

that uses random projections to generate compact represen-
tation of high-dimensional vectors. Its main characteristic is
that the Hamming distance between two document finger-
prints is positively correlated with cosine similarity between
the corresponding feature vectors.
Using the notation of the previous section, Algorithm 1

explains the simhash process of [13], [16], which we discuss
in more detail next. Denote by W a vector of temporary
weights that the simhash function generates. As we will see
later, these weights are important elements of the proposed
framework. For each feature i in the current document u, Al-
gorithm 1 first computes its uniformly random hash ϕi and
then decides to either add or subtract the feature’s weight wi

to/from Wj based on whether the j-th bit ϕij of the uniform
hash is zero or one. After all features have been processed,
bits of simhash with non-negative Wj are set to 1 and the
remaining bits are set to 0.

−1 −0.5 0 0.5 1
0

0.005

0.01

0.015

weight

hi
st

og
ra

m

(a) weight W1(u)

−1 −0.5 0 0.5 1
0

0.005

0.01

0.015

weight

hi
st

og
ra

m

(b) re-write weight Y1

Figure 1: Histograms of simhash weights (bin size
1/150, collection of 70M documents).

4.2 Weights and Hamming Distance
We are now ready to examine the distribution of weights

{Wj} and lay the foundation for understanding which bits
are more likely to be different between similar documents.

Personalizing each variable in the algorithm with its page
u, it is not difficult to notice that simhash computes a dot-
product between a global vector of iid random variables and
a vector of u’s specific feature weights:

Wj(u) =
∑

i∈F(u)

(2ϕij − 1)wi(u), (2)

where {ϕij}ij are iid Bernoulli variables with E[ϕij] = 1/2.
This makes each weight Wj(u) zero-mean:

E[Wj(u)] =
∑

i∈F(u)

E[2ϕij − 1]E[wi(u)] = 0. (3)

Using normalized TF-IDF weights wi(u), Figure 1(a) shows
the distribution of W1(u) from (2) using our collection of
70M documents. We focus only on the first bit since the
others produce identical results. While the Central Limit
Theorem suggests that constant feature weights (e.g., used
in [13]) are expected to converge Wj(u) to a Gaussian distri-
bution, TF-IDF weights interestingly lead to a Laplace-like
distribution (log-linear plots of tails are omitted for brevity).

To control the variance and distribution of resulting sums,
one can generalize (2) to non-Bernoulli cases. Assume νi =
(νi1, . . . , νib) is a vector permanently associated with feature
i ∈ F whose elements are drawn from a zero-mean symmet-
ric distribution. Then, (2) becomes:

Wj(u) =
∑

i∈F(u)

νijwi(u), (4)

while the rest of the algorithm remains the same. Assuming
θ ∈ [0, π] is the angle between two d-dimensional vectors,
[8] shows that if νij are zero-mean Gaussian variables, the
probability that the corresponding fingerprints collide on a
given bit is q = 1 − θ/π ≈ (cos θ + 1)/2. While no similar
closed-form result is available for (2), intuition suggests that
a correlation between cos θ and q still exists.

Since wi(u)’s positive contribution to bit j1 has no bearing
on whether its contribution to another bit j2 will be posi-
tive or negative, it follows that bits in the final simhash are
pairwise independent, which implies that H(x, y) is a bino-
mial random variable with parameters b and 1 − q. While
a-priori this tells us nothing about which bits are likely to
differ in a random pair (x, y), we next show that utilizing the

3

knowledge of x’s simhash weights {Wj} allows an informed
decision.

4.3 Why Bits Flip
Suppose page u undergoes a re-write, which includes dele-

tion of α existing features and addition of β new features.
This modifies each simhash weight j to:

W ′
j(u) = Wj(u)−Xα

j +Xβ
j , (5)

where Xα
j and Xβ

j are summations in the form of (2) that
correspond to the deleted/added features. Define Yj = Xα

j −
Xβ

j to be the random weight change that occurs in response
to these modifications. Since we are interested in changes
to u that exist in our collection D (as opposed to an infinite
number of hypothetical modifications), Yj can be viewed as
a random variable with the same distribution as {Wj(u) −
Wj(v)}u,v∈D, which is shown in Figure 1(b). The main dif-
ference from part (a) is the doubled variance (i.e., V ar[Yj] =
V ar[Wj(u)] + V ar[Wj(v)] = 2V ar[Wj(u)]) and a slightly
more Gaussian shape; however, the log-scale shows that both
tails remain exponential rather than Gaussian.
Conditioned on Wj(u) = c, it follows that W ′

j(u) = c−Yj ,
which suggests that the difficulty of flipping bit j is directly
related to the magnitude of c. Indeed, first notice that Yj

is zero-mean since E[Xα
j] = E[Xβ

j] = 0, which follows from
(3). Second, averaged over all possible pairs (α, β), the dis-
tribution of Yj is symmetric around 0 since Xα and Xβ are
iid. We can make this argument due to the non-adversarial
nature of changes applied to the page. As a result, we have
P (Yj > |c|) = P (Yj < −|c|). Finally, in order to flip bit
j, one must encounter a modification that satisfies both a)
|Yj | > |c| and b) sign(Yj) = sign(c). The probability of
this happening is P (Yj > |c|) = 1 − Fj(|c|), where Fj(x)
is the CDF of Yj . Due to the monotonicity of CDFs, this
probability monotonically decays with |c|.
This brings us to our main result of the section. Observe

that each simhash contains certain bits that are much more
volatile than others. Assume page v is similar to u according
to cosine similarity at some threshold (e.g., 0.9). Then, if v
manages to flip some bits in u’s simhash, the likely order of
these flips follows from the smallest |Wj(u)| to the largest.
For example, consider simhash weights (1.9, 0.01,−0.5) for
the first three bits and the distribution of Yj from Figure
1(b). If anything at all is flipped by small changes, it will
most likely be a single bit 2. Much more effort is needed
to flip bit 3, while bit 1 requires massive summations of
added/deleted features in (2) to overpower its weight 1.9.
While it is straightforward to generate lookups for Ham-

ming distance h = 1 (i.e., by sorting all bits in the increasing
order of |Wj(u)|), multi-bit flips are more difficult. For ex-
ample, is the two-bit combination with weights (1.9, 0.01)
more likely than a single-bit combination with weight −0.5?
We study this question next.

5. BIT ORDER
This section develops an efficient technique for deciding

the order in which bits should be attempted during similarity
search on H.

5.1 Model
Define pj(u) = P (Yj > |Wj(u)|) to be the probability of

that another page in D has flipped bit j in the simhash of a

given page u. While obtaining a closed-form model for pj(u)
might be possible in future work, an empirical distribution
of Yj sampled from pages in D, e.g., as in Figure 1(b), is
sufficient for estimating pj(u) in practice.

Let S ⊆ {1, 2, . . . , b} be a non-empty subset of hash bits.
Then, the probability that there exists a page in D that
differs from u only in the bits contained in S is:

p(u,S) =
∏
i∈S

pi(u)
∏
j /∈S

(1− pj(u)). (6)

To limit the Hamming search to the most likely subsets,
one requires an ordering of {S} according to (6). The brute-
force approach would be to generate all possible subsets S,
sort them in the decreasing order of p(u,S), and then select
the top-k elements, where k controls the tradeoff between
overhead and recall. The main problem with this method is
that it requires Θ(l log l) operations and Θ(l) space, where

l =
∑h

i=1

(
b
i

)
is often quite large. We next offer a better al-

gorithm that solves this problem in optimal space and time.

5.2 Volatility Heap
We start by considering the problem at fixed Hamming

distance h. We later generalize the solution to all distances
up to h. Throughout this section, it is convenient to refer
to bits in decreasing order of their probability pj(u) rather
than their physical position in the hash (i.e., bit 1 is the
most volatile and bit b is the least). Similarly, each set S
is assumed to be sorted in decreasing volatility of its bits
(e.g., S = (1, 3, 7) refers to the first, third, and seventh most
volatile bits of the hash).

Define ≺ to be a lexicographical comparison operator on
{S}. If S1 ≺ S2, then there exists an index i < h such
that the two sets share the leading i elements, but S2 is
larger in the (i + 1)-st element. For example, (1, 3, 7, 15) ≺
(1, 3, 9, 10). Then, we have the following important result.

Lemma 1. If two sets S1,S2 of the same size h differ in
exactly 1 bit and S1 ≺ S2, then ∀u : p(u,S1) ≥ p(u,S2).

Proof. Suppose the bits that differ are i in S1 and j
in S2. Since (6) has h − 1 terms in each product that are
common between p(u,S1) and p(u,S2), we get:

p(u,S1)

p(u,S2)
=

pi(1− pj)

pj(1− pi)
=

pi − pipj
pj − pipj

. (7)

Recalling that S1 ≺ S2, notice that i < j and pi ≥ pj ,
which immediately shows that (7) is lower-bounded by 1.

This result paves the way for an algorithm that sorts
bit combinations using a structure we call Volatility Or-
dered Set Heap (VOSH). It starts with the optimal set S0 =
(1, 2, . . . , h) in the root and iteratively generates for each
existing node Si two children, each of whom succeeds Si ac-
cording to ≺ and differ from the parent in exactly one bit.
From Lemma 1, observe that each child’s p(u,S) is always
no larger than the parent’s. Using transitivity of ≺ and ≥,
we obtain that each Si contains bits whose combination is
at least as likely as that of any node in its entire subtree.

We next describe how the tree is constructed using Al-
gorithm 2. Given node S with h bits, VOSH attempts to
generate two children. The left child always increments the
last bit of the parent as long as the result does not exceed
b (if it does, the left branch stops). The right child scans
the parent’s bits from right to left until it finds the first gap

4

Algorithm 2 ProduceChildren(S)
1: if S[h] ≤ b− 1 then ◃ Attempt left child
2: SL ← S; SL[h]← SL[h] + 1 ◃ Add 1 to last bit
3: else
4: SL ← ∅ ◃ Left child is empty
5: end if
6: for j = h− 1 downto 1 do ◃ Attempt right child
7: gap = S[j + 1]− S[j]
8: if gap = 2 then ◃ Should increment bit j?
9: SR ← S; SL[j]← SL[j] + 1
10: else if gap > 2 then
11: SR ← ∅; break ◃ Right child is empty
12: end if
13: end for
14: return (SL,SR) ◃ Produce both children

1

2

3

4

1,2

1,3

1,4

1,5

2,3

2,4

3,4 2,5

1,2,3

1,2,4

1,2,5

1,2,6

1,3,4

1,3,5

1,3,6 1,4,5

2,3,4

5 2,3,5 1,2,7 1,6

h=2 h=3 h=1

Figure 2: Top five levels of three volatility heaps.

in bit numbers of size at least 2. If the gap is exactly 2,
the bit on the left of the gap is incremented. Otherwise, the
right child is omitted. The last nuance is necessary to pre-
vent generation of duplicate nodes along different branches
of the tree. Figure 2 shows the top five levels of three VOSH
heaps that correspond to h = 1, 2, 3.
Upper-bounding each heap size by k, space and time com-

plexity of constructing all VOSH trees to depth h is Θ(k).
We next explain how to use them during Hamming search
to decide the order of bit flips.

6. PROBABILISTIC SEARCH
In this section, we present our algorithm for near-duplicate

search in the simhash space. We start with the bit-generation
process, verify its effectiveness, and then discuss online/batch-
mode operation on large datasets.

6.1 Bit Selection
While VOSH ensures that each subtree should not be tra-

versed before its root, it does not (and cannot) decide which
of the two siblings at each level is more optimal. As ex-
plained next, we make this decision during run-time using
an additional max-heap M that operates on (key, value)

pairs, where the key is p(u,S) and the value is set S.
Given a page u, we first compute its weights {Wj(u)} and

the corresponding {pj(u)}. We then populate M with tu-
ples (p(u,S),S) generated by h root nodes of VOSH trees,
each corresponding to a different number of bits. At each
bit-flip, we extract from M the node with the largest p(u,S),
obtain its children from the corresponding VOSH tree, com-
pute their probabilities p(u,S), and insert their tuples into
M . This guarantees traversal of bit combinations in the de-
creasing order of p(u,S) and keeps the total complexity of
k flips at the optimal Θ(k log k).
In [16], b = 64 and h = 3 were tested in an 8B-page col-

0 8 16 24 32 40 48 56 64
0

0.2

0.4

0.6

0.8

1

number of bit flips

C
D

F

volatility order
random

(a) h = 1

10
0

10
1

10
2

10
3

10
40

0.2

0.4

0.6

0.8

1

number of bit flips

C
D

F

volatility order

random

(b) h = 2

10
0

10
1

10
2

10
3

10
4

10
50

0.2

0.4

0.6

0.8

1

number of bit flips

C
D

F

volatility order

random

(c) h = 3

1 2 3
0

100

200

300

400

Hamming distance h

ra
tio

100% recall
80% recall
50% recall

(d) speed-up ratio

Figure 3: Bit flips needed in VOSH compared to
random (64-bit hashes).

lection and found to work well. We later verify that these
numbers are also quite appropriate for our dataset; in the
meantime, use them as our target combination for all ex-
periments and analysis. To understand the performance of
VOSH combined with M , we extract from our dataset 8M
random pairs of simhashes at Hamming distance h = 1, 2, 3.
We then compare our VOSH-driven approach to random
flipping of bits, where the latter considers all possible com-
binations of exactly h bits, ensuring there is no repetition.

Figure 3(a) shows the CDF of the number of bit attempts
needed to find each of the matches at distance h = 1. Ob-
serve in the figure that the first VOSH flip finds the match-
ing pair in over 30% of the cases and four flips accomplish
the same 80% of the time. All pairs at Hamming distance
1 are discovered in 17 or fewer attempts, while the ran-
dom approach requires 64 flips to achieve the same 100%
recall. For the exact distances h = 2 and h = 3 (drawn on a
log-linear scale), VOSH finds all pairs in 152 and 675 flips,
respectively. This compares favorably to 2,016 and 41,664
attempts needed by the random approach.

The difference between VOSH and random flipping be-
comes more pronounced as h increases and recall decreases.
This is illustrated in Figure 3(d), which plots the ratio of
the number of attempts needed between the two methods
for 50%, 80%, and 100% recall. At h = 1, VOSH is 3.7
times faster than random at 100% recall and 16 times faster
at 50%. These numbers increase to 13 and 37 respectively
for h = 2, eventually becoming 61 and 347 for h = 3.

With these encouraging results in mind, we next describe
how VOSH can be applied to large-scale datasets in a frame-
work we call Probabilistic Simhash Matching (PSM).

6.2 Online Queries
In online mode, the existing fingerprints H are stored in

memory to support similarity queries about arriving pages.
The main performance metric in this setup is delay τ needed
to compare a new document against a set H of n simhashes.

5

2t

2d

scan

header

Dataset H

Hash table

2d-t

(a) PSM

simhash x

g = 3 blocks

G = 8 blocks

γ

b bits

(b) BPHS

Figure 4: Lookup in PSM and BPHS.

To support efficient lookups, assume H is sorted before
the algorithm starts and let n = 2d be a power of 2. Using
VOSH across all b bits is extremely wasteful as it produces
a large number of hashes that do not exist in the collection,
which is especially noticeable when n ≪ 2b. Given b = 64,
most datasets D fall into this category. It thus makes sense
to limit the random lookups to some small range of t ≤ d
uppermost bits, which we call the header, and perform a
linear scan to match the remaining bits.
The matching process may perform a d-step binary search

on H or utilize a hash table of size 2t for efficient header
lookups. We use the latter approach in the paper and il-
lustrate the resulting system in Figure 4(a). Given a query
page u with simhash x, the first lookup is x itself at Ham-
ming distance 0. We then use VOSH to generate k new
queries x1, . . . , xk by working with t most-significant bits of
x. In each lookup, if i bits are flipped in the header, the
linear scan flags all pages whose Hamming distance to x in
the remaining b− t bits is no more than h− i.
If only a single-match is desired, the linear scan stops

as soon as it identifies the first similar page; otherwise, it
continues until a header mismatch. To differentiate these
cases, we use PSMF (first) and PSMA (all), respectively.

6.3 Batch Queries
In batch mode, the existing collection H is stored on disk.

New fingerprints are accumulated in set Q until it reaches
size m. After Q becomes full, PSM scans file H by reading
it in chunks of m fingerprints and matching each x ∈ Q
against the loaded chunk using the online method described
above. After Q is processed to completion, it is sorted and
appended to the existing file. This removes the need to sort
chunks again when they are loaded in RAM.
It should be noted that PSMF can stop reading the file as

soon as finds at least one near-duplicate for each fingerprint
in Q, which in certain cases can save significant amounts
of overhead. In the worst case, however, both PSMF and
PSMA read the entire file for eachQ. In a multi-core system,
the lookups can be easily parallelized by splitting Q across
threads. It also makes sense to pre-process Q by identify-
ing the volatile bits in each hash and retaining probabilistic
information only related to them. This not only saves mem-
ory, but also saves time in identifying top bit-combinations
every time a new chunk is loaded into memory.

7. PERFORMANCE MODELING
This section models the currently fastest and most space-

efficient simhash matching approach [16] and compares its
overhead to that of PSM.

7.1 Online BPHS
Efficient search in the Hamming space is an old prob-

lem [17] that has remained difficult to solve at large scale.
For small h, [16] offers an algorithm, which we call Block-
Permuted Hamming Search (BPHS), for dealing with large
collections D. Suppose we are interested in finding all hashes
y ∈ H within Hamming distance h ≥ 1 of x. BPHS first
splits the b-bit hash x into G ≥ h+1 non-overlapping blocks
of γ = b/G consecutive bits. It then selects an integer g be-
tween 1 and G − h. If H(x, y) ≤ h, then block-by-block
comparison between x and y is guaranteed to have at least
g exact matches. The goal of BPHS is to group all possi-
ble combinations of g blocks at the front of the hash and
perform the search only on them. This is shown in Figure
4(b) for G = 8 and g = 3, which is a combination that can
support all h ≤ 5.

Similar to PSM, define the leading g blocks of the hash
as its header. Then, there are T =

(
G
g

)
ways of selecting

the g blocks for the header. Call each of these selections a
block permutation πi(x) of the original hash. Since the order
of blocks neither in the header nor in the rest of the hash
matters, there are exactly T unique permutations, which
applied to H produce T copies of the dataset H1, . . . ,HT .

After sorting the copies (which are called tables in [16]),
the lookup proceeds in T iterations. For the i-th step, BPHS
uses a binary search to find the numerically smallest hash in
Hi whose header matches that of πi(x). Starting with that
hash, it scans Hi linearly until the first header mismatch.
During this scan, it computes the Hamming distance in the
lower b− (gγ) bits between each target hash and x, with the
rest of the algorithm being similar to PSM. We consider two
versions: BPHSF stops after finding the first match, while
BPHSA always checks every eligible hash.

For the analysis, we assume a sufficiently large b to ig-
nore round-off effects during division and model only the
overhead of BPHSA. Define δR to be the RAM latency dur-
ing random access, δP to be the delay needed to permute
the blocks of x, and δL to be the per-hash delay needed to
perform Hamming-distance calculations during linear scan.
Then, define the number of bits that are matched during
binary search as:

t = min(gγ, d) = min
(gb
G

, d
)
, (8)

which has a similar meaning to t in PSM. Note that the min
function is necessary since the binary search exhausts the
entire dataset in d steps. Then, the total the lookup latency
of BPHS in T tables is:

τ =

(
G

g

)(
δP + tδR + 2d−tδL

)
. (9)

The storage overhead (in bytes) of BPHS is simply:

Ω =

(
G

g

)
nb

8
. (10)

We next analyze the issue of optimally selecting G. For a
fixed g and assuming gγ ≤ d, (9) breaks into two terms:

τ =
(G− 1)!b

(G− g)!(g − 1)!
δR +

(
G

g

)(
δP + 2d−gb/GδL

)
, (11)

both of which monotonically increase in G. For gγ > d, we

6

have an even simpler situation:

τ =

(
G

g

)
(δP + dδR + δL), (12)

which also shows that choosing the smallest possible G leads
to best performance. From (10), we can make the same
observation about RAM overhead. Since both space and
time decrease with G, it follows that its optimal value is its
lower bound g + h. Re-writing (9), we have:

τ =

(
g + h

g

)(
δP + tδR + 2d−tδL

)
. (13)

Next, notice that increasing gγ beyond d hurts perfor-
mance in (13) as it keeps t = d constant, but increases the
leading binomial coefficient, which makes the final model:

τ(d) =

(
g + h

g

)(
δP +

gb

g + h
δR + 2d−gb/(g+h)δL

)
, (14)

where

g ≤ dh

b− d
. (15)

Determination of optimal g is impossible without knowing
the relationship between δR and δL, as well as the value
of b in comparison to d. Assuming 8 GB RAM and the
absolute minimum number of tables T = 4 for h = 3 (i.e.,
G = 4, g = 1, γ = 16 bits), BPHS admits datasets up to
n = 228 with an expected length of linear scans 228−16 = 212.
For a RAM-restricted system that cannot grow T to infin-

ity, notice that τ(d) scales exponentially with d, or in other
words, linearly with set size n. Thus, in such cases, similar-
ity search for all document pairs in H requires complexity
Θ(n2). We verify this finding in the next section.

7.2 Batch BPHS
Batch mode in BPHS is similar to that in PSM, with two

exceptions explained in [16]. First, matching in BPHS pro-
ceeds by checking each fingerprint y from the loaded chunk
against T tables built around simhashes in Q. This is neces-
sary to prevent repeated construction of T permuted copies
of each loaded chunk. One peculiar side-effect of this opti-
mization is that BPHS cannot stop when it finds the first
match for y since there might be fingerprints x ∈ Q that still
do not have any matches. Thus, in batch mode, BPHSF is
identical to BPHSA. The second difference from PSM is that
batches Q do not have to be sorted before being appended
to the file since the search runs against Q rather than H.
To process a batch of m = |Q| hashes, the I/O delay is

the time needed to read the entire file:

τdisk =
nb

8D
, (16)

where D is the read speed of the hard drive. For high-
performance RAID-based configurations and overlapped I/O,
computation can be executed while the next chunk is being
read. In such cases, the bottleneck is in the CPU portion
of the overhead, which consists of the time to permute the
m incoming hashes T times, sort the corresponding tables,
and perform n lookups in them:

τCPU = Tm(δP + log2 m) + nτ(logm), (17)

16 18 20 22 24 26
0

5

10

15

20

25

header bits w

at
te

m
pt

ed
 c

om
bi

na
tio

ns
 k

(w
)

PSM
A

PSM
F

(a) growth of k(t)

16 18 20 22 24 26
0

20

40

60

80

header bits w

ru
n

tim
e

(s
ec

)

PSM
A

PSM
F

(b) reduction in time

Figure 5: Optimal selection of t in PSM.

where τ(.) is given by the online model (14). Finally, the
throughput of this system in hashes per second is:

r =
m

max(τdisk, τCPU)
. (18)

In the experiments below, τCPU ≈ 20τdisk dominates and
rate r is determined solely by the performance of the studied
algorithms rather than the disk speed.

7.3 Online PSM
Recall that VOSH flips k combinations in the upper t bits

of each fingerprint x. PSM then searches for these combina-
tions in a single copy of the dataset H in RAM. The latency
of each lookup consists of the VOSH overhead δV per exam-
ined element in the heap (which hash depth log2 k), a single
visit to the header hash table, and the linear scan:

τ ′(d) = k(t)(δV log2 k(t) + δR + 2max(d−t,0)δL), (19)

where we make k explicitly depend on t. Since increasing t
increases k(t), the following simple analysis helps choose the
optimal t. Recall that each VOSH combination is limited to
h bits out of t possible, which means that k(t) is upper-
bounded by:

k(t) ≤
h∑

i=1

(
t

i

)
= Θ(th). (20)

Therefore, ignoring the small terms δV (k) and δR in (21)
and only considering t ≤ d, the dominating term of the delay
is Θ(th2−t), which is minimized when t is maximized. This
shows that the optimal choice is t = d and:

τ ′(d) = k(d)(δV log2 k(d) + δR + δL). (21)

To understand the growth of k(t) with t, we partition
our 70M-page web collection into two parts – 10M random
pages are selected to arrive in online mode and the remaining
60M are chosen for the main dataset H. We first pass each
online page through BPHS to find all matches in H within
Hamming distance h = 3. We then select for each t such
k(t) that achieve 95% recall in PSM compared to BPHS.

The result is plotted in Figure 5(a). As t grows from 16
bits to 26, the number of combinations required by PSMA

increases from 6 to 23 and that for PSMF from 3 to 15.
The exact growth rate cannot be readily ascertained over
this small range, but it is visibly super-linear. The total
run time to verify 10M hashes in online mode is shown in
Figure 5(b). As predicted, the delay is minimized when t is
at its maximum (i.e., d), in which case the processing speed
reaches 1.6M arriving hashes/sec for PSMF and 765K/sec
for PSMA.

7

Since PSM maintains a hash table with 2t entries and a
single copy of H, it storage requirement for t = d is:

Ω′ = (2t + 2d)
b

8
=

2nb

8
, (22)

which is equivalent to 2 permuted tables in BPHS. For h = 3
and the minimum four tables in BPHS, our approach is at
least twice as efficient. Furthermore, for a fixed number of
additional tables (i.e., just one), PSM’s latency (21) scales as
Θ(k(d) log k(d)), where d = log2 n. Since k(d) is O(dh), we
obtain that its overall complexity for processing all hashes
in H is O(n logh(n) log log n). This compares favorably to
Θ(n2) of BPHS.

7.4 Batch PSM
Given a batch Q of new pages, PSM loads chunks of m =

|Q| fingerprints from the file, sets up a hash table for each
element of the chunk, and performs lookups for all x ∈ Q.
Note that after the first match, PSMF removes x from Q,
which prevents its being checked against subsequent chunks.
This allows PSMF to become much faster as it progresses
through the file.
In the worst case, PSM’s I/O delay is the same as (16),

which in our tests is again much smaller than the CPU la-
tency, where the latter can be broken down into three parts
– producing the permutations for m hashes, performing m
lookups in each of n/m chunks, and finally sorting the hashes
in Q before writing them to disk:

τ ′
CPU = mδV log2 k + nτ ′(logm) +mδS log2 m, (23)

where δS is the mean latency of moving hashes while sorting.
As important result of this analysis is how batch size

m affects rate r in (18). For a fixed number of tables T ,
BPHS’s τCPU scales as Θ(m) and keeps r virtually un-
changed. On the other hand, ignoring the VOSH and sort-
ing overhead, PSM’s τ ′

CPU scales as Θ(logh(m) log logm).
This increases the overall rate r slightly slower than lin-
ear, i.e., as Θ(m/ logh(m) log logm), but nevertheless signif-
icantly faster than in BPHS. We re-examine this issue and
confirm this result in the next section.

8. EXPERIMENTS
We next describe our datasetD, examine whether simhash

indeed approximates cosine similarity on D, select the opti-
mal h, and evaluate PSM in comparison to BPHS.

8.1 Dataset
All our experiments involve a set of 100M web pages crawled

by IRLbot [15] in April 2008. We process the collection by
removing pages that have size less than 5 KB, contain no
URLs, have an exact duplicate (identified using a standard
hash function), or consist of non-English words, all of which
shrinks D to a total of 70M pages.
We parse each remaining page, removing stop-words and

stemming all text outside of HTML tags. We then create
feature vectors with weights ti(u) being the normalize TF-
IDF score of each word i on page u. For calculating simhash

fingerprints, we use the 64-bit MurmurHash function [1].

8.2 Usability of Simhash
While [16] has shown in small-scale manual verification

that h = 3 and b = 64 produce good results on Google’s

0 5 10 15
0

0.2

0.4

0.6

0.8

1

H(x,y)

pe
rc

en
t

recall
precision

(a) precision/recall

0 5 10 15
0

0.2

0.4

0.6

0.8

1

H(x,y)

E
[c

os
(u

,v
)]

(b) expected cosine

Figure 6: Comparison of simhash against cosine sim-
ilarity at different Hamming distances.

dataset with 8B pages, we aim to verify that the same pa-
rameters work well for our D, but using the similarity mea-
sure of the feature-vector space and at a much larger scale.
To our knowledge this has not been done before.

We randomly sample 100M document pairs (out of a total
of 4.9 quadrillion) and place them into set Υ. We then define
set Ncos to contain all pairs whose cosine similarity is above
threshold θ = 0.9, i.e., Ncos = {(u, v) ∈ Υ : cos(u, v) ≥ θ}.
We also define sets Nh (for h = 1, 2, . . . , 64) to contain all
sampled pairs of documents within Hamming distance h of
each other, i.e., Nh = {(x, y) ∈ Υ : H(x, y) ≤ h}.

Then, precision at distance h is defined as the fraction of
pages in Nh that belong to Ncos:

P (h) =
|Nh ∩Ncos|

|Nh|
(24)

and recall at distance h is the fraction of pages in Ncos that
belong to Nh:

R(h) =
|Nh ∩Ncos|

|Ncos|
(25)

Figure 6(a) plots both metrics as a function of h. Observe
that small h produces a high rate of false-negatives, but
keeps the false positive rate low. Large values of h offer
the opposite condition – many false positives, but few false
negatives. Taking the point where both curves intersect, we
arrive at h = 3 as a sensible balance for this tradeoff.

Figure 6(b) shows the expected cosine E[cos(u, v)] be-
tween document pairs at different Hamming distances. The
correlation between the two is very clear, with H(x, y) ∈
[1, 3] producing E[cos(u, v)] that ranges from 0.95 down to
0.89, which confirms the applicability of simhash as a sub-
stitute for s(u, v) on this dataset.

8.3 Implementation Details
We implemented both PSM and BPHS [16] in Visual Stu-

dio C++, using similar optimizations and running them on
the same hardware, which consisted of a desktop machine
with the AMD Phenom II X6 CPU (2.8 GHz), 16 MB of
RAM, 5 TB of disk space, and Windows Server 2008 R2.

Since PSM is an approximation to an exact simhash search,
its relative recall R′ is computed against the matches found
by BPHS. Thus, PSM’s total recall against cosine similarity
is R(h)R′, where R(h) is given in (25) and plotted in Figure
6(a). It should be noted that PSM’s relative precision is
100% against BPHS and is not a factor in our comparison.

Relative recall R′ for our experiments is defined slightly
differently for PSMA and PSMF . In the former case, we take
the number of matching pairs found by PSMA and normalize

8

Method Tables Time (sec) Queries/sec

BPHSA 4 65 154K
10 53 189K

PSMA 1.06 15.5 645K
1.125 14.4 694K
1.25 14.4 694K
1.5 13.5 741K
2 13.1 765K

BPHSF 4 54 185K
10 26 385K

PSMF 1.06 6.9 1.4M
1.125 6.7 1.5K
1.25 6.4 1.56M
1.5 6.26 1.6M
2 6.25 1.6M

Table 2: Comparison of PSM to BPHS (online
mode, 10M queries, 60M existing hashes).

it by that found by BPHSA. In the latter case, we record
the number of simhashes for which PSMF found at least one
similar pair and divide it by the same number in BPHSF .
All our experiments use k(t) such that R′ achieves recall

95%, unless otherwise specified. As discussed earlier, we
divide the full dataset of 70M fingerprints by random sam-
pling into two parts: 10M hashes are used as queries and
the remaining 60M are used as the existing collection H.
We experimented with replacing the binary search in BPHS

with extrapolation search suggested in [16]. For d = 26, this
reduced the number of RAM lookups from 26 to 11, but the
overall runtime of the algorithm increased due to the larger
number of multiplications/divisions needed to compute each
jump. We thus do not include it in our comparison.

8.4 Online Mode
In our experiments, we use two most space-efficient BPHS

designs suggested in [16], i.e., T = 4 and T = 10 tables.
To make comparison easier to follow, we convert our RAM
overhead to the same notation by dividing Ω′ by the size of
H, i.e., nb/8. Thus, PSM’s number of tables becomes:

T ′ = 1 +
1

2d−t
. (26)

By varying t, we can achieve any overhead T ′ ∈ [1, 2].
We study how this selection impacts the result using the
total run-time of each algorithm over the entire set of 10M
queries. Table 2 shows our results. The top half of the table
focuses on finding all matches, where PSMA is 3.4−5 times
faster than BPHSA, while reducing its RAM consumption
by a factor of 2-10 depending on the choice of t. In the lower
half, PSMF is even better (i.e., 3.7 − 8.7 times faster than
BPHSF) with the same savings in RAM.
Another interesting observation in the table is that PSM

is relatively insensitive to RAM usage. After dropping T ′

from 2 to 1.06, PSMA loses only 15% in speed and PSMF

only about 9%. Focusing on the ratio of speed (in thousands
of queries/sec) to the number of tables used, PSMA peaks
at 617 with T ′ = 1.125 and PSMF at 1367 with T ′ = 1.06.
The best numbers from BPHS are 38 and 46, respectively.
We next focus on the scalability of each method. In the

modeling section, we showed that with a fixed number of
tables, BPHS’s lookup delay for each query scaled linearly
with set size n, which is equivalent to an exponential increase
when plotted against d = log2 n. At the same time, we

16 18 20 22 24 26
0

20

40

60

80

log
2
(n) = d

ru
n

tim
e

(s
ec

)

BPHS

A

BPHS
F

PSM
A

PSM
F

(a) T = 4

16 18 20 22 24 26
0

10

20

30

40

50

60

log
2
(n) = d

ru
n

tim
e

(s
ec

)

BPHS

A

BPHS
F

PSM
A

PSM
F

(b) T = 10

Figure 7: Scalability with dataset size (online mode,
10M queries, 60M existing hashes).

16 18 20 22 24 26
0.9

0.92

0.94

0.96

0.98

1

log
2
(n) = d

re
ca

ll

k=15
k=10
k=5

(a) PSMF

16 18 20 22 24 26
0.9

0.92

0.94

0.96

0.98

1

log
2
(n) = d

re
ca

ll

k=25
k=15
k=10

(b) PSMA

Figure 8: Relative recall in PSM with a fixed num-
ber of bit flips (online mode, 10M queries, 60M ex-
isting hashes).

showed that PSM’s CPU overhead could be crudely upper-
bounded by O(dh), which at least in theory should be sig-
nificantly better.

Figure 7 confirms this result in our implementation. Specif-
ically, in part (a) of the figure, we fix T = 4 tables for [16]
and keep T ′ = 2 in our method. Notice the aggressive in-
crease in delay for both versions of BPHS and an almost lin-
ear increase for PSM. In part (b), the BPHS design calls for
g = 2 and G = 5, which means that the exponential term in
(14) does not become active until d exceeds gb/(b+h) = 25.6.
Thus, most of the visible increase in Figure 7(b) is due to the
binary search; however, once the dataset becomes substan-
tially larger, these curves will become exponential in d. Note
that in part (a) of the figure, the situation was dramatically
different because g was 1 and gb/(b+ h) was 16.

We finish this section by keeping the number of attempted
combinations k(t) constant and examining how recall R′

changes with dataset size d. This demonstrates the decay
rate of recall as a function of |H|, which might be interesting
to applications that intend to keep per-query CPU overhead
constant as n → ∞. In these experiments, we scale the
number of header bits as t = d and plot the result in Figure
8. First, notice that recall of PSMF decreases slightly slower
than that of PSMA. Second, observe that with just k = 5
combinations of bit-flips, the former method achieves 90%
recall for all datasets up to 60M pages. The latter technique
can maintain 93% recall with just k = 10 flips, which im-
plies that by lowering the target R′ to 90%, our method can
become 2.5− 3 times faster than already demonstrated.

In real-time systems with hard memory and performance
constraints that are ready to sacrifice a small percentage
of recall, these results show that PSM offers a significantly

9

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

batch size m (million)

th
ro

ug
hp

ut
 (

K
 h

as
he

s/
se

c)

PSM
F

PSM
A

BPHS

(a) speed vs m

10 20 30 40 50 60
10

1

10
2

10
3

10
4

dataset size n (million)

th
ro

ug
hp

ut
 (

K
 h

as
he

s/
se

c)

PSM
F

PSM
A

BPHS

(b) speed vs n

Figure 9: Throughput in batch mode.

faster and more space-efficient solution than currently avail-
able in the literature.

8.5 Batch Mode
In these experiments, the existing dataset of 60M finger-

prints is read from disk and matched against a query batch
withm = |Q| = 10M fingerprints stored in memory. Since in
our system τdisk is at least 20 times smaller than τCPU , the
overall performance is dominated by the throughput of the
studied algorithms. While we are not concerned with RAM
as much as before, simple calculations show that PSM still
uses less RAM than BPHS.
Figure 9(a) shows the effect of batch sizem on the process-

ing speed. As discussed earlier, BPHSA and BPHSF are the
same method in batch mode, which we plot as a single curve
in the figure. We use the 4-table design for BPHS since it
proved faster than the 10-table version for dataset sizes be-
low 225 (see Figure 7). We now come back to the prediction
in the modeling section that BPHS’s speed should saturate
and remain constant with m, while that of PSM should in-
crease sublinearly, but no worse than m/ logh2 (m) log logm.
Figure 9(a) confirms both findings, showing that the pro-

cessing rate of BPHS stabilizes at 55K/sec, while our tech-
nique scales from 99K/sec to 727K/sec for PSMF and from
70K/sec to 373K/sec for PSMA. At the final batch size (i.e.,
m = 10M), PSM outperforms BPHS by a factor of 7.7− 14,
which is expected to continue increasing as m → ∞.
It should be noted that even for the largest batch m =

10M, both methods in Figure 9(a) are still 50-70% slower
than in online mode. For BPHS, this can be explained by the
much larger number of binary searches it performs compared
to the online version. For PSM, the model predicts that
splitting the dataset into small chunks reduces performance
since each new hash must be looked up in n/m hash tables.
We finish the paper by examining how both methods be-

have when n increases, but m stays fixed. The model shows
that the run-time of both techniques should be linear in n,
which means that their throughput should be Θ(1/n). Fig-
ure 9(b) confirms this fact and shows that the ratio between
the PSM and BPHS curves remains constant at approxi-
mately 7 for PSMA and 14 for PSMF . Combining the var-
ious observations, we can conclude that as n → ∞, batch-
mode PSM will be able to use larger m and its performance
gains over fixed-table BPHS will grow even further.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a novel way of utilizing simhash

to find near-duplicates in large collections of documents. We
showed that by sacrificing a small percentage of recall the

proposed approach consistently outperformed [16] in terms
of query speed and space consumption, which it was able to
simultaneously lower by a factor that ranged from 2 to 14
in various configurations.

Future work involves analysis of feature-selection tech-
niques for better clustering, improvement of simhash recall
against cosine similarity, and further overhead reduction in
our bit-flipping algorithm.

10. REFERENCES
[1] A. Appleby, “MurmurHash.” [Online]. Available:

http://sites.google.com/site/murmurhash/.
[2] S. Baluja and M. Covell, “Learning ‘Forgiving’ Hash

Functions: Algorithms and Large Scale Tests,” in Proc.
IJCAI, Jan. 2007, pp. 2663–2669.

[3] M. Bawa, T. Condie, and P. Ganesan, “LSH Forest:
SelfTuning Indexes for Similarity Search,” in Proc. WWW,
May 2005, pp. 651–660.

[4] J. L. Bentley, “K-D Trees For Semi-Dynamic Point Sets,” in
Proc. ACM Symposium on Computational Geometry
(SCG), Jun. 1990, pp. 187–197.

[5] A. Broder, “Identifying and Filtering Near-Duplicate
Documents,” in Proc. CPM, Jun. 2000, pp. 1–10.

[6] A. Z. Broder, M. Charikar, A. M. Frieze, and
M. Mitzenmacher, “Min-Wise Independent Permutations,”
in Proc. ACM STOC, May 1998, pp. 327–336.

[7] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig, “Syntactic Clustering of the Web,”Computer
Networks and ISDN Systems, vol. 29, no. 8–13, pp.
1157–1166, Sep. 1997.

[8] M. S. Charikar, “Similarity Estimation Techniques from
Rounding Algorithms,” in Proc. ACM STOC, May 2002,
pp. 380–388.

[9] A. Chowdhury, O. Frieder, D. Grossman, and M. C.
McCabe, “Collection Statistics for Fast Duplicate
Document Detection,”ACM Trans. Inf. Syst., vol. 20,
no. 2, Apr. 2002.

[10] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk,
R. Motwani, J. D. Ullman, and C. Yang, “Finding
Interesting Associations without Support Pruning,” in
Proc. IEEE ICDE, Feb. 2000, pp. 489–500.

[11] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu,
“Incremental Clustering for Mining in a Data Warehousing
Environment,” in Proc. VLDB, Aug. 1998, pp. 323–333.

[12] A. Guttman, “R-Trees: A Dynamic Index Structure for
Spatial Searching,” in Proc. ACM SIGMOD, Jun. 1984, pp.
47–57.

[13] M. R. Henzinger, “Finding Near-Duplicate Web Pages: A
Large-Scale Evaluation of Algorithms,” in Proc. ACM
SIGIR, Aug. 2006, pp. 284–291.

[14] P. Indyk and R. Motwani, “Approximate Nearest
Neighbors: Towards Removing the Curse of
Dimensionality,” in Proc. ACM STOC, May 1998, pp.
604–613.

[15] H.-T. Lee, D. Leonard, X. Wang, and D. Loguinov,
“IRLbot: Scaling to 6 Billion Pages and Beyond,” in Proc.
WWW, Apr. 2008, pp. 427–436.

[16] G. S. Manku, A. Jain, and A. D. Sarma, “Detecting Near
Duplicates for Web Crawling,” in Proc. WWW, May 2007,
pp. 141–149.

[17] M. Minsky and S. Papert, Perceptrons. MIT Press, 1969.

[18] R. Salakhutdinov and G. Hinton, “Semantic Hashing,”
International Journal of Approximate Reasoning, vol. 50,
no. 7, pp. 969–978, July 2009.

[19] B. Stein, S. M. zu Eissen, and M. Potthast, “Strategies for
Retrieving Plagiarized Documents,” in Proc. ACM SIGIR,
Jul. 2007, pp. 825–826.

[20] P. Wegner, “A Technique for Counting Ones in a Binary
Computer,”Commun. ACM, vol. 3, no. 5, p. 322, May
1960.

10

