On Estimating Tight-Link Bandwidth Characteristics over Multi-Hop Path

Seong-Ryong Kang

Joint work with Xiliang Liu, Amit Bhati, and Dmitri Loguinov

Internet Research Lab Department of Computer Science Texas A&M University, College Station, TX 77843

July 6, 2006

Agenda

- Introduction
 - Motivations and goals
- Background
 - Definition of bandwidth
 - End-to-end Internet-path and single-hop model
- Envelope
 - Envelope packet-trains
 - Phase-based individual link measurement
- Performance of Envelope
 - Estimation accuracy and asymptotic behavior
 - Wrap-up

Motivation

- Bandwidth estimation is an important area of Internet research
 - Helps to understand network path characteristics
 - Potentially can help various Internet applications

 Majority of available bandwidth estimation processes do not provably converge to the correct values

Motivation 2

- Computer Science, Texas A&M University
- Furthermore, none of the existing techniques can correctly measure the tight-link capacity over a multi-hop path
 - Tight link is the link with the minimum available bandwidth of a path

- Develop a provably accurate estimation technique
- Measure both capacity and available bandwidth of the tight link
- Work for multi-hop paths under arbitrary crosstraffic

Definition of Bandwidth

- Bottleneck bandwidth
 - The capacity of the slowest link of an end-to-end path
 - The slowest link is often called narrow link

- Available bandwidth
 - The smallest average unused bandwidth along the end-to-end path

Definition Bandwidth 2

• Available bandwidth of the path: A = 12

End-to-End Internet Path

- The sender injects probe packets with inter-packet spacing x
- Due to expansion/compression in pre-tight links, interpacket spacing x_t is different from the initial spacing x
- $-x_t$ is altered at router R_t to be y_t by random noise w_t - The receiver samples inter-arrival dispersion y

Single-Hop Model

- Assumes that cross-traffic in non-tight links does not change inter-packet spacings of the probe packets
 - That is, $x = x_t$ and $y = y_t$
- Derives the mean output dispersion E[y] under arbitrary cross-traffic
 - Other single-hop models (Dovrolis *et al.* INFOCOM 2001 and Melander *et al.* GLOBECOM 2000) rely on a constant-rate fluid model of cross-traffic

Single-Hop Model 2

- Extracts capacity and available bandwidth of the tight link from E[y] with high accuracy
- For details, see the paper (Kang *et al.* INCP 2004)

- Recursively extends the single-hop results to multi-hop paths
 - Sample statistics of each hop independently
- Measures both capacity and available bandwidth of the tight link under arbitrary cross-traffic
 - Can also measure non-tight link in certain path and cross-traffic conditions
- Provides asymptotic accuracy
 - Estimates converge to the true value after a sufficiently long measurement process

- Recursive extension:
 - Treats inter-packet spacing x_k of probe traffic arriving at router R_k as the inter-departure delay y_{k-1} of the previous router R_{k-1}

$$\cdots$$
 R_{k-1} $y_{k-1} = x_k$ R_k $y_k = x_{k+1}$ R_{k+1} \cdots

- Necessary conditions for measuring link R_k
 - Spacing between two probe packets must be small when arriving at router R_k
 - However, the departure spacing from the router must be large to preserve its mean along the path suffix
- How do we satisfy these conditions?
 - By using Envelope packet-trains and TTL-limited dropping of probe packets at select routers
 - This does not require special "cooperation" from the routers

Envelope packet train

- An envelope packet-train includes N probe packets P_1 , ..., P_N surrounded by two Envelope packets E_1 and E_2
- Delays between two probe packets are small
- Delays between two Envelope packets become large by selecting a large ${\cal N}$

• To obtain the departure spacing from router R_k , all probe packets P_1, \ldots, P_N are dropped at router R_{k+1} using TTL limiting

- The probe packets sample queuing dynamics at the desired router ${\cal R}_k$
- The surviving envelope packets carry spacing z_k that is N+1 times larger than the departure spacing y_k from the router R_k

- For *M* links in the end-to-end path, Envelope takes *M*-1 measurement phases
 - Each phase focuses on a particular router R_k
 - Obtains the mean spacing $E[z_k]$ exiting from R_k
- Using $E[z_{k-1}]$ measured in the previous phase, Envelope estimates the available bandwidth A_k and capacity C_k of the router R_k
- For details of bandwidth extraction process, see the paper

Simulation Topology

	Different link bandwidths (Mb/s)							
	C_1	A_1	C_2	A_2	C_3	A_3	C_4	A_4
Case-I	5	1	100	50	100	40	1.5	0.3
Case-II	2	0.4	1.5	0.25	0.8	0.4	1.5	0.35
Case-III	1.5	0.3	100	50	100	40	5	1
Case-IV	20	4	15	2.5	8	4	15	3.5
Case-V	2	0.4	0.8	0.4	1.5	0.25	2	0.4

- Darkly shaded values in each row represent the tightlink capacity and available bandwidth of the path
- We also lightly shade the narrow-link capacity in cases when it is different from the tight link

Estimation Accuracy

Relative error metrics:

$$e_{C_i} = \frac{|C_i - C'_i|}{C_i}, \ e_{A_i} = \frac{|A_i - A'_i|}{A_i}$$

- $-e_{C_i}$ and e_{A_i} are relative estimation errors of C_i and A_i , respectively
- $-C_i$ is the true capacity of link *i* and C_i ' is its estimate
- $-A_i$ is the true available bandwidth of link i and $A_i{\rm '}$ is its estimate

Estimation Accuracy 2

CBR cross-traffic

	Relative estimation error				
	Case-I	Case-II	Case-III	Case-IV	Case-V
e_{C_1}	0.94%	2.39%	0.17%	0.15%	10.76%
e_{A_1}	7.75%	1.57%	3.74%	6.99%	4.20%
e_{C_2}		0.35%		2.36%	2.47%
e_{A_2}		2.09%		5.62%	8.71%
e_{C_3}		3.76%		0.65%	4.13%
e_{A_3}		7.07%		2.04%	5.71%
e_{C_4}	1.56%	0.60%		12.11%	21.19%
e_{A_4}	2.38%	3.05%		9.86%	17.59%

Estimation Accuracy 3

• TCP cross-traffic

	Relative estimation error					
	Case-I	Case-II	Case-III	Case-IV	Case-V	
e_{C_1}	0.21%	0.40%	0.46%	8.55%	4.22%	
e_{A_1}	12.07%	0.27%	0.98%	21.23%	16.60%	
e_{C_2}		3.62%		0.26%	5.90%	
e_{A_2}		4.22%		3.29%	10.06%	
e_{C_3}		10.79%		9.41%	10.06%	
e_{A_3}		15.44%		23.30%	5.82%	
e_{C_4}	0.24%	10.04%			_	
e_{A_4}	3.30%	11.53%				

CBR cross-traffic (case I)

Asymptotic Behavior 2

• TCP cross-traffic (case I)

Performance Comparison

Available bandwidth under TCP cross-traffic

	Relative estimation error				
	Envelope	Pathload	Spruce	IGI	
Case-I	3.30%	8.33%	34.83%	86.67%	
Case-II	4.22%	12.09%	78.00%	109.20%	
Case-III	0.98%	3.33%	7.65%	103.05%	
Case-IV	3.29%	15.88%	78.15%	98.96%	
Case-V	5.82%	12.04%	70.85%	91.60%	

Performance Comparison 2

Bottleneck bandwidth under TCP cross-traffic

	Relative estimation error				
	Envelope	CapProbe	Pathrate		
Case-I	0.24%	40.95%	40.93%		
Case-II	10.79%	39.12%	32.50%		
Case-III	0.46%	35.78%	48.10%		
Case-IV	9.41%	50.60%	20.62%		
Case-V	5.90%	51.62%	45.62%		

- Envelope measures both bandwidth metrics of the tight-link under arbitrary cross-traffic
- Its estimates are asymptotically accurate
- It is based on recursive extension of the singlehop results to multi-hop paths
- Future work
 - Implementation and deployment of Envelope
 - Further reduction of probe traffic required