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Abstract

Video streaming is becoming an increasingly important part
of the present Internet. To guarantee a high-quality streaming
environment to end users, many video applications require a
strict form of network QoS that is not available in the present
Internet. Thus, to supplement the best-effort model of existing
networks, we study a new video streaming framework that al-
lows applications to mark their own packets with different pri-
ority and use multi-queue congestion control inside routers to
effectively drop the less-important packets during bufferover-
flows. We describe priority AQM algorithms that provide “op-
timal” performance to video applications under arbitrary net-
work loss and study a variation of Kelly’s congestion control in
combination with our framework. We call the combined archi-
tecture PELS –Partitioned Enhancement Layer Streaming.

1. Introduction

Typical video applications transport multimedia data that
are highly sensitive to quality-of-service (QoS) characteristics
(e.g., delay or packet loss) of their end-to-end path and often re-
quire better than simply best-effort services from the network
before they can offer a high-quality streaming environmentto
end users. In response to this demand, significant research ef-
fort went into improving the best-effort model of the current
Internet [2, 4, 6, 7, 10, 32].

One dimension of this related work supplements the best-
effort model with network QoS that guarantees a “better than
best-effort” performance to end flows (these methods loosely
fall under the umbrella of DiffServ [2, 4]). The other, more
recent dimension includes various Active Queue Management
(AQM) algorithms [6, 7, 10, 11, 20, 32] that are able to pro-
vide QoS services to the flows with much less overhead than
the more traditional mechanisms like DiffServ or IntServ [3].

However, none of the existing QoS methods provide a scal-
able, low-overhead, low-delay, and retransmission-free plat-
form required by many current real-time streaming applica-
tions. To fill this void, this paper investigates novel AQM al-
gorithms that not only can provide a provably “optimal” per-
formance under random loss, but also possess very low imple-
mentation complexity.

∗ This work was supported in part by the NSF under grant ANI-0312461.

One of the characteristics of video packets that does not
match the best-effort service is that they often carry infor-
mation of different importance. Thus, video applications can
clearly differentiate between the more-important and the less-
important packets. In all layered video coding schemes, the
base layer is more important than the enhancement layer. Fur-
thermore, the lower sections of the enhancement layer are more
important than the higher sections because their loss renders
all dependent data virtually useless. Thus, treating all video
packets equally (as in the current best-effort Internet) usually
leads to significant quality degradation during packet lossand
low useful throughput during congestion, both of which cause
video streaming to become unappealing in practical settings.

With the presence of unequal importance among video
packets, the first goal of this work is to achieve “high end-
user utility,” which means that the majority of packets thatare
transmitted across the bottleneck link must carryusefulinfor-
mation that can be decoded by the receiver. In video applica-
tions that use motion compensation and variable-length coding
(VLC), a single lost packet in the base layer may affect sev-
eral frames and render them all useless even though some of
them arrive to the receiver without any loss. Furthermore, the
enhancement layer is not immune to packet loss either since
strong dependence between the coded data allows packet loss
to affect consecutive chunks of data that are significantly larger
than those actually lost in the network. Hence, even under mod-
erate packet loss, the bottleneck link may be used to transmit a
large number of packets that eventually get dropped by the de-
coder.

In addition to high utility, many interactive applications
(such as video telephony) further require low end-to-end de-
lays to deliver high application-layer performance to the user.
Additional problems with delays arise during retransmission of
lost packets since all video frames have strict decoding dead-
lines. During heavy congestion (especially along paths with
large buffers), the RTT is often so high that even theretrans-
mittedpackets are dropped in the same congested queues [21].
As a result, the receiver in such scenarios must ask for multiple
retransmissions of each lost packet, which often causes there-
transmitted packets to miss their decoding deadlines. Thus, our
second goal is to provide aretransmission-freenetwork ser-
vice to video flows. This direction generally aligns well with
FEC-based approaches, except our goal is to avoid all band-
width overhead associated with error-correcting codes andoc-
cupy network channels only with the actual video data.



To improve the quality of video delivered over the Inter-
net, we investigate a new streaming framework in which each
application marks its own packets with different priorities and
uses AQM inside routers to effectively drop the less-important
packets during congestion. Such preferential (instead of ran-
dom) dropping of packets allows the application to maintain
a much higher quality of video for the end user compared to
similar scenarios in a best-effort network. We also find thatthe
use of multi-queue AQM allows scalable video applications to
maintain high useful link utilizationwithout retransmitting any
of the lost packetsor sending any error-correcting codes. Thus,
we achieve both goals of high utility and low end-to-end de-
lay.

While our implementation relies on Kelly’s utility-based
controllers [17], it is important to realize that the proposed
framework can be used with any congestion control (including
end-to-end methods such as AIMD, TFRC, or even TCP) and
can be deployed in the current Internet with minimum modifi-
cations to the existing infrastructure.

The rest of paper is organized as follows. Section 2 discusses
the background and related work. Section 3 presents an anal-
ysis of video streaming in best-effort and AQM environments.
Section 4 describes the proposed video streaming framework
including FGS-layer packet marking techniques and optimal
router queue management mechanisms. Section 5 studies con-
gestion control applied to the proposed framework. Section6
discusses simulation results and Section 7 concludes the pa-
per.

2. Background and Related Work

Many studies are conducted to improve the best-effort
model of the current Internet by supplementing it with net-
work QoS. Some of them focus on AQM [6, 7, 10, 32] that pro-
vides unequal treatment to flows, while others range from of-
fering hard guarantees in the form of IntServ [3] to more scal-
able models such as DiffServ [2, 4]. We briefly overview some
of the more recent and promising approaches.

2.1. Priority QoS Methods

Several studies investigate the performance of video stream-
ing over the DiffServ architecture. Gurseset al. [12] use a
temporally-scalable H.263+ video scheme and three-color
markers (TCM) that allow ingress routers to promote pack-
ets (i.e., increase their priority). However, this work does not
employ congestion control or allow the end flows to bene-
fit from unequal priority of the packets since DiffServ can ar-
bitrarily remark them according to ingress/egress policies of
peering ISPs. Shinet al. [30, 31] study the problem of “opti-
mal” assignment of relative priority indexes to video packets
depending on their impact on the quality of received video. Be-
sides using a fairly complex packet prioritization scheme,the
work does not use congestion control or discuss how the net-
work should treat marked packets. Zhaoet al. [35] employ

MPEG-4 FGS for video streaming and use several compu-
tationally intensive packet prioritization schemes, but also
without studying network support of the proposed architec-
ture.

Among non-DiffServ methods, Kuzmanovicet al. [19] pro-
pose TCP-LP, which provides a TCP-like low-priority ser-
vice that seeks out bandwidth left-over from the high-priority
streams. Tanget al.[33] present a video streaming protocol that
uses low-priority dummy packets to probe for new bandwidth.
The dummy packets are sent only upon packet loss and only
for the duration of one round-trip delay. Hurleyet al. [13] pro-
pose ABE (Alternative Best Effort) that requires applications to
choose between two conflicting types of service (i.e., low de-
lay or low packet loss). A similar approach is used in BEDS
(Best Effort Differentiated Service) [8].

Finally, we should note that Internet-2’s QBSS (QBone
Scavenger Service) [28] is similar to our approach as it pro-
vides service differentiation by allowing end flows to mark
their own packets with the low-priority bit. However, the cur-
rent QBSS does not support more than two priorities or directly
benefit video traffic.

2.2. Active Queue Management

Active Queue Management (AQM) schemes perform spe-
cial operations in the router to achieve better performancefor
end flows. These operations include dropping random packets
(e.g., RED), re-arranging the order in which packets are served
(e.g., WFQ), and randomly marking packets from more aggres-
sive flows (e.g., ECN). While WFQ focuses on providing fair-
ness to competing flows [6, 32], RED/ECN attempt to avoid
congestion by randomly dropping or marking packets with a
certain probability that increases with the level of congestion
[7, 10, 11]. As such, these methods are not specifically tailored
to multimedia applications and thus cannot directly improve
video quality of Internet streaming.

Additional studies combine congestion control with AQM
to provide robust and smooth controllers since routers can
detect network conditions more accurately than end systems.
Lapsleyet al. [20] study optimization-based congestion control
and propose router-based Random Early Marking (REM) that
works with cooperating end-flows to maximize their individ-
ual utilities. Katabiet al. [16] present XCP (eXplicit Conges-
tion notification Protocol) that conveys information aboutthe
degree of congestion in network paths to application sources
using two separate AQM controllers for utilization and fair-
ness. Several other studies include Kelly’s optimization meth-
ods [14, 17, 18, 26] and Low’s work [22, 23, 24, 25].

2.3. Structure of MPEG-4 FGS

Recall that FGS (Fine Granular Scalability) [29] is the
streaming profile of the ISO/IEC MPEG-4 standard, which is
a method of compressing residual video signals into a single
enhancement layer that provides a flexible and low-overhead
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Figure 1. Scaling of MPEG-4 FGS using fixed-
size (left) and variable-size (right) frames.

foundation for scaling the enhancement layer to match vari-
able network capacity during streaming. The FGS layer is typ-
ically coded at some fixed (very large) bitrateRmax and can
be re-scaled to any desired bitrate by discarding a certain frac-
tion of each FGS frame.

Fig. 1 illustrates the operation of MPEG-4 FGS. The fig-
ure shows individual frames from the base layer and the cor-
responding FGS layer. The shaded parts of the enhancement
layer are the fractions of each frame taken by the server as part
of its rate-scaling mechanism during streaming. Dependingon
the optimization goals of the server, it can transmit a fixed frac-
tion of each frame or use rate-distortion (R-D) models to dy-
namically determine the desired amount of data in each frame
(interested readers are referred to [5] for more details).

3. Analysis of Video Streaming

In the first part of this section, we investigate probabilistic
characteristics of video streaming performance under random
packet loss. We study a best-effort network, in which routers
drop video packets uniformly and randomly during congestion.
Recall that many studies of Internet QoS attempt to improve
TCP performance by changing drop behavior of the network
from bursty to uniformly random [10, 11]. Thus, it can be ar-
gued that future networks will deploy such packet drop mech-
anisms more often than the current Internet. Therefore, we as-
sume an independent loss model with exponential tails of burst-
length distributions (rather than a heavy-tailed model, which is
commonly observed in FIFO queues) and use it throughout the
paper.

In the second part of this section, we overcome the dras-
tic reduction of video quality in best-effort streaming andshow
thatpreferentialpacket drops can in fact provide “optimal” per-
formance to the end-user. Thus, following the best-effort anal-
ysis, we study priority-based AQM that supports preferential
streaming and compare it with the best-effort scheme.

Finally, we should note that although quality degradation
of multimedia streaming in best-effort networks is well docu-
mented, the novelty of this section lies in the derivation ofthe
exact closed-form expressions for the penalty inflicted on scal-
able flows under uniform packet loss and the novel associated
discussion that is also useful for understanding “optimality” of
AQM in later sections.

3.1. Best-Effort Streaming

In this section, we investigate the effect of random packet
drops on video quality using the example of MPEG-4 FGS
(similar results apply to non-FGS layered coding)1. We start
by examining the probabilistic characteristics of packet drops
in an FGS frame, derive the expected amount ofusefuldata re-
covered from each frame, and define the effectiveness of FGS
transmission over a lossy channel.

Assume that long-term network packet lossp can be mod-
eled by a sequence of independent Bernoulli random variables
Xi. EachXi is an indicator function that determines whether
packeti is lost or not:Xi = 1 iff packeti is dropped in the net-
work. ThenP (Xi = 1) = 1− P (Xi = 0) = E[Xi] = p is the
average packet loss. Even though this model is a great simplifi-
cation of real networks and results in the probability of obtain-
ing a burst of lengthk proportional toe−k (i.e., the tail of burst
sizes is exponential), it suffices for our purposes (see the dis-
cussion on RED/ECN earlier in this section).

Next assume that FGS frame sizesHj are measured in pack-
ets and are given byi.i.d. random variables with a probability
mass function (PMF)qj = P (Hj = k), k = 1, 2, . . .. The ex-
act distribution of{Hj} depends on the frame rate, variation
in scene complexity, and the bitrate of the sequence. The ques-
tion we address next is what is the expected amount of use-
ful packets that the receiver can decode from each frame under
p–percent random loss? Thus, our goal is to determine the ex-
pectation ofYj , which is the number of consecutively received
packets in a framej.

Lemma 1:Assuming independent Bernoulli packet loss
with probability p, the expected number of useful pack-
ets in an FGS frame is:

E[Yj ] =
1 − p

p

∞
∑

k=1

(

1 − (1 − p)k
)

qk. (1)

Proof: See [15].
Throughout the rest of the paper, we examine one particular

distribution of{Hj}, in which all FGS frames have the same
fixed sizeH. Under these conditions, (1) becomes:

E[Yj ] =
1 − p

p

(

1 − (1 − p)H
)

. (2)

This model is compared to actual simulation results in Table
1 for H = 100. As the table shows, even under a reasonably
low packet loss of 1%, the expected number of useful pack-
ets in each frame is only 62; however, the decoder successfully
receives (on average) a total of 99 packets per frame. Further-
more, under moderate loss of 10%, only 9 useful packets are re-
covered from each frame, while a total of 90 packets per frame
are transmitted over the bottleneck link.

1 Further note that motion-compensated enhancement layers suffer even
more degradations under best-effort loss and are not modeled in this work.
However, the expected amount of improvement from QoS in such schemes
is even higher than that in FGS.
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H Packet lossp Simulations Model (2)
100 0.0001 99.49 99.49
100 0.01 62.78 62.76
100 0.1 8.99 8.99

Table 1. Expected number of useful packets.

Furthermore, as streaming rates become higher (andH be-
comes larger),E[Yj ] tends to(1−p)/p and the recovered (use-
ful) percentage of each frame tends to zero. This is shown in
Fig. 2 (left) for p = 0.1, in which the number of useful pack-
ets in the best-effort case quickly saturates at(1 − p)/p = 9
asH becomes large. The same side of the figure also plots the
number of packets that could have been recovered in the “op-
timal” case, where allH(1 − p) packets are useful in decod-
ing (which is clearly the best possible scenario underp–percent
packet loss).

To quantify the effect of FGS packet transmission on video
quality, we defineutility U of received FGS video as the ra-
tio of the average number of FGS packets used in decoding a
video frame (i.e.,E[Yj ]) to the total number of received FGS
packets (i.e.,H − pH):

U =
E[Yj ]

H(1 − p)
=

1 − (1 − p)H

Hp
, (3)

where the last expansion holds for the constant frame size
model in (2). For instance, we getU = 0.1 with p = 0.1 andH
= 100, which means that only 10% of the received FGS pack-
ets are useful in enhancing the base layer. This result is fur-
ther illustrated in Fig. 2 (right), which plots the utility of best-
effort streaming and the “optimal” utility for different values
of H and p = 0.1. As the figure shows, the utility of best-
effort video drops to zero inverse proportionally to the value
of H, which means that asH → ∞ (i.e., sending rates be-
come higher), the decoder receives “junk” data with probabil-
ity 1.

3.2. Optimal Preferential Streaming

In this section, we discuss the “optimal” streaming method
that can provide high end-user utility and significant quality
improvement along AQM-enabled network paths. In order to
achieve the maximum end-user utility (i.e.,U = 1), routers
must drop the upper parts of the FGS layer during congestion
and transmit only the lower parts since consecutive lower por-
tions of the FGS layer can enhance the base layer, while any
gaps in the delivered data typically render the remainder ofthe
layer useless. Fig. 3 depicts the difference between the ideal
and random drop patterns in an enhancement frame and shows
that all dropped packets must occupy the upper portion of the
FGS layer to achieve optimality.

Since for a given drop ratep, the “optimal” AQM scheme
dropspH packets from the upper part of the FGS frame and
protects the remainingH(1 − p) packets, all received FGS
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Figure 2. The number of useful FGS packets in
each frame (left). Utility of received video (right).

packets are consecutive and thus can be used to enhance the
base layer. Hence, the utility of this framework is always one
regardless of the values ofp or H. For example, assuming the
same scenario as in the best-effort case (p = 0.1, H = 100),
preferential streaming deliversten times more useful packets
than best-effort streaming. The main question now is whether
optimal streaming is possible in practice and how to achieveit
using scalable AQM methods. We address this issue next.

4. Preferential Video Streaming Framework

In this section, we introduce a new video streaming
framework calledPartitioned Enhancement Layer Stream-
ing (PELS) that operates in conjunction with priority-queuing
AQM routers in network paths. In the PELS framework, ap-
plications partition the enhancement layer into two layers
and voluntarily mark their packets using different prior-
ity classes, allowing the network routers to discriminate
between the packets based on their priority (no per-flow man-
agement is required).

Recall that coded video frames carry information that has
different importance to the end user – the lower layers are more
sensitive to packet loss than the higher layers. The base layer
(being most sensitive) isrequired for displaying video appro-
priately at the receiver and thus is transmitted using the high-
est priority class. This ensures that the base layer is dropped
only when the entire FGS layer is discarded by the routers.

The reason for splitting the FGS layer into two priorities is
also simple to understand. Bytes in the lower part of the FGS
layer are more important than those in the higher part because
the former includes the information needed to properly decode
the latter. Due to this nature of FGS streams, dropping pack-
ets randomly (as in the best-effort network) does not properly
protect the lower parts of FGS even under moderate conges-
tion. Hence, to protect the lower portions of FGS frames and
drop the upper parts, preferential treatment of not only thebase
layer, but also the enhancement layer is highly desirable.

4.1. Router Queue Management

In this section, we discuss queuing disciplines necessary to
support PELS and how applications should assign priority to
their packets. To separate video traffic from the rest of the
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flows, the proposed PELS architecture must maintain in each
network router two types of queues – the PELS queue and
the Internet queue. The PELS queue is further subdivided into
green, yellow, and red priority queues to service marked multi-
media packets, while the Internet queue serves all other (non-
multimedia) Internet traffic in a regular FIFO fashion. To en-
sure that network bandwidth is shared “fairly” between PELS
applications and other Internet traffic, we employ weighted
round-robin (WRR) scheduling between the PELS and Inter-
net queues. Recall that WRR can provide a desired level of
fairness between several types of traffic by allocating a cer-
tain fraction of the outgoing link to each queue as shown in
Fig. 4 (left). This allows de-centralized administrative flexibil-
ity in selecting the weights and assigning proper “importance”
to different classes of traffic.

It is easy to see that the PELS queue must employ astrict
priority queuing discipline to maximize the resulting video
quality for a given total throughput budget. Since the higher
parts of the FGS frame cannot be decoded without the pres-
ence of the lower parts, each router has no reason to transmit
the higher parts before sending the lower ones. This implies
that network routers must use queuing mechanisms that do not
allow low-priority packets to pass untilall high-priority packets
are fully transmitted. Note that, in general, strict priority queue-
ing is frowned upon since it leads to starvation in low-priority
queues and denial-of-service effects for certain flows; however,
this situation does not arise in PELS since each flow sends a
certain amount of high-priority (i.e., green) packets and always
receives non-negligible service from the network. In fact,star-
vation in low-priority (i.e., red) queues is equivalent to 100%
loss in these queues and has very little effect on the resulting
quality since it affects only the upper parts of each enhance-
ment frame (more on this below).

Since PELS application sources can arbitrarily mark their
packets, we must next ensure that no end-user gains anything
by marking all of its FGS packets with high priority (i.e.,
green). Such “misbehaving” sources will increase congestion
in the green queues, which will result in (uniform) random
losses in their base layers and will quickly degrade the re-
sulting quality of their own video. Similarly, end-flows have
little incentive in sending too many yellow packets or being
congestion-indifferent. Thus, if each application is a selfish,
independent entity that attempts to maximize the utility ofits
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Figure 4. Router queues for PELS framework
(left). Partitioning of the FGS layer into two lay-
ers and PELS coloring of FGS packets (right).

video at the receiver, it will send red packets to probe for con-
gestion and back-off (i.e., reduce the total sending rate) during
the loss of any red packets to protect the yellow/green queues
from upcoming congestion.

We should make several other interesting observations.
First, notice that PELS assumes certain stationarity of the
end-to-end path (all packets take the same route) and the pres-
ence of PELS-enabled AQM at thebottleneckrouter. The
former assumption is common to all flows using conges-
tion control (i.e., multi-path routing and/or route changes
make the control loop produce unpredictable results). The lat-
ter assumption is very relaxed since it does not requireall
routers to deploy PELS at the same time. Our second observa-
tion is that priority queuing in PELS is low-overhead, flexible,
does not require support from DiffServ or use of per-flow man-
agement, and can be implemented using priority queues
available in many existing router hardware/software solu-
tions. Finally, PELS does not require communication be-
tween routers and leaves the decisions of how to mark packets
to the end-user (i.e., pushes complexity outside the net-
work).

4.2. FGS Partitioning and Packet Coloring

In a practical network environment (such as the Inter-
net), packet loss and available bandwidth are not constant
and change dynamically depending on cross traffic, link qual-
ity, routing updates, etc. Hence, streaming servers must often
probe for newly available bandwidth as part of congestion con-
trol and continuously send low-priority packets under the
assumption that these probes (and only they) will get lost dur-
ing congestion.

Fig. 4 (right) illustrates one possible partitioning of FGS
bytes into two priority classes (i.e., yellow and red) that can
achieve “optimal” utility discussed in section 3.2. The figure
shows that the server sendsxi bytes from each enhancement
framei (wherexi is given by congestion control and is derived
from Rmax using rate scaling algorithms [5]). The transmit-
ted section of each FGS frame is divided into two segments –
the lower segment of size(1 − γ)xi is all yellow and the up-
per segment of sizeγxi is all red. The division into red and
yellow packets depends on how conservative (many red pack-
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ets and largeγ) or optimistic (few red packets and smallγ) the
server wants to be.

In an ideal network with stationary packet lossp in the en-
hancement layer, the server can selectγ such thatγxi is equal
to pxi. This will ensure thatall red packets are lost and that ex-
actly (1− p)xi yellow packets are recovered for decoding (this
is the best scenario under any circumstances). In practice,how-
ever, keeping red packet losspR at 100% is not feasible since
any slight increase inp (caused by a new flow joining the net-
work or change in network conditions) will “spill” the loss into
the yellow queue, effectively creating a best-effort FIFO situ-
ation in the yellow queue. Thus, proper and dynamic selection
of γ is important (see the next section).

The other issue to address is congestion control. Even
though red queues can be used to isolate increasing packet loss
p without reducing the sending rate of the flow (i.e., by pro-
portionally increasingγ), the resulting situation will lead to
“trashing” the network with numerous red packets that even-
tually get dropped at the bottleneck link. To prevent waste of
bandwidth on the path to the bottleneck, the server must im-
plement elastic congestion control and reduce its rate when-
ever it loses either yellow or red packets (the loss of green
packets means that there is not enough bandwidth to sup-
port the base layer and no meaningful streaming can continue).
Since all flows in our model use PELS and the same conges-
tion control, they all back-off during the loss of red packets
and keep the amount of “waste” to a minimum.

4.3. Selection of γ

Recall that partitioning of the FGS layer into yellow/red
packets attempts to ensure that only the upper sections of
each frame are dropped during congestion; however, the per-
formance of PELS depends on the selection ofγ and the level
of congestion at the bottleneck link. In order for PELS to be ef-
fective, we must ensure that when flows probe for new band-
width, they do not incur such high levels of congestion as to
force packet loss in the yellow priority queue. Hence, givenany
control intervalk with packet lossp(k) in the FGS layer, how
can the server make sure that there will be no loss amongyel-
low packets during intervalk + 1?

Intuitively, γ should be adjusted according to packet loss
measured during intervalk to keep the resulting red losspR =
pxi/γxi = p/γ at a certain thresholdpthr. The most optimistic
approach suggestspthr ≈ 1 (which leads to the largest util-
ity U ≈ 1) and the most pessimistic approach keepspthr ≈ p
(which leads to the best-effort utility in the enhancement layer).

Based upon these observations, we seek a middle ground in
which pthr can be stabilized between 70 and 90% using sim-
ple closed-loop control methods that adjustγ based on the fol-
lowing rules:

• Increaseγ whenp increases

• Decreaseγ whenp decreases.
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Figure 5. Stability of γ with different σ.

Considering this general intuition, we next investigate a single
proportional controller that adjustsγ based on the measured
packet lossp(k) and target red packet losspthr:

γi(k) = γi(k − 1) + σ(pi(k − 1)/pthr − γi(k − 1)), (4)

where indexi represents flow number,pi(k) is the measured
averagepacket loss in the entire FGS layer for flowi dur-
ing intervalk, andσ is controller’s gain parameter. Note that
(1 − pthr)γxi is the amount of cushion left by the server for
the yellow packets. For example,pthr = 0.75 means that 25%
of the red queue works to protect the yellow queue against sud-
den (unexpected) increase in packet loss.

Note that, in general, the measurement ofpi(k) is coupled
with congestion control and should be provided by its feed-
back loop (we discuss this in section 5). Next notice that the
controller in (4) is stable if the following is satisfied.

Lemma 2:The controller (4) is stableiff 0 < σ < 2.
Proof: See [15].

Note that in a real network environment, feedback delays
are often involved. Assuming arbitrary round-trip delayDi for
flow i, (4) becomes:

γi(k) = γi(k−Di)+σ(pi(k−Di)/pthr − γi(k−Di)). (5)

Then we have a stronger version of the previous lemma that
shows stability of the resulting controller under arbitrary de-
lays.

Lemma 3:The controller (5) is stableiff 0 < σ < 2.
Proof: See [15].

Next, we derive the effect that (4)-(5) have on the packet
loss in the red queues.

Lemma 4:Assuming stationary packet lossp, both con-
trollers (4)-(5) converge red packet losspR to pthr.

Proof: See [15].
To illustrate that selection ofσ is important, but not drasti-

cally difficult, Fig. 5 depicts the behavior ofγ(k) with different
σ (we use a heavy-loss case withp = 0.5 andpthr = 0.75 in
this example). As the figure shows,γ(k) is stabilized at the sta-
tionary pointγ∗ = p/pthr ≈ 0.67 whenσ = 0.5, while it is
unstable whenσ = 3.

The resulting utility of received video in PELS under dy-
namically changingγ is lower-bounded by the following (as-
suming that only yellow packets are recovered from the FGS
layer):
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U ≥
H(1 − γ)

H(1 − p)
=

1 − p/pthr

1 − p
. (6)

Thus, the utility of PELS is at least 0.96 forp = 0.1 andpthr =
0.75 and at least 0.996 forp = 0.01 and the same threshold.
Although PELS does not achieve “optimality” forpthr < 1, it
comes very close to it and at the same time avoids the pitfalls
of the optimal method.

5. Congestion Control for Video

Congestion control is necessary for streaming applications
to provide a high level of video quality to end users and avoid
wasting network resources with packets that are eventually
dropped in congested queues. Many control methods dynam-
ically adjust the sending rate of end-flows based on network
feedback and aim to achieve a stable tradeoff between under-
utilization of resources and network congestion (i.e., packet
loss).

Recent studies have focused on developing smooth conges-
tion control schemes for multimedia streaming (e.g., TFRC [9]
and binomial algorithms [1]) after AIMD (Additive Increase,
Multiplicative Decrease) was unofficially found to be “unac-
ceptable” for video streaming due to its large rate fluctuations.
Nonetheless, these new control schemes often do not have sta-
tionary points in the operating range of typical applications and
continuously oscillate [34].

Among many recent game-theoretic and optimization meth-
ods [14, 17, 18, 22, 23, 24, 25, 26], we selected Kelly’s con-
gestion control framework (calledproportional fairness[17]),
since it is stable, efficient, and fair under various networkcon-
ditions. In this section, we study Kelly’s controls, apply them
to PELS streaming, and investigate whether their performance
provides the necessary foundation for achieving our goals of
smooth, high-quality video streaming.

In general, it is important to remember that PELS isinde-
pendentof congestion control and can be utilized with any end-
to-end or AQM scheme. Thus, the complexity of implementing
Kelly controls inside routers should be de-coupled from that of
PELS since the latter does not require the presence of the for-
mer. Kelly controls are studied here as an example of one pos-
sible scheme that supplements PELS with smoothly changing
rates. We leave the study of additional methods for future work.

5.1. Continuous-Feedback Control

Although Kelly’s controls have attracted significant atten-
tion, their application to video streaming is limited to [5]in
which Dai et al. use an application-friendly form of the con-
troller given by:

dr(t)

dt
= α − βp(t)r(t), (7)

wherer(t) is the rate of the flow,p(t) is packet loss (feedback
from the network),α andβ are gain parameters. Since in real

applications, rate adjustment is not continuous, we use a dis-
crete form of (7). However, notice that the classical discrete
Kelly control studied by [14] and others shows stability prob-
lems when the feedback delay becomes large [34]. Hence, we
employ a slightly modified discrete version of this framework
calledMax-min Kelly Control(MKC) [34]:

ri(k) = ri(k − Di) + α − βri(k − Di)pl(k − D←

i ), (8)

whereri(k) is the rate of sourcei during intervalk, D←

i is the
backward delay from the router to sourcei, Di is the round
trip delay of flow i, and packet losspl is fed back from the
most-congestedresourcel (this provides max-min resource al-
location instead of proportionally fair). The packet loss is com-
puted inside routerl at discrete intervals and inserted into all
passing packets:

pl(k) =

∑

j∈Sl
rj(k − D→

j ) − Cl
∑

j∈Sl
rj(k − D→

j )
, (9)

whereSl is the set of sources sending packets through routerl,
D→

j is the forward delay from sourcej to the router, andCl is
link capacity of routerl. The stability of system (8)-(9) is for-
malized as follows.

Lemma 5:System (8)-(9) is stable under heterogeneous de-
lays iff 0 < β < 2.

Proof: See [34].
We apply (8) for rate control in PELS streaming and inves-

tigate its control characteristics including:

• Convergence to a single stationary point

• Fairness between flows.

From (8) and (9), we next derive stationary ratesr∗i of end flows
in the equilibrium point and show that (8) has no oscillations in
the steady state.

Lemma 6:Regardless of the feedback delay, the stationary
rater∗i of each flow is:

r∗i =
Cl

N
+

α

β
. (10)

Proof: See [15].
Thus, unlike AIMD or TCP, MKC does not penalize flows

with higher RTT and further converges to a single stationary
point with no oscillation.

Next notice that priority queueing in PELS imposes in-
creased delays on red packets and that the utilization of each
priority class directly affects delay characteristics ofall queues
with lower priority. Since green packets have much smaller
queuing delays than yellow or red packets, it is tempting to pro-
vide feedback only in green packets. However, since the base
layer is sent at significantly lower rates than the enhancement
layer, this method introduces unnecessary feedback delaysdue
to large inter-packet spacing of the base layer. Thus, it is easy to
conclude that network feedback must be inserted by the router
into all passing packets (regardless of their color) for timely
delivery to the end flows. Below, we discuss methods to dis-
card out-of-sequence (i.e., outdated) feedback that may arrive
in red/yellow packets.
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Figure 6. Simulation topology.

5.2. PELS Implementation

We implemented new agents and a priority-based AQM
mechanism for PELS streaming in thens2 network simula-
tor [27]. PELS application sources mark their packets with
three priority levels (i.e., green, yellow, and red) and employ
MKC for rate control. Computation of packet lossp(k) is per-
formed by the router on a discrete time scale ofT time units and
then injected into the header of each packet passing through
the router (note that feedback information is a queue-specific
metric). Each new computation ofp(k) increases router’s local
epoch numberz to prevent sources from reacting to the same
feedback more than once as well as to suppress outdated val-
ues ofp(k) created by re-ordering inside PELS queues. Label
(router ID, z, p(k)) is provided to end flows through the header
of the packets queued at the bottleneck link.

Once received by the end-user, feedbackp(k) is sent in
ACKs to the source, which applies rate adjustments accord-
ing to (8) as long as it has not seen this feedback before. The
use of epoch numbers allows the source to keep the frequency
of its control loop in sync with that of the router and ensures
stability of the resulting system.

We next describe the above two algorithms in more detail.
Upon arrival and queuing of a packeti, the router increments
its local counterS by the size of the packetsi: S = S + si.
Then once everyT time units, the router computes new total
rateR, new packet lossp, increments its epoch numberz, and
resets the byte counter:

R =
S

T
, p =

R − C

R
, z = z + 1, S = 0. (11)

To verify the “freshness” of feedback, each PELS sourcei
checks feedback sequence numberz in the acknowledgment
and ignores feedback withz less than or equal to its current
epoch numberzi; otherwise,zi is set toz and a new send-
ing rate is computed using (8). When there are multiple routers
along an end-to-end path, each router compares itspl with that
inside arriving packets and overrides the existing value only if
its packet loss is larger than the current loss recorded in the
header. End flows use therouter ID field to keep track of feed-
back freshness and react to possible shifts of the bottlenecks.

Selection of intervalT depends on the desired responsive-
ness of the PELS framework to network conditions, but does
not affect stability of the system as a whole. To analytically
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Figure 7. The evolution of γ (left). The corre-
sponding red loss rates (right).

reflect the implementation of the PELS framework where the
router purposely delays its feedback byT units, we need to
modify the model of packet loss in (9) to become:

pl(k) =

∑

j∈Sj
rj(k − T − D→

j ) − Cl
∑

j∈Sj
rj(k − T − D→

j )
. (12)

Stability of system (8)-(12) is proved using the same arguments
as in Lemma 5 [34] and is omitted from this paper.

6. Simulation Results

In this section, we present simulation results of PELS in-
cluding the properties ofγ(k), MKC congestion control, PELS
queuing delay, and PELS video quality. We start by describ-
ing the simulation setup.

6.1. Simulation Setup

Forns2 simulations, we use a simple bar-bell topology with
multiple PELS and TCP sources connecting to a single bottle-
neck link. As shown in Fig. 6, the capacity of the bottleneck is
4 mb/s, while the rest of the links are 10 mb/s. In all simula-
tions, one video frame (63,000 bytes including the base layer)
consists of 126 packets, 500 bytes each (these numbers are de-
rived from MPEG-4 coded CIF Foreman). We mark 21 pack-
ets in each frame as green to protect the base layer of the se-
quence.

Recall that router queues in our framework completely sep-
arate the PELS flows from the traffic in the Internet queue. In
our simulations, we allocate 50% of the bottleneck link to TCP
cross-traffic; however, since the PELS and Internet queues do
not affects each other in any way, we only focus on PELS flows
and omit discussion of what happens to TCP traffic.

6.2. Stability Properties of γ

In this section, we show simulation results regarding sta-
bility of γ(k) computed by end-flows using dynamically vary-
ing packet lossp(k). Fig. 7 (left) shows the evolution ofγ(k)
obtained by running PELS streaming simulations inns2 with
two different average packet losses andσ = 0.5. In the begin-
ning,γ drops from the initial value of 0.5 to the lowest possi-
ble thresholdγlow = 0.05 since there is no packet loss (i.e., the

8



0 100 200 300
0.012

0.014

0.016

0.018

0.02

0.022

Time (seconds)

D
e

la
y
 (

s
e

c
o

n
d

s
)

0 100 200 300
0.01

0.015

0.02

0.025

0.03

0.035

Time (seconds)

D
e

la
y
 (

s
e

c
o

n
d

s
)

Figure 8. Green (left) and yellow (right) delays.

flows slowly probe for new bandwidth). When packets start be-
ing dropped during congestion,γ increases until it is stabilized
atγ∗ = p∗/pthr. Small oscillations ofγ(k) after it reaches the
stationary point is caused by small variation in feedbackp(k).

Fig. 7 (right) illustrates red packet drop ratespR correspond-
ing to the values ofγ on the left side the figure. As shown in
the figure, red packet loss is stabilized at the target threshold
ratepthr = 75% regardless of the value ofp (i.e., 7% or 14%).
Since the red loss never reaches 100%, all of yellow packets
are protected and experience (ideal) zero-loss conditions.

6.3. Delay Characteristics of PELS

Recall that AQM routers in the PELS framework employ
three priority queues for preferential treatment of green,yel-
low, and red packets. Fig. 8 illustrates delays of green (left)
and yellow (right) packets and Fig. 9 (left) depicts delays of
red packets. Theses delays are obtained by runningns2 sim-
ulations in which at every 50 seconds, two new flows entered
the system with the initial rate of 128 kb/s (i.e., the rate ofthe
base layer).

First notice that green and yellow packets have very small
delays compared to those of red packets. The average delays
of green and yellow packets are only 16 and 25 ms, respec-
tively, while the average delays of red packets reach as highas
400 ms. Further notice that after 100 seconds, red packet de-
lays increase every 50 seconds since each new flow further re-
duces the available bandwidth and increases congestion in the
red queue. These results are expected from the use of prior-
ity queuing in the routers and have no harmful effect on PELS
flows as loss or delays in the red queue have minimum im-
pact on the video quality (in fact, the purpose of red packetsis
to be lost in the network and protect the yellow queue).

6.4. Properties of PELS Congestion Control

We next study characteristics of MKC congestion control
coupled with the PELS queuing framework. Fig. 9 (right) il-
lustrates convergence of two PELS flows to 50% of the avail-
able PELS capacity (i.e., 1 mb/s each) forα = 20 kb/s and
β = 0.5. In the figure, flow F1 starts at time zero with the ini-
tial rater0 = 128 kb/s and then converges to the full link capac-
ity at around 0.1 seconds exponentially claiming the available
bandwidth. It maintains the equilibrium rate until the second
flow F2 starts att = 10 seconds (r0 = 128 kb/s). After another
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Figure 9. Red packet delays in PELS (left). Con-
vergence and fairness of MKC congestion con-
trol (right).

13 seconds, both flows converge to a fair allocation of link’s
bandwidth. For additional simulations of MKC with non-equal
feedback delays, see [5, 34].

6.5. PSNR Quality Evaluation

In this section, we compare the proposed preferen-
tial streaming scheme with the best-effort method using
PSNR quality curves. Through simulation, we obtained
packet loss statistics of each FGS frame and then ap-
plied them to the video sequence offline. We enhanced each
base-layer frame using consecutively received FGS pack-
ets and plotted PSNR quality curves accordingly. Aggregate
packet loss was calculated in the routers atT = 30 ms time in-
tervals.

Our main puzzle in this section was to properly select a
“generic” brand of best-effort streaming that adequately rep-
resents existing (non-QoS) approaches. Although there arenu-
merous methods of streaming video over the Internet (includ-
ing TCP, FEC-protected transmission, and various non-AIMD
methods), we aim to compare PELS with an alternative frame-
work that: 1) does not retransmit any lost packets; and 2) does
not send any error-correcting codes. Since no such framework
exists to our knowledge, we use AQM-enabled MKC under the
assumption that the base layer is “magically” protected at all
times. If packet loss is allowed in the base layer and retrans-
mission is suppressed, best-effort streaming simply becomes
impossible due to propagation of losses throughout each GOP
(Group of Pictures). Thus, we protected the entire base layer in
the best-effort case and allowed random loss only in the FGS
layer to keep this approach even remotely competitive with
PELS.

We first examine PSNR of the Foreman sequence recon-
structed with 10% network packet loss (left of Fig. 10). As
shown in the figure, best-effort streaming improves the base-
layer PSNR by approximately 24% on average, while PELS
enhances it by 60%.

Next, we examine the case with higher packet loss. Fig. 10
(right) illustrates the PSNR curve of the same Foreman se-
quence reconstructed with 19% packet loss. In this case, while
the best-effort method improves the base-layer PSNR only by
16%, PELS improves it by 55%.
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Figure 10. PSNR of CIF Foreman reconstructed
with 10% (left) and 19% (right) packet loss.

From the curves in Fig. 10, we also observe that the PSNR of
best-effort streaming varies by as much as 15 dB (even though
the sending rates of MKC are perfectly smooth) and provides a
highly-fluctuating quality that is similar to that achievable with
AIMD [5]. On the contrary, PELS maintains a much higher
PSNR throughout the entire sequence and keeps quality fluc-
tuation to a minimum, which can be further reduced using so-
phisticated R-D scaling methods [5] (not used in this work).
Thus, we can conclude that PELS streaming provides an effec-
tive and low-overhead QoS foundation for scalable multimedia
streaming in the future Internet.

7. Conclusion

This paper studied characteristics of video streaming in
best-effort networks and proposed a preferential streaming
framework (PELS) that can provide a high level of end-user
QoS. We further studied modified Kelly controls in conjunction
with PELS and found that they presented a good foundation for
future video streaming in AQM environments. Since the PELS
framework is independent of congestion control methods em-
ployed, it can be further used with a variety of existing and fu-
ture game-theoretic or optimization-based controllers.
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