PIQI-RCP: Design and Analysis of Rate-Based Explicit Congestion Control

Saurabh Jain

Joint work with Dr. Dmitri Loguinov

June 21, 2007
Agenda

- Introduction
- Analysis of RCP
- QI-RCP
- PIQI-RCP
- Comparison
- Wrap Up
Introduction

- Congestion control can be modeled as a delayed feedback control system

\[e(t) = C - y(t) \]

- Each flow \(i \) in the plant, upon receiving a congestion feedback \(\mu_i(t) \), applies a control equation to compute its sending rate \(x_i \) as

\[\frac{dx_i}{dt} = f_i(x_i, \mu_i(t - D_{i\ell}), D_i, ...) \]

backward delay from controller to flow \(i \)
Introduction 1

- Congestion feedback is a function of the input traffic rate (i.e., sending rates of individual flows), link capacity, etc.

\[
\frac{d\mu_l}{dt} = g(e_l(t), T, \ldots)
\]

- For a stable system, the sending rates of individual flows and the feedback converge to their equilibrium value

\[
\lim_{t \to \infty} x_i(t) = x_i^*
\]

\[
\lim_{t \to \infty} \mu_l(t) = \mu_l^*
\]

- It is also desirable to have efficiency and fairness

\[
\lim_{t \to \infty} e(t) = C - y(t) = 0
\]

\[
x_1^* = x_2^* = \ldots = x_N^*
\]
• The problem can also be formulated in the discrete time domain as difference equations

\[x_i(n + 1) = x_i(n) + f_i(x_i(n), \mu_l(n - D_{il}^-), D_i, ...) \]
\[\mu_l(n + 1) = g_l(e_l(n), \mu_l(n), T, ...) \]

• Congestion feedback can be
 □ Implicit such as detection of packet loss or increase in RTT due to larger queuing delays
 □ Explicit such as single-bit (e.g., RED-ECN) or multi-bit notification (e.g., packet loss rate, link prices, fair rate, queuing delay, change in sending rate)

• Proposed explicit congestion control methods include XCP, MKC, JetMax, MaxNet, RCP [IWQoS 2005]
Agenda

- Introduction
- Analysis of RCP
- QI-RCP
- PIQI-RCP
- Comparison
- Wrap Up
Analysis of RCP - Drawbacks

- In RCP, each router l uses a control equation:

$$R_l(t) = R_l(t-T) \left[1 + \frac{T d_l}{C_l} (\alpha(C_l - y_l(t)) - \beta \frac{q_l(t)}{d_l}) \right]$$

- α and β are gain parameters

- Each flow i adjusts its sending rate $x_i(t)$ as:

$$x_i(t) = \min \{ R_l(t - D_i^-) \}$$

- Limited Understanding of Stability:

 - Stability analysis only available for homogeneous RTTs. For heterogeneous RTTs, results only available using simulations
Analysis of RCP – Drawbacks 1

- We use $\alpha = 0.4$ and $\beta = 1$
- RCP is unstable in topology T1

Oscillating bottlenecks

Fixed bottlenecks
Analysis of RCP – Drawbacks 2

- **Link Overshoot:**
 - Input traffic rate overshoots link capacity significantly when large number of flows join simultaneously
 - Significant packet losses and re-transmissions without adequate buffering at bottleneck routers
Analysis of RCP - Strengths

- **Lower per-packet computations**
 - To facilitate feedback computation inside router, i.e., 2 additions and 2 multiplications as against 6 additions and 3 multiplications in the case of XCP

- **Smaller control header size**
 - 16 bytes compared to 20 bytes in XCP, 32 bytes in JetMax, 20 bytes in MKC

- **Steady-state rates** achieve max-min fairness unlike XCP

- **Much smaller average flow completion time (AFCT)** compared to XCP and TCP
Agenda

- Introduction
- Analysis of RCP
- QI-RCP
- PIQI-RCP
- Comparison
- Wrap Up
QI-RCP

- Compared to RCP, QI-RCP decouples queue dynamics from router control equation.

- Define error function $e_l(t)$ at router l as:

$$e_l(t) = 1 - \frac{y_l(t)}{\gamma_l C_l}$$

- The control equation at router l is:

$$R_l(t) = R_l(t - T)[1 + \kappa e_l(t)],$$

- **Theorem 1**: Assume N flows with heterogeneous RTTs and define $D = \max\{D_1, D_2, ..., D_N\}$, $D' = \lceil D/T \rceil$. The discrete version of QI-RCP is asymptotically stable if $0 < \kappa < \kappa^*$, where

$$\kappa^* = 2 \sin \left(\frac{\pi}{2(2D' - 1)}\right)$$
QI-RCP 1

- If flows have homogeneous RTTs (i.e., $D_i = D$), the previous condition also becomes necessary.

- Verification of stability condition: $\kappa = \eta \kappa^*$, $T = 10$, $\gamma = 0.95$

- Homogeneous delays: $D_1 = D_2 = 122$

$\eta = 0.99$, $\eta = 1.01$
QI-RCP 2

- Verification of stability condition: (cont’d)
 - Heterogeneous case: $D_1 = 122$, $D_2 = 306$

![Graphs showing sending rate over time](image)
QI-RCP 3

- For $T/D \approx 0$, $\kappa^* = \pi T/(2D)$. This can also be derived from the continuous version of QI-RCP.

- QI-RCP is stable in topology T1 where RCP was unstable.
Agenda

• Introduction
• Analysis of RCP
• QI-RCP
• PIQI-RCP
• Comparison
• Wrap Up
PIQI-RCP (“Picky-RCP”)

- Controller at the router is a Proportional-Integral (PI) controller:

 \[R_l(t) = R_l(t - T)[1 + \kappa_1 e_l(t) + \kappa_2 e_l(t - T)], \]

- At the source (end-user), define:
 - Difference between target rate and previous sending rate
 \[e_i(t) = R_l(t - D_i^\leftarrow) - x_i(t - T) \]
 - Difference between last two consecutive feedbacks
 \[\delta_i(t) = R_l(t - D_i^\leftarrow) - R_l(t - T - D_i^\leftarrow) \]

- Controller at the source:
 \[x_i(t) = x_i(t - T) + \tau_1 e_i(t) + \tau_2 \delta_i(t), \]
 - \(\tau_2 \) affects only when router controller is in its transient state
• For simplicity, we assume $\kappa_1 = \kappa_2 = \kappa$

• **Theorem 2**: Assume N flows with heterogeneous RTTs and define $D = \max\{D_1, D_2, \ldots, D_N\}$, $D' = \lceil D/T \rceil$. The discrete version of PIQI-RCP with sufficiently small T is locally asymptotically stable if $0 < \tau_1 < 1$, $0 < \tau_1 + 2\tau_2 < 2$ and $0 < \kappa < \kappa^*$, where

$$\kappa^* = \sin \left(\frac{\pi}{2(2D' - 1)} \right)$$

• If flows have homogeneous RTTs (i.e., $D_i = D$), the previous condition also becomes necessary

• Stability condition for sufficiently small T, τ_1, and τ_2 is half of that in QI-RCP
PIQI-RCP 2

- Verification of stability condition: \(\kappa = \eta \kappa^* \), \(T = 10 \), \(\gamma = 0.95 \), \(\tau_1 = 0.005 \), \(\tau_2 = 0.5 \)

 □ Homogeneous case: \(D_1 = D_2 = \ldots = D_{10} = 120 \)

\(\eta = 0.99 \)

\(\eta = 1.01 \)
• Verification of stability condition: (cont’d)
 - Heterogeneous case: $D_1 = 120, \quad D_2 = \ldots = D_{10} = 300$

\[\eta = 0.99 \quad \eta = 1.01 \]
PIQI-RCP 4

- PIQI-RCP is stable in topology T1 where RCP was unstable

\[\eta = 0.50 \quad \eta = 0.99 \]
Agenda

• Introduction
• Analysis of RCP
• QI-RCP
• PIQI-RCP
• Comparison
• Wrap Up
Comparison

- We next compare RCP and PIQI-RCP using NS-2 simulations
- To prevent computing sine function inside routers, the upper bound κ^* is approximated as κ^*

\[\kappa < \kappa^* = \frac{T}{2(T + D)} \leq \kappa^* , \]

- For RCP, we set $\alpha = 0.4$, $\beta = 1$, $T = 10$
- For PIQI-RCP, we set $\kappa = 0.95\kappa^*$, $T = 10$, $\gamma = 0.95$, $\tau_1 = 0.005$, $\tau_2 = 0.5$
Comparison 1

- Single Bottleneck Topology: $D_1=120, D_2=\ldots=D_{10}=300$

Sending Rate:

![Graphs showing sending rate over time for RCP and PIQI-RCP]
Comparison 2

- Single Bottleneck Topology: (cont’d)
 □ Queue Size:

![Graphs showing queue size over time for RCP and PIQI-RCP](image)

- RCP
- PIQI-RCP
Comparison 3

- Single Bottleneck Topology: (cont’d)
 - Peak Queue Size and AFCT:

![Graph showing peak queue size and AFCT against number of flows and flow size](image)
Comparison 4

- Multi-Bottleneck Topology:

![Diagram of network topology with bottlenecks and link speeds]

- RCP:
 - Time (sec): 0, 15, 30, 45, 60
 - Sending rate (mb/s): 0, 1000

- PIQI-RCP:
 - Time (sec): 0, 15, 30, 45, 60
 - Sending rate (mb/s): 0, 1000
Comparison - Linux

- Implemented both RCP and PIQI-RCP inside Linux kernel for further comparison using real systems and gigabit network.

- As observed in NS-2 simulations, Linux experimental results also indicate better performance of PIQI-RCP as compared to RCP:
 - In both single- and multi-link topologies
 - With abrupt changes in traffic demands
 - Using both long and mice flows

- Future work includes comparing PIQI-RCP with other explicit congestion control methods.
Wrap Up

- **Stability analysis** in the presence of **heterogeneous delays** is of fundamental importance in the design of congestion control.

- Use of **average RTT** in control equation without proper analysis and flow identification (i.e., responsive or unresponsive) may not be appropriate.

- PIQI-RCP mitigates drawbacks of RCP with slight tradeoff in link utilization (γ) and AFCT.

- More in the paper:
 - Proofs of theorems
 - Results from Linux experiments conducted in Emulab.
Thank You!