On Estimating Tight-Link Bandwidth Characteristics over Multi-Hop Path

Seong-Ryong Kang

Joint work with Xiliang Liu, Amit Bhati, and Dmitri Loguinov

Internet Research Lab
Department of Computer Science
Texas A&M University, College Station, TX 77843

July 6, 2006
Agenda

• Introduction
 ─ Motivations and goals

• Background
 ─ Definition of bandwidth
 ─ End-to-end Internet-path and single-hop model

• Envelope
 ─ Envelope packet-trains
 ─ Phase-based individual link measurement

• Performance of Envelope
 ─ Estimation accuracy and asymptotic behavior

• Wrap-up
Motivation

• Bandwidth estimation is an important area of Internet research
 — Helps to understand network path characteristics
 — Potentially can help various Internet applications

• Majority of available bandwidth estimation processes do not provably converge to the correct values
Motivation 2

• Furthermore, none of the existing techniques can correctly measure the tight-link capacity over a multi-hop path
 — Tight link is the link with the minimum available bandwidth of a path
Goals

• Develop a provably accurate estimation technique
• Measure both capacity and available bandwidth of the tight link
• Work for multi-hop paths under arbitrary cross-traffic
Definition of Bandwidth

- **Bottleneck bandwidth**
 - The capacity of the slowest link of an end-to-end path
 - The slowest link is often called *narrow* link

- **Available bandwidth**
 - The smallest average unused bandwidth along the end-to-end path
Definition Bandwidth 2

- Available bandwidth of the path: \(A = 12 \)

```
S → R_1 (50) → R_2 (20) → R_3 (40) → R_4 → D
```

- Tight link, capacity = 50
- Narrow link bottleneck capacity = 20
End-to-End Internet Path

The sender injects probe packets with inter-packet spacing \(x \)

Due to expansion/compression in pre-tight links, inter-packet spacing \(x_t \) is different from the initial spacing \(x \)

\(x_t \) is altered at router \(R_t \) to be \(y_t \) by random noise \(w_t \)

The receiver samples inter-arrival dispersion \(y \)
Single-Hop Model

- Assumes that cross-traffic in non-tight links does not change inter-packet spacings of the probe packets
 - That is, $x = x_t$ and $y = y_t$

- Derives the mean output dispersion $E[y]$ under arbitrary cross-traffic
 - Other single-hop models (Dovrolis *et al.* INFOCOM 2001 and Melander *et al.* GLOBECOM 2000) rely on a constant-rate fluid model of cross-traffic
Single-Hop Model 2

- Extracts capacity and available bandwidth of the tight link from $E[y]$ with high accuracy
- For details, see the paper (Kang et al. INCP 2004)
Envelopes

- Recursively extends the single-hop results to multi-hop paths
 - Sample statistics of each hop independently

- Measures both capacity and available bandwidth of the tight link under arbitrary cross-traffic
 - Can also measure non-tight link in certain path and cross-traffic conditions

- Provides asymptotic accuracy
 - Estimates converge to the true value after a sufficiently long measurement process
• Recursive extension:
 — Treats inter-packet spacing x_k of probe traffic arriving at router R_k as the inter-departure delay y_{k-1} of the previous router R_{k-1}

\[y_{k-1} = x_k \]

\[y_k = x_{k+1} \]
• Necessary conditions for measuring link R_k
 — Spacing between two probe packets must be small when arriving at router R_k
 — However, the departure spacing from the router must be large to preserve its mean along the path suffix

• How do we satisfy these conditions?
 — By using Envelope packet-trains and TTL-limited dropping of probe packets at select routers
 — This does not require special “cooperation” from the routers
Envelope 4

• Envelope packet train

- An envelope packet-train includes N probe packets P_1, $..., P_N$ surrounded by two Envelope packets E_1 and E_2
- Delays between two probe packets are small
- Delays between two Envelope packets become large by selecting a large N
To obtain the departure spacing from router R_k, all probe packets P_1, \ldots, P_N are dropped at router R_{k+1} using TTL limiting.

The probe packets sample queueing dynamics at the desired router R_k.

The surviving envelope packets carry spacing z_k that is $N+1$ times larger than the departure spacing y_k from the router R_k.
Envelope 6

• For M links in the end-to-end path, Envelope takes $M-1$ measurement phases
 — Each phase focuses on a particular router R_k
 — Obtains the mean spacing $E[z_k]$ exiting from R_k

• Using $E[z_{k-1}]$ measured in the previous phase, Envelope estimates the available bandwidth A_k and capacity C_k of the router R_k

• For details of bandwidth extraction process, see the paper
Simulation Topology

- S_1 to R_1
 - 100 Mb/s
 - 5 ms
- R_1 to R_2
 - 100 Mb/s
 - 5 ms
- R_2 to S_2
 - 100 Mb/s
 - 5 ms
- S_2 to D_2
 - 100 Mb/s
 - 5 ms
- D_2 to S_3
 - 100 Mb/s
 - 5 ms
- S_3 to R_3
 - 100 Mb/s
 - 5 ms
- R_3 to C_2
 - 100 Mb/s
 - 5 ms
- C_2 to R_4
 - 100 Mb/s
 - 5 ms
- R_4 to S_4
 - 100 Mb/s
 - 5 ms
- S_4 to D_4
 - 100 Mb/s
 - 5 ms
- D_4 to PR
 - 100 Mb/s
 - 5 ms
- PR to C_4
 - 100 Mb/s
 - 5 ms
- C_4 to R_5
 - 100 Mb/s
 - 5 ms
- R_5 to R_1
 - 100 Mb/s
 - 5 ms
Simulation Setup

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th>A_1</th>
<th>C_2</th>
<th>A_2</th>
<th>C_3</th>
<th>A_3</th>
<th>C_4</th>
<th>A_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case-I</td>
<td>5</td>
<td>1</td>
<td>100</td>
<td>50</td>
<td>100</td>
<td>40</td>
<td>1.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Case-II</td>
<td>2</td>
<td>0.4</td>
<td>1.5</td>
<td>0.25</td>
<td>0.8</td>
<td>0.4</td>
<td>1.5</td>
<td>0.35</td>
</tr>
<tr>
<td>Case-III</td>
<td>1.5</td>
<td>0.3</td>
<td>100</td>
<td>50</td>
<td>100</td>
<td>40</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Case-IV</td>
<td>20</td>
<td>4</td>
<td>15</td>
<td>2.5</td>
<td>8</td>
<td>4</td>
<td>15</td>
<td>3.5</td>
</tr>
<tr>
<td>Case-V</td>
<td>2</td>
<td>0.4</td>
<td>0.8</td>
<td>0.4</td>
<td>1.5</td>
<td>0.25</td>
<td>2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

- Darkly shaded values in each row represent the tight-link capacity and available bandwidth of the path.
- We also lightly shade the narrow-link capacity in cases when it is different from the tight link.
Estimation Accuracy

- Relative error metrics:

\[e_{C_i} = \frac{|C_i - C'_i|}{C_i}, \quad e_{A_i} = \frac{|A_i - A'_i|}{A_i} \]

- \(e_{C_i} \) and \(e_{A_i} \) are relative estimation errors of \(C_i \) and \(A_i \), respectively
- \(C_i \) is the true capacity of link \(i \) and \(C'_i \) is its estimate
- \(A_i \) is the true available bandwidth of link \(i \) and \(A'_i \) is its estimate
Estimation Accuracy 2

- **CBR cross-traffic**

<table>
<thead>
<tr>
<th></th>
<th>Case-I</th>
<th>Case-II</th>
<th>Case-III</th>
<th>Case-IV</th>
<th>Case-V</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_{C_1}</td>
<td>0.94%</td>
<td>2.39%</td>
<td>0.17%</td>
<td>0.15%</td>
<td>10.76%</td>
</tr>
<tr>
<td>e_{A_1}</td>
<td>7.75%</td>
<td>1.57%</td>
<td>3.74%</td>
<td>6.99%</td>
<td>4.20%</td>
</tr>
<tr>
<td>e_{C_2}</td>
<td>—</td>
<td>0.35%</td>
<td>—</td>
<td>2.36%</td>
<td>2.47%</td>
</tr>
<tr>
<td>e_{A_2}</td>
<td>—</td>
<td>2.09%</td>
<td>—</td>
<td>5.62%</td>
<td>8.71%</td>
</tr>
<tr>
<td>e_{C_3}</td>
<td>—</td>
<td>3.76%</td>
<td>—</td>
<td>0.65%</td>
<td>4.13%</td>
</tr>
<tr>
<td>e_{A_3}</td>
<td>—</td>
<td>7.07%</td>
<td>—</td>
<td>2.04%</td>
<td>5.71%</td>
</tr>
<tr>
<td>e_{C_4}</td>
<td>1.56%</td>
<td>0.60%</td>
<td>—</td>
<td>12.11%</td>
<td>21.19%</td>
</tr>
<tr>
<td>e_{A_4}</td>
<td>2.38%</td>
<td>3.05%</td>
<td>—</td>
<td>9.86%</td>
<td>17.59%</td>
</tr>
</tbody>
</table>
Estimation Accuracy 3

- TCP cross-traffic

<table>
<thead>
<tr>
<th></th>
<th>Case-I</th>
<th>Case-II</th>
<th>Case-III</th>
<th>Case-IV</th>
<th>Case-V</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_{C_1}</td>
<td>0.21%</td>
<td>0.40%</td>
<td>0.46%</td>
<td>8.55%</td>
<td>4.22%</td>
</tr>
<tr>
<td>e_{A_1}</td>
<td>12.07%</td>
<td>0.27%</td>
<td>0.98%</td>
<td>21.23%</td>
<td>16.60%</td>
</tr>
<tr>
<td>e_{C_2}</td>
<td>—</td>
<td>3.62%</td>
<td>—</td>
<td>0.26%</td>
<td>5.90%</td>
</tr>
<tr>
<td>e_{A_2}</td>
<td>—</td>
<td>4.22%</td>
<td>—</td>
<td>3.29%</td>
<td>10.06%</td>
</tr>
<tr>
<td>e_{C_3}</td>
<td>—</td>
<td>10.79%</td>
<td>—</td>
<td>9.41%</td>
<td>10.06%</td>
</tr>
<tr>
<td>e_{A_3}</td>
<td>—</td>
<td>15.44%</td>
<td>—</td>
<td>23.30%</td>
<td>5.82%</td>
</tr>
<tr>
<td>e_{C_4}</td>
<td>0.24%</td>
<td>10.04%</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>e_{A_4}</td>
<td>3.30%</td>
<td>11.53%</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Asymptotic Behavior

- CBR cross-traffic (case I)

(a) e_C for case I

(b) e_A for case I
Asymptotic Behavior 2

- TCP cross-traffic (case I)

(a) e_C for case I

(b) e_A for case I
Performance Comparison

- Available bandwidth under TCP cross-traffic

<table>
<thead>
<tr>
<th>Case</th>
<th>Relative estimation error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Envelope</td>
</tr>
<tr>
<td>Case-I</td>
<td>3.30%</td>
</tr>
<tr>
<td>Case-II</td>
<td>4.22%</td>
</tr>
<tr>
<td>Case-III</td>
<td>0.98%</td>
</tr>
<tr>
<td>Case-IV</td>
<td>3.29%</td>
</tr>
<tr>
<td>Case-V</td>
<td>5.82%</td>
</tr>
</tbody>
</table>
Performance Comparison 2

- Bottleneck bandwidth under TCP cross-traffic

<table>
<thead>
<tr>
<th></th>
<th>Relative estimation error</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Envelope</td>
<td>CapProbe</td>
<td>Pathrate</td>
<td></td>
</tr>
<tr>
<td>Case-I</td>
<td>0.24%</td>
<td>40.95%</td>
<td>40.93%</td>
<td></td>
</tr>
<tr>
<td>Case-II</td>
<td>10.79%</td>
<td>39.12%</td>
<td>32.50%</td>
<td></td>
</tr>
<tr>
<td>Case-III</td>
<td>0.46%</td>
<td>35.78%</td>
<td>48.10%</td>
<td></td>
</tr>
<tr>
<td>Case-IV</td>
<td>9.41%</td>
<td>50.60%</td>
<td>20.62%</td>
<td></td>
</tr>
<tr>
<td>Case-V</td>
<td>5.90%</td>
<td>51.62%</td>
<td>45.62%</td>
<td></td>
</tr>
</tbody>
</table>
Wrap-up

- Envelope measures both bandwidth metrics of the tight-link under arbitrary cross-traffic
- Its estimates are asymptotically accurate
- It is based on recursive extension of the single-hop results to multi-hop paths
- Future work
 - Implementation and deployment of Envelope
 - Further reduction of probe traffic required