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Abstract—Recent research has created a significant interest
[18], [19] in the design and development of a new global-scale
communication network that can overcome the limitations of
the current Internet. Among the many directions for improving
networking technology, recent pursuit to design better flow
control has led to the emergence of explicit congestion control
methods that solicit active feedback from intermediate routers
[5], [11], [22], [25], [26]. As a step towards understanding these
methods, we analyze stability and transient performance of Rate
Control Protocol (RCP) [5], which is a recent method that aims
to emulate processor sharing and achieve quick flow completion.
However, we find that RCP can become unstable in certain
topologies and may exhibit very high buffering requirements
at routers. To address these limitations, we propose a new
controller called Proportional Integral Queue Independent RCP
(PIQI-RCP), prove its stability under heterogeneous delay, and
use ns2 simulations, as well as Linux experiments, to show
that the new method has significantly better transient dynamics
(i.e., much smaller link-capacity overshoot) and better stability
properties in single- and multi-bottleneck scenarios.

I. INTRODUCTION

The enormous growth and success of the Internet has
recently raised questions about the ability of existing network
algorithms to maintain the same level of performance as the
Internet continues to change. One specific area of concern is
congestion control in high-speed networks, where theoretical,
simulation, and experimental results [9], [12] suggest that the
current version of TCP may experience serious scalability
problems as the bandwidth-delay product of network links
continues to increase. One approach to solving this issue is to
develop more aggressive end-to-end algorithms [3], [9], [10],
[12], [13], [20], [24], while another direction [18], [19] is to
re-design the Internet to utilize explicit network feedback from
Internet routers [5], [11], [22], [23], [25], [26] to achieve faster
convergence, smaller packet loss, and better fairness between
end-users. Analysis and improvement of protocols in the latter
category is the focus of this paper.

Explicit congestion control algorithms require network de-
vices in each path to send feedback to end-hosts indicating the
actual degree of congestion rather than just a binary signal
(e.g., packet loss or ECN bits) stating whether congestion
is present or not. To generate feedback pl(t), each router l
performs certain processing of incoming data and executes
a controller whose input is the aggregate rate of all flows
observed within a certain time-interval. This feedback is then
∗Supported by NSF grants CCR-0306246, ANI-0312461, CNS-0434940,
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inserted into headers of all passing packets and later com-
municated to sources in acknowledgments. Explicit feedback
provides more accurate congestion information to end-hosts
and allows them to adjust their congestion window size or
sending rate with much better results, often leading to high
link utilization, max-min fairness, and zero packet loss.

Among several recent proposals, Rate Control Protocol
(RCP) [5] is a simple method that achieves max-min fairness
in the steady-state and maintains close-to-optimal average
flow completion time (AFCT). RCP requires lower per-packet
computation overhead compared to some of the traditional
methods (such as XCP [11]) and has a smaller control header
size compared to most other schemes (including JetMax [26],
MKC [25], and XCP [11]). However, the existing literature
lacks thorough analysis of RCP regarding its stability in
general networks and transient dynamics.

A. Our Contributions

In this work, we aim to fill the void in understanding
RCP and study its vulnerabilities in practice. Our results
show that RCP can behave in an unstable manner in certain
topologies under highly heterogeneous delays. We also find
that in the pursuit of achieving lower AFCT, end-hosts in
RCP use an overly aggressive controller that in certain cases
drastically overshoots link capacity and requires huge buffers
inside routers. To overcome the former drawback, we first
investigate a method called Queue Independent RCP (QI-RCP)
that addresses stability issues in RCP by removing the queue
term from the router controller and properly normalizing its
gain parameter. We derive stability conditions for QI-RCP
under heterogeneous RTTs and show ns2 [17] simulations
that confirm the tightness of the obtained bounds.

Even though QI-RCP is stable in topologies where the
original RCP was unstable, the new method still requires the
same huge buffers inside routers. To address this issue, we next
propose Proportional Integral Queue Independent RCP (PIQI-
RCP)1, which consists of a PI controller inside routers and
an EWMA-type controller at end-users. We establish stability
conditions for PIQI-RCP under heterogeneous RTTs and mild
assumptions on the router control interval. Simulations show
that PIQI-RCP’s stability bounds derived from a theoretical
model are tight in real networks and that the protocol remains
stable in single- and multi-bottleneck topologies. We also

1Pronounced “Picky-RCP.”
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Fig. 1. Topology T1.

show using Linux experiments that PIQI-RCP significantly
outperforms RCP in terms of transient capacity overshoot,
peak queue size, and buffer space requirements. Since PIQI-
RCP has stability conditions that can be easily satisfied inside
routers, incurs small overhead inside routers, and exhibits
smaller AFCT than TCP or XCP, it poses an appealing
alternative to existing methods.

The rest of the paper is organized as follows. In Section II,
we briefly review RCP and introduce common terminology.
In Section III, we discuss RCP’s strengths and weaknesses.
Section IV focuses on the design and analysis of QI-RCP
and PIQI-RCP. In Section V, we compare RCP and PIQI-
RCP using ns2 simulations and in Section VI using Linux
experiments. We conclude the paper and suggest directions
for future work in Section VII.

II. BACKGROUND

Assume N flows in the network whose sending rates at
time t are x1(t), . . . , xN (t). For max-min fairness, each flow
responds only to feedback pl(t) of the most-congested router
l of its path, which we call the bottleneck link of the flow.
The forward/backward delays of flow i to/from its bottleneck
link are denoted by D→

i and D←
i , respectively. Then the RTT

of each flow can be written as Di = D→
i + D←

i and the
aggregate traffic arrival rate at router l can be expressed as
yl(t) =

∑
i∈l xi(t − D→

i ), where notation i ∈ l denotes the
set of flows passing through link l [15].

Rate Control Protocol (RCP) [5] is an explicit congestion
control method based on max-min fairness. Each router l
computes the desired sending rate Rl(t) for flows bottlenecked
at l using the following non-linear controller

Rl(t) = Rl(t− T )
[
1 +

T

dlCl

(
α(Cl − yl(t))− β

ql(t)
dl

)]
,

(1)
where α and β are constants, dl is a moving average of flow
RTTs sampled by router l, Cl is its link capacity, ql(t) is its
instantaneous queue size at time t, and T is its control interval.

The goal of controller (1) is to converge the input traffic rate
yl(t) to link capacity Cl and set the queue length ql(t) to zero.
To accomplish this, rate Rl(t) is fed back to end-flows that
adjust their sending rates xi(t) by setting them to the smallest
suggested rate of their paths

xi(t) = min
l∈i

Rl(t−D←
i ), (2)
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Fig. 2. Unstable rates of RCP flows in topology T1 (default router control
interval T = 10 ms).

where l ∈ i is the set of routers along the path of flow i
[15]. Since all flows bottlenecked at l set their sending rate
to the same received feedback Rl(t), (2) ensures fairness
among flows. Assuming infinite queues, (2) also guarantees
that completion time of each flow is close to the minimum
possible.

III. ANALYSIS OF RCP

In this section, we first demonstrate several drawbacks
associated with RCP and then summarize its known strengths.

A. Limited Understanding of Stability

In [6], RCP has been analyzed for stability assuming all
flows have homogeneous RTTs (i.e., Di = D for all i). For
users with heterogeneous RTTs, stability results of RCP are
available only using simulations for several choices of delays.
The presence of the queue term ql(t) in the router control
equation (1) makes rigorous stability analysis difficult, because
the stationary queue size q∗ = 0 lies in the region where ql(t)
cannot be linearized. It is therefore unknown how to select
parameters for arbitrary choices of flow delay and whether
the RCP equation is stable in general networks. We next show
one example where RCP behaves in an unstable manner and
then explain what causes it.

Consider a multi-link topology T1 in Fig. 1, where flow x1

with RTT 710 ms is bottlenecked at link l1 and flows x2 −
x10 with RTT 20 ms are bottlenecked at link l3. Flow x1

starts at time t = 0 and converges to 155 mb/s after a short
delay. Then at time t = 30, the other nine flows join the
system and instantly become unstable as demonstrated in Fig.
2(a) using ns2 simulations. Similar unstable behavior of RCP
has been observed in [1]; however, it was attributed to the
oscillation of the bottleneck of flows x2 − x10 between links
l1 and l3. As we discuss below, oscillating bottlenecks are the
effect of a destabilized RCP equation rather than its cause.
This is confirmed in Fig. 2(b) after fixing the bottleneck of
flow x1 to l1 and that of the remaining flows to l3. As seen
in the figure, the system remains unstable even though the
assignment of bottlenecks is correct and time-invariant. We
next elaborate on how this unstable scenario arises and what
causes it.
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Fig. 3. Performance of RCP after abrupt increase in traffic demand at t = 15.

Recall that in the Internet, routers may carry a mix of flows
some of which are bottlenecked locally (i.e., at the current
router) and some remotely (i.e., at other routers). In such cases,
the average RTT dl computed by router l may not reflect the
correct delay of flows that are being controlled by the router.
To simplify discussion, define flows to be responsive with
respect to router l if they adapt their rates based on feedback
Rl(t) (i.e., link l is their bottleneck). Further define flows to
be unresponsive with respect to l if they are being controlled
by some other router r 6= l. It then follows from common
sense that metric dl must include the RTTs of only responsive
flows at l rather than all flows passing through it. In topology
T1, link l1 is controlling only flow x1 since the other nine
flows are bottlenecked at l3; however, all 10 flows contribute
to the computation of dl. This leads to a large discrepancy
between the flow response time at link l1 and the average
delay computed by the router (i.e., dl = 89 ms instead of 710
ms) and causes instability.

As the rate of x1 starts to oscillate, the queue in l1 responds
by fluctuating with each overshoot and undershoot of link
capacity. This causes the RTT of flows x2 − x10 to fluctuate
as well, which in turn destabilizes the controller in l3 since
it is closely coupled with flow delays, all of which leads to
the result in Fig. 2. Note that a similar problem surfaces in
other explicit-feedback controllers that rely on average delay,
one notable example being XCP [11]. We omit simulations
showing this result for brevity, but note that analysis of con-
gestion control under heterogeneous delay is of fundamental
importance in diverse networks such as the Internet.

B. Link Overshoot

Besides unknown stability conditions in certain cases, RCP
is very aggressive during flow join and can significantly
overshoot link capacity in the transient phase. Recall that
RCP’s source controller (2) sets the sending rate xi(t) of each
joining flow i to the feedback received from the router. As a
result, new flows entering the system directly use the current
router control rate as their sending rate. For a router that is
already in its steady state (i.e., Cl = yl(t)), this causes the
input traffic rate to overflow the link and create a sudden
surge in queue size. The problem becomes severe when a

large number of flows join the system simultaneously. This
is illustrated by the ns2 simulations we show next.

Consider a dumb-bell topology with a 100 mb/s bottleneck
link and delay 50 ms. At t = 0, flow x1 enters the system and
quickly saturates the bottleneck link as shown in Fig. 3(a). At
t = 15, flows x2−x51 enter the system and obtain the current
control rate Rl(t) = 100 mb/s from the router. For at least one
RTT following the join, all 51 flows use the latest rate provided
to them (i.e., xi(t) = Cl) and produce a combined input load
on the router equal to 5.1 gb/s. Assuming unlimited buffer
space, this aggressive behavior increases the queue length to
80, 868 packets (i.e., 81 MB) as shown in Fig. 3(b), which
takes the router 7.5 seconds to drain. Considering that the
commonly deployed [2] rule is to allocate buffers equal to
the bandwidth-delay product of the link (i.e., 1.25 MB in this
case), RCP’s overshoot requires 64 times more buffer space
than used today in most commercial routers [4], [21].

Hence, unless unrealistically large buffers are provisioned
inside routers, RCP will sustain significant packet loss, which
may result in drastic rate reductions2, retransmissions, slow
convergence, and even instability. As we show later in this
paper, RCP’s buffering requirement increases proportionally to
the number of flows entering the system and the delay to drain
the queue increases dramatically with flow RTT. In highly
dynamic scenarios where flows constantly join and depart the
system, RCP may require more buffer space or even offer
lower performance than the traditional TCP, which is highly
undesirable in practice.

C. Strengths

Apart from the drawbacks identified above, RCP has certain
strengths as well. First, RCP requires lower per-packet com-
putation to compute the feedback signal inside routers than
some of its counterparts (e.g., 2 additions and 2 multiplications
compared to 6 additions and 3 multiplications in XCP [11]).
Second, RCP has a smaller control header size (i.e., 16 bytes)
compared to XCP’s 20 bytes [8], JetMax’s 32 bytes [26],
and MKC’s 20 bytes [25]. Third, unlike XCP [14], RCP’s
steady-state rates achieve max-min fairness in general network
topologies. Finally, RCP [5] has a much smaller average flow
completion time than XCP or TCP, which allows short flows to
quickly utilize available bandwidth and finish their transfers.
Considering these strengths, we next strive to improve upon
the drawbacks of RCP.

IV. IMPROVING RCP

In this section, we propose several modifications to RCP’s
router and user control equations (1)-(2) to address its stability
and link-overshoot issues.

2Note that RCP does not specify how flows should react to packet loss
or recover dropped packets ([5] uses infinite buffers for all simulations).
However, a common technique [11] is to use TCP’s recovery mechanisms
(i.e., reduction of the rate in half) until all lost packets are recovered.

3



A. QI-RCP

We next introduce a simple modification to RCP, which
we call Queue Independent RCP (QI-RCP), that decouples
queue dynamics from the feedback computed by the router.
This allows us to prove heterogeneous stability of the new
controller and therefore achieve good performance in topology
T1. We then improve QI-RCP by reducing its overshoot of link
capacity and lowering buffering requirements at routers.

Define the error function of link l at time t to be

el(t) = 1− yl(t)
γlCl

, (3)

where yl(t) is the combined input rate of all flows at router l,
Cl is its capacity, and 0 < γl < 1 is the desired link utilization
in the steady-state. Then, the router controller of QI-RCP is
given by

Rl(t) = Rl(t− T )[1 + κel(t)], (4)

where Rl(t) is the control rate, T is the control interval, and
κ is a constant whose range we determine below.

Control equation (4) is similar to RCP’s version (1), but
does not include the queue term inside the error function.
In order to drain any possible queue build-up, the QI-RCP
controller operates with a virtual link capacity γlCl instead of
the physical capacity Cl. End-flow rates are still adjusted using
(2), which coupled with (4) represents an integral controller
that tries to converge the input traffic rate yl(t) to the virtual
link capacity γlCl (see [16] for more discussion of integral
controllers). Hence, in the steady state yl(t) = γlCl and any
packets buffered due to transient affects in the system are
drained using spare bandwidth (1− γl)Cl.

We next analyze QI-RCP’s stability. Although multiple
packets may carry the same feedback value computed by the
router during the last control interval, each end-user in QI-
RCP responds to each feedback no more than once and may
be viewed as operating on the time-scale of T units even if its
RTT is smaller than T . Keeping this in mind and converting
the delayed feedback loop of (4) to

Rl(t) = Rl(t−T )

[
1 + κ

(
1− 1

γlCl

N∑

i=1

Ri(t−Di)
)]

, (5)

we arrive at the following result.
Theorem 1: Assume N flows with heterogeneous RTTs and

define D = max{D1, . . . , DN}, D′ = dD/T e. Then, the
discrete version (5) of QI-RCP is locally asymptotically stable
if 0 < κ < κ∗, where

κ∗ = 2 sin
( π

2(2D′ − 1)

)
. (6)

Furthermore, if flow RTTs are homogeneous (i.e., Di = D for
all i), the above condition is also necessary.

Proof: The z-transform of the linearized system (5) is
given by

Rl(z) = Rl(z)
[
z−T − κ

N

N∑

i=1

z−Di

]
+ K, (7)

where K is a constant. The system transfer function is then

Rl(z) =
K/(1− z−T )

1 + G(z)
, (8)

where

G(z) =
κ

N

N∑

i=1

z−Di

1− z−T
. (9)

The transfer function G(z) in the frequency domain can be
written as

G(ejω) =
κ

N

N∑

i=1

e−jω(Di−T )

ejωT − 1
. (10)

After expanding the exponentials, (10) can also be written
as

G(ejω) = − κ

2N sin(ωT/2)

N∑

i=1

[
sin

ω(2Di − T )
2

+j cos
ω(2Di − T )

2

]
. (11)

Most discrete controllers inside a router must operate every
T time steps, keeping the rate constant between the control
intervals. This can be converted to the case of T = 1 by
normalizing each delay using D′

i = dDi/T e, where T and Di

are given in time units, while D′
i in router control-steps.

For D′
i = D′ and T = 1, (11) can be written as

G(ejω) = − κ

2 sin(ω/2)

[
sin

ω(2D′ − 1)
2

+j cos
ω(2D′ − 1)

2

]
. (12)

It can be seen that G(ejω) crosses the real axis (i.e.,
Im[G(ejω)] = 0) for ωi = (2i + 1)π/(2D′ − 1), where i
is an integer. For i = 0, we have ω0 = π/(2D′ − 1) and the
real part of G(ejω0) is

Re[G(ejω0)] =
−κ

2 sin(ω0/2)
=

−κ

2 sin
(

π
2(2D′−1)

) . (13)

Applying Nyquist stability criterion, it can be seen that
stability is ensured if and only if

0 < κ < 2 sin
(

π

2(2D′ − 1)

)
. (14)

However, when delays are heterogeneous G(ejω) crosses
the real axis (i.e., Im[G(ejω)] = 0) when

N∑

i=1

cos
ω(2D′

i − 1)
2

= 0. (15)

It can be seen that none of the roots ω′i of the above equation
have absolute value smaller than ω0 = π/(2D′−1). We prove
this by contradiction. Assume that 0 ≤ ω′0 < ω0 is the smallest
root of (15). Then, 0 ≤ ω′0Di < π/2, which means that all
cosine terms in the summation are strictly positive, which
contradicts the assumption that ω′0 is a root of (15). Since
cosine is a symmetric function, we immediately obtain the

4
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Fig. 4. Flow rate of QI-RCP for κ = ηκ∗ in a single-link network with
T = 10 ms and two flows with homogeneous RTTs D1 = D2 = 120 ms
(T = 10 ms, γ = 0.95).

same contradiction for −ω0 ≤ ω′0 < 0. Therefore, it follows
that |ω′0| ≥ ω0.

Also, due to the periodic nature (with period 2π) of the
frequency domain of a discrete-time system, we can limit our
attention to ω′i ∈ [−π, π]. Again, π is a solution to (15) since
(2D′

i−1) is odd for any integer D′
i. Based on these arguments,

the smallest root ω′0 of (15) should satisfy 0 < ω′0 ≤ π and
ω′0 > ω0. Again, because of the monotonicity of the sine func-
tion between 0 and π/2, the condition sin(ω′0/2) > sin(ω0/2)
holds. For ω′0, the real part of G(ejω′0) is

Re[G(ejω′0)] = − κ

2N sin(ω′0/2)

N∑

i=1

sin
ω′0(2D′

i − 1)
2

≥ − κ

2 sin(ω′0/2)

≥ − κ

2 sin(ω0/2)

= − κ

2 sin
(

π
2(2D′−1)

) . (16)

The above inequality is obtained by bounding the sines with
1, using sin(ω′0/2) > sin(ω0/2), and remains valid even if
ω′0 < 0. Therefore, the magnitude of the point at which the
real axis is crossed can only be reduced (i.e., moved closer
to zero) in the heterogeneous case compared to that in the
homogeneous case. Finally, noticing that the remaining ω′i
are larger than ω′0, it follows that they can only shift (16)
further toward zero and thus lead to looser bounds on κ.
Hence, using Nyquist stability criterion, a sufficient condition
to ensure stability is

0 < κ < 2 sin
(

π

2(2D′ − 1)

)
, (17)

which leads to the desired result.
Note that in the synchronized case (i.e., Di = T for all

i), κ∗ is simply 2. Furthermore, for small T/D ≈ 0, stability
margin κ∗ ≈ πT/(2D), which can be directly obtained using
continuous-time analysis of (5); however, in cases when flow
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Fig. 5. Flow rate of QI-RCP for κ = ηκ∗ in a single-link network with
T = 10 ms and two flows with heterogeneous RTTs D1 = 122, D2 = 306
ms (T = 10 ms, γ = 0.95).
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Fig. 6. Sending rate of QI-RCP in topology T1 for κ = ηκ∗ (T = 10 ms,
γ = 0.95).

RTTs are close to T , the two expressions are different.3

Furthermore, as a rule of thumb, upper bound (6) can be
considered necessary when delays are close to each other (i.e.,
V ar[Di] ≈ 0); however, for highly varying delays, the system
may be stable even when κ exceeds κ∗ as we show below.

B. Tightness of the QI-RCP Stability Condition

We next examine QI-RCP’s stability in ns2 and investigate
how good the derived bounds on κ are. Fig. 4 shows the
sending rate of QI-RCP in a single-link network with two
flows, both having steady-state RTT equal to 120 ms. The
router adjusts its κ by keeping it equal to ηκ∗, where η is a
scale parameter and κ∗ is the upper bound in (6). Observe in
the figure that η = 0.99 keeps the system stable and η = 1.01
makes it unstable, confirming the sufficiency and necessity of
condition κ < κ∗. In Fig. 5, we show an example of a system
with heterogeneous RTTs. Observe that the system is stable
for η = 0.99 and only becomes unstable when η reaches 1.8.
This confirms that when delays are highly variable, κ < κ∗ is
sufficient, but not necessary.

We finish our ns2 simulations with QI-RCP by showing
in Fig. 6 its performance in topology T1 where RCP was
unstable. As seen in the figure, at t = 0 flow x1 enters the

3Note that RCP’s stability for homogeneous RTT has been established only
for the continuous approximation to (1). While gain parameters used in [5] are
conservative enough to keep the discrete system (1) stable, the exact stability
region of discrete RCP even for homogeneous delays is unknown.
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system and quickly saturates its bottleneck link l1. At t = 30,
nine additional flows x2 − x10 join the system, which causes
small oscillations from which the network quickly recovers
and converges to a stable steady state. Note that QI-RCP
remains stable for η as high as 0.99 (see Fig. 6(b)), where
larger η actually speeds up convergence since routers make
more aggressive changes to their Rl(t).

QI-RCP has mathematically tractable stability conditions
that can be easily satisfied since routers have access to the
RTT of each flow using QI-RCP packet headers, which are
similar to those in RCP. Knowing the maximum flow RTT D in
every control interval, QI-RCP dynamically tunes the control
parameter κ so as to comply with the stability condition
κ < κ∗. This keeps the system stable even when D is time-
varying due to the changes in the queuing delay as seen in
simulations above. However, the main drawback of QI-RCP
is that it uses the same aggressive source controller (2), which
leads to similar queue build-up as in RCP. We next focus on
modifying the user controller to eliminate this drawback.

C. PIQI-RCP

In this section, we propose a new congestion control frame-
work called Proportional Integral Queue Independent RCP
(PIQI-RCP) that significantly improves the transient behavior
of the methods studied earlier in this paper. We start with the
router controller of the form

Rl(t) = Rl(t− T )[1 + κ1el(t) + κ2el(t− T )], (18)

where error el(t) is given by (3) and κ1, κ2 are some constants.
It can be seen from the equation that (18) is a simple
PI controller [16], where the proportional component helps
improve system response time and limit the queue to lower
levels (see simulations below).

We next discuss the rationale for the new source controller.
The user equation in RCP and QI-RCP causes the input traffic
rate to significantly overshoot link capacity and skyrocket the
queue size when a flash crowd of flows joins the system.
Instead, we desire a controller that does not immediately jump
to the current fair bandwidth share in the network and uses
caution during rate increase. To achieve this, new flows joining
the system should gradually increase their sending rate towards
the feedback provided by their bottleneck router.

For the discussion that follows, define ei(t) = Rl(t−D←
i )−

xi(t − T ) to be the error between the previous rate of user
i and the last rate suggested by the network, assuming the
current bottleneck of user i is router l. Also denote by δi(t) =
Rl(t−D←

i )−Rl(t−T −D←
i ) the difference between the two

most-recent rates provided by the network to flow i. Then, the
PIQI-RCP source controller is given by

xi(t) = xi(t− T ) + τ1ei(t) + τ2δi(t), (19)

where τ1 and τ2 are constants that we determine below.
The first two terms in (19) constitute an Exponentially

Weighted Moving Average (EWMA) controller. Rather than
directly setting the sending rate xi(t) to the received feedback
R(t − D←

i ) as in (2), this controller changes the current

 

 
C(z) 

 
G(z) y(n) 

R(n) e(n) = C – y(n) 

C 

— 
Controller Plant 

+ 

Fig. 7. Feedback control system model of explicit congestion control

sending rate in steps that take xi(t) toward Rl(t). The δi(t)
term performs a comparison of two successive feedback values
to understand what the bottleneck router wants flows to do:
if δi(t) > 0, then the router is under-utilized and wants
to encourage the flows to increase their sending rate; if
δi(t) < 0, then the router is over-utilized and wants the flows
to decrease their sending rate. Including this information in
the source controller makes it more responsive and reduces
queue overshoot in the transient state.

It should be noted that comparison of successive feedback
values is achieved by simply saving the last received feedback
from the bottleneck and does not incur any network overhead.
Also note that τ2 affects the behavior of the system when the
bottleneck link is in a transient state, i.e., when the successive
feedback values are different. After the bottleneck controller
has reached its steady state, δi(t) = 0 and the performance of
the source is governed only by τ1.

Using the Nyquist stability criterion, we next show that
PIQI-RCP can be easily stabilized assuming the maximum
RTT D is known at the router. We also replace the general
router controller with a simpler version that we use in practice
by setting κ1 = κ2 = κ.

Theorem 2: Assume N flows with heterogeneous RTTs and
define D = max{D1, . . . , DN}, D′ = dD/T e. Then, the dis-
crete PIQI-RCP system (18)-(19) with sufficiently small T is
locally asymptotically stable if 0 < τ1 < 1, 0 < τ1 +2τ2 < 2,
and 0 < κ < κ∗, where

κ∗ = sin
( π

2(2D′ − 1)

)
. (20)

Furthermore, if flow RTTs are homogeneous (i.e., Di = D for
all i), condition 0 < κ < κ∗ is also necessary.

Proof: We first develop a linear control-theoretic model
of PIQI-RCP and then analyze the model for stability using
Nyquist stability criterion. Consider the feedback control sys-
tem model of explicit congestion control as shown in Fig. 7.
Let G(z) be the plant consisting of N flows each with sending
rate xi(t) and round-trip time (RTT) Di = D→

i + D←
i . Let

C(z) be the router controller whose goal is to operate the
closed loop system in a stable manner. The output of the plant
is the total sending rate y(n) arriving at the router controller
and the input being the per-flow sending rate R(n) generated
by the router. The individual blocks, i.e., the controller and
the plant, are analyzed below.

The linearized controller (18) in the discrete-time domain
can be written as

R(n) = R(n− T ) +
κel(n)

N
+

κel(n− T )
N

. (21)
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Taking the z-transform of both sides of the equation, we
get

R(z)[1− z−T ] =
κ

N

[
1 + z−T

]
e(z). (22)

After re-arranging the terms in the above equation, the
transfer function C(z) = R(z)/e(z) is

C(z) =
κ(1 + z−T )
N(1− z−T )

, (23)

The plant consists of N flows, each of which adjusts its
sending rate using (19). In the discrete-time domain and after
expanding the error terms, (19) can be written as

xi(n) = xi(n− T )− τ1[xi(n− T )−Rl(n−D←
i )]

+ τ2[Rl(n−D←
i )−Rl(n− T −D←

i )]
= (1− τ1)xi(n− T ) + (τ1 + τ2)Rl(n−D←

i )
− τ2Rl(n− T −D←

i ). (24)

The total input traffic rate yl(n) observed at the router is
given by

yl(n) =
N∑

i=1

xi(n−D→
i ) =

N∑

i=1

[xi(n− T −D→
i )(1− τ1)

+ (τ1 + τ2)Rl(n−Di)− τ2Rl(n− T −Di)]

= (1− τ1)y(n− T ) + (τ1 + τ2)
N∑

i=1

Rl(n−Di)

− τ2

N∑

i=1

Rl(n− T −Di). (25)

Taking the z-transform of both sides of the above equation,
the transfer function G(z) = Y (z)/R(z) of the plant can be
written as

G(z) =
(τ1 + τ2)− τ2z

−T

1− (1− τ1)z−T

N∑

i=1

z−Di . (26)

The overall open loop transfer function Tf (z) = C(z)G(z)
combining the controller and the plant can be obtained from
(23) and (26) as

Tf (z) =
[
τ1 + τ2 + τ1z

−T − τ2z
−2T

1− (1− τ1)z−T

] N∑

i=1

κ

N

z−Di

1− z−T

= T (z)TD(z), (27)

where

T (z) =
[
τ1 + τ2 + τ1z

−T − τ2z
−2T

1− (1− τ1)z−T

]
, (28)

TD(z) =
N∑

i=1

κ

N

z−Di

1− z−T
. (29)

In the frequency domain, we have

Tf (ejω) = TD(ejω)T (ejω), (30)

T (ejω) =
[
τ1 + τ2 + τ1e

−jωT − τ2e
−jω2T

1− (1− τ1)e−jωT

]
, (31)

TD(ejω) =
N∑

i=1

κ

N

e−jωDi

1− e−jωT
. (32)
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Fig. 8. Verification of stability of PIQI-RCP for flows with homogeneous
RTT D = 120 ms and κ = ηκ∗ (T = 10 ms, τ1 = 0.005, τ2 = 0.5,
γ = 0.95).

Function T (ejω) crosses the real axis when ω = ω′1 = 0 or
ω = ω′2 given by

ω′2 =
[
τ2
1 − 2τ1 + 2τ1τ2

T 2τ2(1− τ1)

] 1
2

. (33)

In the former case, Re[T (ejω′1)] = 2κτ1/τ1 = 2κ. In the
latter case, for 0 < τ1 < 1 and τ1+2τ2 < 2, the value of ω′2 is
imaginary, which ensures that for this set of constants T (ejω′2)
does not cross the real axis. Hence, selecting sufficiently small
values of τ1 and τ2 that satisfy both inequalities above, one
can enforce that T (ejω) crosses the real axis only when ω
equals ω′1.

Further assuming small ωT (i.e., T/D ≈ 0), Tf (ejω) can
be reduced to

Tf (ejω) =
N∑

i=1

2κτ1

Nτ1

e−jωDi

1− e−jωT
=

N∑

i=1

2κ

N

e−jωDi

1− e−jωT
, (34)

which using the analysis in the proof of Theorem 1 gives the
upper bound on the stability region in (20).

Note that (20) is very similar to the condition on QI-RCP.
The reduction by a factor of two is easy to explain since (18)
has two error terms rather than one. The result in Theorem 2
shows that with τ1, τ2 sufficiently small, stability of PIQI-RCP
can be reduced to that of the bottleneck controller (18).

D. Tightness of the PIQI-RCP Stability Condition

We next use ns2 simulations to study how well the discrete
model (18)-(19) of PIQI-RCP resembles the actual system.
As before, each router keeps track of the maximum RTT in
every control interval and sets κ = ηκ∗, where κ∗ is given
by (20). As we discuss in the next section, the sine function
in κ∗ can be approximated with a much simpler equation and
in our implementation none of the routers have to compute
(20). However, to verify that the derived stability condition is
accurate, this section uses the exact value of κ∗.

We start with the homogeneous case. Consider a dumb-
bell topology with a 100-mb/s bottleneck, delay 50 ms, and
1-gb/s access links. A new flow enters the system every 10
seconds and remains in the system for the entire duration
of the simulation. The steady-state RTT of each flow is 120

7
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Fig. 9. Verification of stability of PIQI-RCP under heterogeneous RTTs
D1 = 120, D2 = . . . = D9 = 300 ms and κ = ηκ∗ (T = 10 ms,
τ1 = 0.005, τ2 = 0.5, γ = 0.95).
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Fig. 10. Sending rate of PIQI-RCP in topology T1 for κ = ηκ∗ (T = 10
ms, τ1 = 0.005, τ2 = 0.5, γ = 0.95).

ms. Fig. 8 shows that PIQI-RCP is stable for η = 0.99
and unstable for η = 1.01, just as predicted by Theorem 2.
For the heterogeneous case, access links have different delays
such that D1 = 120 ms and the other nine flows have RTT
300 ms. The corresponding plots are shown in Fig. 9 where
the condition κ < κ∗ is both sufficient and necessary. This
confirms our earlier observation that if RTTs are clustered
close to D, the derived stability conditions become necessary.

We finally examine whether PIQI-RCP is stable in topology
T1. Fig. 10 shows the sending rates of PIQI-RCP flows in T1

for both η = 0.5 and η = 0.99, where the former case is slower
in convergence, but much smoother in terms of sending-rate
dynamics.

V. SIMULATIONS

In this section, we compare the performance of RCP and
PIQI-RCP in various simulation setups using ns-2. In most
cases, RCP’s parameters are set as in the default implementa-
tion (i.e., α = 0.4, β = 1), all router intervals T are 10 ms,
and PIQI-RCP’s κ1 = κ2. In order to avoid computing the
sine function inside routers, we replace the upper bound κ∗

with a much simpler upper bound

κ∗ =
T

2(T + D)
≤ κ∗, (35)

where D is the maximum RTT of end flows.
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Fig. 11. Sending rate of RCP and PIQI-RCP in a single-bottleneck network
with heterogeneous RTTs D1 = 120, D2 = . . . = D9 = 300 ms and
κ = 0.95κ∗ (T = 10 ms, τ1 = 0.005, τ2 = 0.5, γ = 0.95).
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Fig. 12. Comparison of queue size for RCP and PIQI-RCP in a single-
bottleneck network with heterogeneous RTTs D1 = 120, D2 = . . . = D9 =
300 ms and κ = 0.95κ∗ (T = 10 ms, τ1 = 0.005, τ2 = 0.5, γ = 0.95).

A. Single-Bottleneck Topology

Consider a dumb-bell topology with heterogeneous flows
discussed in the previous section. The performance of RCP
and PIQI-RCP with κ = 0.95κ∗ is shown in Fig. 11. In the
steady state, all flows share the bottleneck link fairly regardless
of their RTTs. For RCP, new flows join the system with a
sending rate equal to the current control rate at the router,
which leads to an overshoot of link capacity for every new
flow entering the system. This in turn results in often drastic
reductions in rate as seen in Fig. 11(a). The peak queue size
for RCP is nearly 3, 500 packets, while that for PIQI-RCP is
only 550 packets as shown in Fig. 12. Also observe that PIQI-
RCP keeps the queue close to zero after the second flow has
joined the system. Similar behavior is observed for bottleneck
capacity of 1 and 10 gb/s (not shown for brevity).

B. Peak Queue Size

In this section, we compare the peak queue size of RCP
with that of PIQI-RCP in the same simulation setup, except
a single join event at t = 15 has N flows entering the
system simultaneously. Fig. 13(a) shows that RCP performs
significantly worse than PIQI-RCP, reaching over 501, 000
queued packets for N = 250 and scaling its buffer requirement
super-linearly (note the log-scale of the y-axis). On the other
hand, PIQI-RCP scales much better and stabilizes the queue at
10, 000 packets after N = 25. This implies that as N increases
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Fig. 13. Comparison of PIQI-RCP to other methods (T = 10 ms, τ1 =
0.005, τ2 = 0.5, γ = 0.95).

beyond 250, the difference between RCP and PIQI-RCP will
be more noticeable.

C. Average Flow Completion Time

We next compare RCP, PIQI-RCP, TCP, and XCP using av-
erage flow completion time (AFCT) as the main performance
metric. AFCT is often compared to the smallest achievable
average flow completion time known as Processor Sharing
(PS) [6]. Intuitively, RCP will fare better in this scenario since
new flows entering the system directly use the current control
rate at the router, while new flows in PIQI-RCP, TCP, and XCP
gradually increase their sending rate and hence require more
time to complete. We confirm this in a simulation scenario
from [5] consisting of a single-bottleneck link of capacity
2.4 gb/s and delay of 50 ms. New flows enter the system as
Poisson arrivals with Pareto-distributed flow sizes with mean
30 packets (1000 bytes/pkt) and shape 1.4. The offered load
is 90% of link capacity.

The corresponding AFCT for all studied methods are shown
in Fig. 13(b), where the results are obtained from ns2
simulations with infinite buffers.4 Observe in the figure that
PIQI-RCP is indeed slower than RCP, but nevertheless is faster
than TCP and XCP. The difference between RCP and PIQI-
RCP can be bridged by selecting a higher value of τ1, which
can be viewed as a tuning knob that controls the tradeoff
between AFCT and the buffering requirement.

D. Multi-Bottleneck Link Topology

We finish simulations with a parking-lot topology in Fig.
14, where flow x1 traverses two links of capacity 970 and
800 mb/s, respectively, and delay 50 ms each. Flow x2 only
traverses the first link and flow x3 only the second. The three
flows enter the system at t = 0, 15, 30 seconds, respectively.
The sending rate of all flows for RCP and PIQI-RCP is shown
in Fig. 15. Until t = 15, flow x1 is bottlenecked at link l2. At
t = 15 when x2 enters the system, the bottleneck of flow x1

switches to link l1 and both x1 and x2 have identical sending
rates equal to 485 mb/s. At t = 30 when x3 enters the system,
x1 switches its bottleneck to l2 again, after which x1 and

4RCP with finite buffers loses a lot of packets and performs much worse
in terms of AFCT, which we do not show for brevity.
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Fig. 14. Topology T2.
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Fig. 15. Performance comparison of RCP and PIQI-RCP in parking-lot
topology T2 under heterogeneous delay D1 = 200, D2 = D3 = 100 ms
and κ = 0.95κ∗ (T = 10 ms, τ1 = 0.005, τ2 = 0.5, γ = 0.95).

x3 equally share link l2 (i.e., rate 400 mb/s each). Flow x2

captures the remaining bandwidth at link l1, which is the max-
min allocation of rates for this topology. As seen from the
figures, the magnitude of transient oscillations is much smaller
in PIQI-RCP compared to RCP, while the convergence time
is almost the same.

VI. LINUX EXPERIMENTS

We also compare RCP and PIQI-RCP using our own
Linux implementation in a gigabit Emulab [7] network. We
use Linux kernel 2.6.12 to develop the end-host and router
functionality of both RCP and PIQI-RCP, where each protocol
is implemented as a module that can be dynamically plugged
in/out of the running kernel without rebooting the system.
We modify the TCP/IP stack to convert its original window-
based data transfer to rate-based operation required by these
protocols. We tune the default kernel parameters in order to
support gigabit throughput for a wide-range of RTTs and
fairly evaluate the limitations of each protocol. Specifically,
we increase the maximum size of socket read/write buffers,
per-connection memory space, backlog queue in the receive
path, transmit queue in the forward path, and transmit/receive
ring buffers of the network interface card. We set control
parameters α = 0.1, β = 1 for RCP and κ = κ∗, τ1 =
0.01, τ2 = 0.1, γ = 0.95 for PIQI-RCP. All routers use T = 10
ms for their control equations.

A. Single-bottleneck Topology

Consider a scenario where three flows pass through a single-
bottleneck link of capacity 1 gb/s and round-trip propagation
delay of 50 ms. Each flow is connected to the bottleneck link
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Fig. 16. Linux performance of three flows sharing a single-bottleneck link
of capacity 1 gb/s and RTT 50 ms.
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Fig. 17. Linux queuing dynamics in RCP.

through a different access link of capacity 1 gb/s and negligible
delay. These flows start with a 30-second delay and each lasts
for 90 seconds. The sending rates5 of the flows are illustrated
in Fig. 16, where both methods are able to maintain high
throughput and keep CPU utilization below 30% at the router.
During the experiment, we also monitor the IP layer queue
size inside the bottleneck router. As shown in Fig. 17(a), RCP
experiences significant queue buildup (up to 9, 415 packets)
whenever a new flow joins the system. In contrast, PIQI-RCP
maintains queue size of at most 1 packet (not shown in the
figure), which can be explained by the gradual increase of user
rates in the source controller. This allows the router enough
time to converge to a new steady state without significantly
overshooting link capacity.

B. Abrupt Change in Traffic Demand

In this experiment, we examine the performance of RCP
and PIQI-RCP with an abrupt increase or decrease in traffic
demand. We use a dumb-bell topology with gigabit access
links and a bottleneck link with capacity 100 mb/s and delay
25 ms. At t = 0, one long flow is started for a duration of
120 seconds. At t = 30, another 10 flows abruptly join the
network and continue to remain in the system until t = 113,
at which time they all suddenly exit.

In RCP, at time t = 30 the average input traffic increases
to 300 mb/s and the queue size jumps to around 11, 000

5The reported sending rate is the throughput at the IP layer using packet
size of 1500 bytes.
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Fig. 18. Linux performance with abrupt change in traffic demand.
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Fig. 19. Linux performance in the presence of background mice entering
the system at t = 30.

packets as shown in Fig. 17(b), which is very similar to the
behavior of RCP in ns2. Next, with the rise in both the
input traffic rate and queue size, the router’s control equation
overcompensates and drives the combined sending rate to
10 mb/s as shown in 18(a). This explains the drop in link
utilization at t = 30. The system remains in this transient
state for about 7 seconds before eventually recovering. As can
be seen from Fig. 18(b), PIQI-RCP has a very small overshoot
of Cl and all excess traffic gets absorbed in network device
queues without increasing the router queue (i.e., the peak IP-
layer queue is again 1 packet).

C. Performance with Mice Traffic

In this section, we study RCP and PIQI-RCP when the input
traffic is a combination of both short-lived (i.e., mice) and
long-lived flows. We start the long flow at t = 0 from one
of the two sender machines and generate mice traffic starting
at t = 30 from the other machine. All flows pass through
a common bottleneck link of capacity 1 gb/s and delay of
25 ms. The pattern of mice traffic follows Poisson arrivals
with the mean inter-arrival time of 0.2 seconds and Pareto-
distributed duration (i.e., number of transferred packets) with
shape parameter 1.4 and mean 100 packets.

The results of this experiment are shown in Fig. 19. In RCP,
link utilization remains generally very high, but experiences
occasional overshoots by 40% and undershoots by 25%.
PIQI-RCP, on the other hand, demonstrates much less rate
fluctuation, a virtually non-existent queue, and the same high
link utilization as in RCP. This shows that PIQI-RCP is not
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only a stable protocol with good transient properties in theory,
but also a practical approach suitable for GENI-style [19]
networks of the future.

VII. CONCLUSION AND FUTURE WORK

In this work, we found that RCP could become unstable
in certain cases and required unrealistically large buffers to
absorb transient overshoots of link capacity. As an alternative
to RCP, we proposed a new controller called PIQI-RCP
and showed that its heterogeneous stability could be easily
established using common control-theory tools. We further
demonstrated in simulations and experiments that PIQI-RCP
required much smaller buffers at routers and had a lower
average flow completion time compared to TCP and XCP.

Future work involves analysis of multi-link stability of max-
min congestion control and deployment of explicit-feedback
methods in large-scale testbeds with millions of flows.
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