Characterizing Tight-Link Bandwidth of Multi-Hop Paths Using Probing Response Curves

Seong Kang

Joint work with Dmitri Loguinov

LTE Systems Lab Samsung Electronics, Seoul, Korea

Agenda

- Introduction
 - Motivation and goals
 - Definition of bandwidth
- PRC-MT
 - Basic idea and issues
 - Proposed approach
- Evaluation
 - -With and without interrupt delay
- Conclusion

Motivation

- Bandwidth estimation is an important area of Internet research
 - Plays an important role in characterizing network paths
 - Potentially can help various Internet applications
- The vast majority of existing approaches focuses on end-to-end measurements

Motivation 2

- Existing approaches can be classified into measurement tools and theoretical models
- Measurement tools
 - Usually based on extensive simulation
 - But, no convergence analysis with general cross-traffic
- Theoretical models
 - Usually have provable convergence
 - But, no practical implementation
- In addition, OS and hardware-related timing irregularities make delay measurements not perfect
 - Cause unknown performance issues in real networks

<u>Goals</u>

- Develop a practical measurement tool based on a recent theoretical model
- Achieves asymptotic accuracy in multi-hop path networks with arbitrary cross-traffic
- Simultaneously measures both the capacity and available bandwidth of the tight link
- Robust to various timing irregularities

Definition of Bandwidth 1

- Bottleneck bandwidth
 - Capacity of the slowest link of a path
 - The slowest link is often called *narrow* link
- Available bandwidth
 - The smallest unused bandwidth of links in the path
 - The link with the smallest unused bandwidth is called tight link

Definition of Bandwidth 2

• Available bandwidth of the path: A = 12

PRC-MT

- PRC-MT is a practical implementation that exploits certain characteristics of input probing rate r_I and corresponding arrival rate r_O
 - $r_{\rm I}$ represents the average sending rate of packets in a probe-packet train of size N
 - $-\,r_{O}$ represents the average rate of probe packets arriving at the receiver
- PRC-MT utilizes the concept of Probing Response Curve (PRC), which is a functional relationship between r_I and r_I/r_O

Basic Idea

• Define F to be the ratio of r_{I} and r_{O} under fluid cross-traffic

Basic Idea 2

Hypothetical fluid response curve F

- Note that A_t is identified by the first break point
- C_t can be extracted by taking inverse of the slope (α) of the second line segment $-C_t = 1/\alpha$

Practical Issues

• Real response curve Z is different from the fluid counter part F (with finite probe-train size N and finite probe packet size q

-Z - F > 0 in real networks

When probe-train length N is small, Z fluctuates substantially and exhibits large deviation from F

When N increases, Z shows prominent two linear lines and its deviation from F becomes smaller

Practical Issues 2

- For accurate discovery of the first break point, variation in Z should be small for different r_I
- More importantly, the second line segment should be parallel to that in F
 - If the second segments in Z and F are parallel, then we can use any two points on the second segment in Zto compute its slope
- However, fluctuation of line segments in Z depends on probe parameters and unknown path characteristics

Practical Issues 3

- Hence, selection of path-specific *N* for a given probe-packet size is very important
- N needs to be large enough to obtain reliable line segments
 - However, it is desirable to have as small N as possible to reduce measurement overhead and avoid too much packet loss within a probe train
- In addition, building PRC requires substantial probing overhead since A_t could be anywhere between 0 and C_t

Proposed Approach

- Probe for path-specific probing parameters
 - Probe for an initial input rate r_I with a single-probe train
 - Employ iterative probing for packet-train length N in binary search fashion
- Do not build entire PRC to reduce probing overhead
 - Instead employ binary search-like iterative probing for available bandwidth A_t
 - Extract tight-link capacity C_t without additional probing

Parameter Selection

- First, probe for an initial rate r_I by sending a single probe-train - Compute $r_I = q/(E[y])$, of packets in the probe-train
- Next, note that $r_{\rm I}/r_{\rm O}$ saturates at a certain value as N becomes large

$$r_I/r_O \approx \frac{\lambda_t + r_I}{C_t}$$

• Thus, iteratively probe for the smallest N based on a binary search between $N_{\rm min}$ and $N_{\rm max}$, while keeping the variation of r_I/r_O within a certain threshold

Bandwidth Probing

- Available bandwidth (A_t) iterative probing
 (1) In k-th iteration, sends probe-trains with rate R(k)
 (if k = 0, R(k) is set to the initial r_I)
 - (2) If asserted to be $R(k) > r_0$, then update the upper bandwidth bound $W_H = R(k)$ and records $(R(k), r_0)$ pair
 - (3) If asserted to be $R(k) < r_0$, then update the lower bandwidth bound $W_L = R(k)$
 - (4) Compute $R(k+1) = (W_H + W_L) / 2$ for next iteration
 - (5) If $W_H W_L \leq$ threshold, return $A_t = (W_H + W_L)/2$
 - (6) Otherwise, repeat steps (1) (4)

Bandwidth Probing 2

- Capacity (C_t)
 - (1) Select two $(R(k), r_0)$ pairs recorded in the A_t probing step (2), which is the farthest two points that satisfy $R(k) \ge W_H$
 - (2) Compute the slope (α) of the line segment connecting the two points
 - (3) Then, return $1/\alpha$ as an estimate of C_t

Interrupt Delays

- Interrupt moderation is widely used with modern Gigabit network cards
 - Reduce CPU utilization and increase network throughput
- At a single interrupt, NIC delivers multiple packets to the kernel

Interrupt Delays 2

- A wide range of interrupt delays with Intel Gigabit NICs
 - -83 250 usec for Windows
 - $-\,125-1000$ usec for Linux
- Some study suggests at least 470 usec delay to achieve good throughput and substantially reduce CPU utilization

Impact of Interrupt Delays

- IGI/PTR, Spruce, CapProbe
 - Not accurate regardless of an interrupt delay (δ)
- Pathchirp
 - Accurate, but requires substantially more probe data with non-trivial $\boldsymbol{\delta}$
 - Prolonged measurement duration
- Pathload
 - Accurate with small delays (less than 125 usec)
 - Becomes unreliable when $\delta > 125$ usec
- IMRP significantly improves Pathload's estimation reliability
 - Use wavelet-based signal de-noising

Evaluation Topology

Experimental Setup

	Different link bandwidths (Mb/s)								
	C_1	A_1	C_2	A_2	C_3	A_3	C_4	A_4	
Case-I	75	31.8	90	51.6	90	42.1	[60]	40.7	
Case-II	75	41.3	90	70.7	90	46.7	[60]	26.4	
Case-III	[60]	35.8	90	70.7	[90]	23.4	75	18.1	
Case-IV	[60]	21.6	90	65.9	90	42.1	75	36.7	
Case-V	[60]	50.2	90	61.1	90	41.9	75	50.8	
Case-VI	75	28.9	90	37.8	90	13.8	[60]	31.2	

- Shaded values represent tight-link capacity C_t and available bandwidth A_t of the path for each case
- Values in square brackets are the capacities C_n of the narrow link

Performance Comparison

• Under no interrupt delay

Evaluation	Relative estimation error e_A								
scenario	PRC-MT		Pathload		Pathchirp		IGI / PTR		
	e_A	time	e_A	time	e_A	time	e_A	time	
Case-I	3.49%	89 sec	9.45%	69 sec	10.84%	200 sec	10.58/16.02%	3 sec	
Case-II	2.35%	$115 \sec$	8%	69 sec	8.53%	200 sec	4.21/9.93%	4 sec	
Case-III	0.88%	96 sec	7.57%	70 sec	0.39%	200 sec	72.76/30.28%	5 sec	
Case-IV	5.05%	138 sec	6.48%	69 sec	1.62%	200 sec	19.72/24.63%	6 sec	
Case-V	5.51%	102 sec	16.58%	108 sec	19.81%	200 sec	13.38/5.31%	3 sec	
Case-VI	9.74%	$125 \sec$	15.01%	99 sec	18.04%	200 sec	98.56/59.24%	5 sec	

Available bandwidth estimation error

Methods	Relative estimation error e_C							
	Ca	ase-II	Case-IV					
	e_C	time	e_C	time				
PRC-MT	2.52%	115 (sec)	3.51%	138 (sec)				
Pathrate	28.33%	2191 (sec)	21.67%	2191 (sec)				
CapProbe	47.32%	500 (sec)	63.38%	500 (sec)				

Capacity Estimation Error

Performance Comparison 2

• Interrupt delay: 500 usec

Evaluation	Relative estimation error e_A									
scenario	PRC-MT		IMR-Pathload		Pathload		Pathchirp		IGI / PTR	
	e_A	time	e_A	time	e_A	time	e_A	time	e_A	time
Case-I	3.71%	90 sec	5.12%	88 sec			7.22%	200 sec	62.34/22.8%	4 sec
Case-II	3.83%	89 sec	2.17%	89 sec			13.57%	200 sec	62.37/13.83%	4 sec
Case-III	1.55%	133 sec	6.78%	95 sec			5.14%	200 sec	44.14/44.81%	4 sec
Case-IV	0.19%	89 sec	3.24%	99 sec			13.01%	200 sec	59.03/21.25%	5 sec
Case-V	5.81%	92 sec	7.23%	79 sec			11.26%	200 sec	69.21/1.64%	3 sec
Case-VI	5.56%	96 sec	5.56%	80 sec			3.54%	200 sec	29.15/67.68%	5 sec

Available bandwidth estimation error

Methods	Relative estimation error e_C								
	Ca	ase-II	Case-IV						
	e_C	time	e_C	time					
PRC-MT	1.72%	89 (sec)	7.65%	86 (sec)					
Pathrate	17.5%	2191 (sec)	18.33%	2191 (sec)					
CapProbe	57.65% 500 (sec)		81.77%	500 (sec)					

Capacity Estimation Error

Conclusion

- Proposed a new bandwidth measurement tool called PRC-MT
 - Exploits characteristics of probing response curves
 - Extracts both bandwidth metrics of the tight link over multi-hop paths
- Evaluated PRC-MT with other existing tools under non-trivial interrupt delay
 - PRC-MT produced available bandwidth and capacity estimates with high accuracy
 - Timing irregularity caused by interrupt moderation significantly affects performance of tools such as Pathload

Thank you!