・ロト ・日ト ・ヨト ・ヨト

Impact of FEC Overhead on Scalable Video Streaming

Seong-ryong Kang and Dmitri Loguinov

Department of Computer Science Texas A&M University College Station, TX 77843

June 14, 2005

・ロン ・回 と ・ ヨン・

크

- Motivation
- Background
- Impact of FEC on Scalable Video
- Adaptive FEC Control
- Evaluation
- Conclusion

◆□ > ◆□ > ◆臣 > ◆臣 > ○

크

Outline

Motivation

- Background
- Impact of FEC on Scalable Video
- Adaptive FEC Control
- Evaluation
- Conclusion

Motivation

Background Impact of FEC on Scalable Video Adaptive FEC Control Evaluation Conclusion

(ロ) (四) (三) (三) (三) (三)

Motivation of this work

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming 4/30

Motivation

Background Impact of FEC on Scalable Video Adaptive FEC Control Evaluation Conclusion

(ロ) (四) (三) (三) (三) (三)

Motivation of this work

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming 4/30

Motivation of this work

• Internet streaming is an important part of the Internet

- Internet streaming is an important part of the Internet
- Streaming applications usually require special mechanisms that can overcome packet loss without utilizing retransmission

イロト イヨト イヨト イヨト

- Internet streaming is an important part of the Internet
- Streaming applications usually require special mechanisms that can overcome packet loss without utilizing retransmission
- FEC is often considered for recovering lost data segments

イロト イヨト イヨト イヨト

- Internet streaming is an important part of the Internet
- Streaming applications usually require special mechanisms that can overcome packet loss without utilizing retransmission
- FEC is often considered for recovering lost data segments
- However, studies reported conflicting results on the benefits of FEC

イロト イヨト イヨト イヨト

- Internet streaming is an important part of the Internet
- Streaming applications usually require special mechanisms that can overcome packet loss without utilizing retransmission
- FEC is often considered for recovering lost data segments
- However, studies reported conflicting results on the benefits of FEC
- Our work aims to:
 - address this uncertainty and
 - provide additional insight into understanding how FEC overhead affects the performance of scalable video streaming

◆□ > ◆□ > ◆臣 > ◆臣 > ○

크

Outline

Motivation

Background

- Impact of FEC on Scalable Video
- Adaptive FEC Control
- Evaluation
- Conclusion

Background

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming 6/30

イロト イヨト イヨト イヨト

Background

FEC

- FEC schemes require application servers to send extra information along with the original data
- Media independent FEC
 - Based on (N, k) block codes (such as parity or Reed-Solomon codes), where N is the size of an FEC block and k is the number of FEC packets in the block
- All data packets are recovered if the number of lost packets in a block is no more than \boldsymbol{k}
- If more than k packets are lost, none of them can be recovered by the receiver

Background

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming 7/30

イロト イヨト イヨト イヨト

Background

FGS

- Streaming profile of the ISO/IEC MPEG-4 standard
- Method of compressing residual video signal into a single enhancement layer
- Allows application servers to scale the enhancement layer to match variable network capacity during streaming
- The enhancement layer is typically coded at some fixed bitrate and can be rescaled to any desired bitrate

・ロ・・(四・・モ・・モ・・ 油

Background

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming 8/30

イロト イヨト イヨト イヨト

Background

 Because of dependency in the enhancement layer, higher sections of FGS cannot be used in decoding the frame without the presence of lower sections

Background

 Because of dependency in the enhancement layer, higher sections of FGS cannot be used in decoding the frame without the presence of lower sections

・ロト ・日ト ・ヨト ・ヨト

◆□ > ◆□ > ◆臣 > ◆臣 > ○

크

Outline

Motivation

Background

• Impact of FEC on Scalable Video

- Adaptive FEC Control
- Evaluation
- Conclusion

◆□> ◆□> ◆臣> ◆臣> ─ 臣

Analysis of video streaming

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming 10/30

・ロン ・回 と ・ ヨ と ・ ヨ と

르

Analysis of video streaming

• We investigate the performance of FEC-based streaming considering Markov and renewal patterns of packet loss

イロト イヨト イヨト イヨト

Analysis of video streaming

- We investigate the performance of FEC-based streaming considering Markov and renewal patterns of packet loss
 - We use MPEG-4 FGS as an example and only examine the enhancement layer

Analysis of video streaming

- We investigate the performance of FEC-based streaming considering Markov and renewal patterns of packet loss
 - We use MPEG-4 FGS as an example and only examine the enhancement layer
- Note that many studies show that Internet packet loss can be captured by Markov models
 - Alternating ON/OFF renewal process can model more general distribution of packet loss and allows heavy-tailed burst lengths

(a)

Analysis of video streaming

- We investigate the performance of FEC-based streaming considering Markov and renewal patterns of packet loss
 - We use MPEG-4 FGS as an example and only examine the enhancement layer
- Note that many studies show that Internet packet loss can be captured by Markov models
 - Alternating ON/OFF renewal process can model more general distribution of packet loss and allows heavy-tailed burst lengths
- In what follows, we derive the expected amount of *useful* data $E[Z_j]$ recovered from each frame
 - Z_j is the number of consecutively received packets in a frame j

◆□> ◆□> ◆臣> ◆臣> ─ 臣

Analysis of video streaming

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming 11/30

・ロン ・回 と ・ヨン ・ヨン

3

Analysis of video streaming

 \bullet Assume that long-term network packet loss is given by p

・ロン ・回 と ・ ヨ と ・ ヨ と

크

Analysis of video streaming

- Assume that long-term network packet loss is given by p
- Loss process can be modeled by a two-state Markov chain:

(a)

Analysis of video streaming

- Assume that long-term network packet loss is given by p
- Loss process can be modeled by a two-state Markov chain:

Analysis of video streaming

- Assume that long-term network packet loss is given by p
- Loss process can be modeled by a two-state Markov chain:

- α and β are transition probabilities
- In the stationary state, probabilities π₀ and π₁ to find the process in each of its two states are given by:

$$\pi_0 = \frac{\beta}{\alpha + \beta}, \ \pi_1 = p = \frac{\alpha}{\alpha + \beta}.$$
 (1)

・ロト ・同ト ・ヨト ・ヨト

◆□> ◆□> ◆臣> ◆臣> ─ 臣

Analysis of video streaming

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming 12/30

◆□ > ◆□ > ◆ □ > ◆ □ >

3

Analysis of video streaming

• To derive $E[Z_j]$, we define:

イロト イヨト イヨト イヨト

Analysis of video streaming

- To derive $E[Z_j]$, we define:
 - $\bullet \ L$ to be the number of packets lost in an FEC block
 - $\bar{Q} = E[Z_j|L > k]$ to be the expected number of useful video packets recovered from the front of an FEC block when L > k

イロト イヨト イヨト イヨト

Analysis of video streaming

- To derive $E[Z_j]$, we define:
 - $\bullet \ L$ to be the number of packets lost in an FEC block
 - $\bar{Q} = E[Z_j | L > k]$ to be the expected number of useful video packets recovered from the front of an FEC block when L > k
- Then, we have the following result:

Analysis of video streaming

- To derive $E[Z_j]$, we define:
 - $\bullet \ L$ to be the number of packets lost in an FEC block
 - $\bar{Q} = E[Z_j | L > k]$ to be the expected number of useful video packets recovered from the front of an FEC block when L > k
- Then, we have the following result:

Lemma 1

Assuming a two-state Markov packet loss and L > k, the expected number of useful video packets recovered per frame is:

$$\bar{Q} = E[Z_j|L > k] = \frac{1-p}{\alpha} \left(1 - (1-\alpha)^H\right),$$
 (2)

where H = N - k is the number of video packets in an FEC block

◆□> ◆□> ◆臣> ◆臣> ─ 臣

Analysis of video streaming

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming 13/30

크

Analysis of video streaming

Theorem 1

Assuming two-state Markov packet loss with average loss probability p, the expected number of useful packets recovered per FEC block of size N is:

$$E[Z_j] = \sum_{i=0}^k P(N,i)H \qquad (3)$$
$$+ \left(\sum_{i=k+1}^N P(N,i)\right) \left(\frac{1-p}{\alpha} \left(1 - (1-\alpha)^H\right)\right),$$

where P(N, i) is the probability of losing exactly i packets out of N transmitted packets.
Simulation results

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming 14/30

◆□> ◆□> ◆豆> ◆豆> ・豆

Simulation results

 $\bullet\,$ Define ψ to be the fraction of FEC packets in a block

・ロン ・回 と ・ ヨ と ・ ヨ と …

크

- Define ψ to be the fraction of FEC packets in a block
- $\bullet\,$ To verify the model, we simulate Markov loss process with two different values of $\psi\,$

- Define ψ to be the fraction of FEC packets in a block
- To verify the model, we simulate Markov loss process with two different values of ψ

Simulation results

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming 15/30

・ロン ・回 と ・ ヨ と ・ ヨ と …

3

Simulation results

- Note that the behavior of expected decoding rate changes for different ψ

・ロン ・回 と ・ ヨ と ・ ヨ と …

크

- \bullet Note that the behavior of expected decoding rate changes for different ψ
- The amount of overhead in FEC-based streaming plays a significant role in determining video quality

イロト イヨト イヨト イヨト

- \bullet Note that the behavior of expected decoding rate changes for different ψ
- The amount of overhead in FEC-based streaming plays a significant role in determining video quality
- Next, we derive the utility of received video and examine how FEC overhead affects the quality of video

イロト イヨト イヨト イヨト

- \bullet Note that the behavior of expected decoding rate changes for different ψ
- The amount of overhead in FEC-based streaming plays a significant role in determining video quality
- Next, we derive the utility of received video and examine how FEC overhead affects the quality of video
- $\bullet\,$ Define the utility U as the fraction of received data that is useful for decoding

Analysis of video streaming

Theorem 2

Assuming Bernoulli packet loss in an FEC block of size N, average loss probability p, and FEC overhead rate $\psi = \eta p$, $(0 < \psi < 1)$, the utility of received video for each FEC block converges to the following as $H \to \infty$:

$$\lim_{H \to \infty} U = \begin{cases} 0 & 0 < \eta < 1\\ 0.5 & \eta = 1\\ \frac{1-\psi}{1-p} & 1 < \eta < 1/p \end{cases}$$
(4)

where η is constant.

(a)

Simulation results

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming 17/30

(ロ) (四) (三) (三) (三) (三)

Simulation results

• Simulation results under Bernoulli loss

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming 17/30

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

3

Simulation results

Simulation results under Bernoulli loss

イロト イヨト イヨト イヨト

크

Simulation results

Simulation results under Bernoulli loss

Note that U indeed converges to 0,0.5 or $(1 - \psi)/(1 - p)$ depending on the value of ψ as the streaming rate becomes large

Simulation results

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming 18/30

・ロン ・回 と ・ ヨ と ・ ヨ と …

크

Simulation results

• Note that the asymptotic behavior of U in Theorem 2 holds for Markov and renewal patterns of packet loss

(a)

Simulation results

• Note that the asymptotic behavior of U in Theorem 2 holds for Markov and renewal patterns of packet loss

・ロト ・回ト ・ヨト ・ヨト

18/30

3

Simulation results

• Note that the asymptotic behavior of U in Theorem 2 holds for Markov and renewal patterns of packet loss

Again, U exhibits percolation and converges to 0,0.5 or $(1-\psi)/(1-p)$ depending on ψ

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming

Motivation Impact of FEC on Scalable Video Adaptive FEC Control Evaluation

Discussion

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming

19/30

イロト イヨト イヨト イヨト

Discussion

- Effectiveness of FEC depends on how the server uses redundant packets based on packet-loss dynamics
- Using fixed amount of overhead may cause significant quality degradation when packet loss fluctuates

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming 19/30

Discussion

- Effectiveness of FEC depends on how the server uses redundant packets based on packet-loss dynamics
- Using fixed amount of overhead may cause significant quality degradation when packet loss fluctuates

 Simulation results of U for different packet loss p under improper amount of FEC overhead

(a)

◆□ > ◆□ > ◆臣 > ◆臣 > ○

크

Outline

- Motivation
- Background
- Impact of FEC on Scalable Video
- Adaptive FEC Control
- Evaluation
- Conclusion

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣

Adaptive FEC control

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming 21/30

Adaptive FEC control

Needs for adaptive control

- In a practical network environment, packet loss changes dynamically, depending on
 - cross-traffic
 - link quality
 - routing updates, etc
- The amount of FEC needs to be adjusted according to changing packet loss to maintain high end-user utility

(a)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣

Adaptive FEC control

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming 22/30

・ロン ・回 と ・ヨン ・ヨン

3

Adaptive FEC control

• For adaptive FEC rate control, we use a simple proportional controller:

イロト イヨト イヨト イヨト

Adaptive FEC control

 For adaptive FEC rate control, we use a simple proportional controller:

$$\psi_i(n) = \psi_i(n - D_i) + \tau \left(\eta p_i(n - D_i) - \psi_i(n - D_i)\right), \quad (5)$$

where index *i* represents flow number, $p_i(n)$ is the measured average packet loss in the FGS layer for flow *i* during interval *n*, τ is the controller's gain parameter, D_i is the round-trip delay for flow *i*.

・ロト ・回ト ・ヨト ・ヨト

2

Adaptive FEC control

• For adaptive FEC rate control, we use a simple proportional controller:

$$\psi_i(n) = \psi_i(n - D_i) + \tau \left(\eta p_i(n - D_i) - \psi_i(n - D_i)\right), \quad (5)$$

where index *i* represents flow number, $p_i(n)$ is the measured average packet loss in the FGS layer for flow *i* during interval n, τ is the controller's gain parameter, D_i is the round-trip delay for flow *i*.

Lemma 2

Controller (5) is stable if and only if $0 < \tau < 2$.

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming 22/30

◆□ > ◆□ > ◆臣 > ◆臣 > ○

크

Outline

- Motivation
- Background
- Impact of FEC on Scalable Video
- Adaptive FEC Control
- Evaluation
- Conclusion

◆□> ◆□> ◆臣> ◆臣> ─ 臣

Packet loss pattern

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming 24/30

・ロン ・回 と ・ヨン ・ヨン

3

Packet loss pattern

• We simulate a streaming session with a hypothetical packet loss pattern

・ロト ・回ト ・ヨト

3

Packet loss pattern

 We simulate a streaming session with a hypothetical packet loss pattern

Motivation Impact of FEC on Scalable Video Adaptive FEC Control Evaluation

Achieved utility

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming

25/30

(ロ) (四) (三) (三) (三)

<<u>
し
、
<

</>

</u>

3

Achieved utility

• We investigate adaptive FEC overhead controller (5) with the behavior of achieved utility

・ロン ・回 と ・ ヨ と ・ ヨ と …

크

Achieved utility

- We investigate adaptive FEC overhead controller (5) with the behavior of achieved utility
 - To illustrate the adaptivity of the controller, we use target utility $U_T=0.8$

・ロト ・回ト ・ヨト ・ヨト

Achieved utility

- We investigate adaptive FEC overhead controller (5) with the behavior of achieved utility
 - To illustrate the adaptivity of the controller, we use target utility $U_T=0.8$
- For comparison, we apply two different scenarios that use fixed amount of overhead
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Achieved utility

- We investigate adaptive FEC overhead controller (5) with the behavior of achieved utility
 - To illustrate the adaptivity of the controller, we use target utility $U_T = 0.8$
- For comparison, we apply two different scenarios that use fixed amount of overhead
 - $\bullet\,$ The fixed-overhead amount is driven by the lower and upper bounds on packet loss $\tilde{p}\,$

• The evolution of achieved utility U

▲口→ ▲圖→ ▲温→ ▲温→

3

• The evolution of achieved utility U

ヘロン 人間と 人間と 人間と

• The evolution of achieved utility U

- Our adaptive controller maintains the target utility U_T very well along the entire streaming session
- However, fixed-overhead schemes cannot maintain high utility as packet loss varies

PSNR quality

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming 27/30

◆□> ◆□> ◆臣> ◆臣> ─ 臣

PSNR quality

 PSNR of CIF Foreman reconstructed with different FEC overhead control

・ロト ・同ト ・ヨト ・ヨト

3

PSNR quality

- PSNR of CIF Foreman reconstructed with different FEC overhead control
- M_1 and M_2 use fixed amount of overhead driven by $\tilde{p}=0.1$ and $\tilde{p}=0.4$, respectively

イロト イヨト イヨト イヨト

2

PSNR quality

- PSNR of CIF Foreman reconstructed with different FEC overhead control
- M_1 and M_2 use fixed amount of overhead driven by $\tilde{p}=0.1$ and $\tilde{p}=0.4$, respectively

PSNR quality

- PSNR of CIF Foreman reconstructed with different FEC overhead control
- M_1 and M_2 use fixed amount of overhead driven by $\tilde{p} = 0.1$ and $\tilde{p} = 0.4$, respectively

- The adaptive method offers as much as 2.5 dB higher PSNR than M₂ for the first 60 frames
- Also, outperforms M_1 by almost 10 dB for the last 40 frames

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming

27/30

3

◆□ > ◆□ > ◆臣 > ◆臣 > ○

크

Outline

- Motivation
- Background
- Impact of FEC on Scalable Video
- Adaptive FEC Control
- Evaluation
- Conclusion

イロト イヨト イヨト イヨト

- FEC has conflicting effects on video quality depending on the amount of overhead used
- Adaptive FEC overhead control can provide a high quality of video to end-users
- Proper control of FEC overhead can significantly improve the utility of received video over lossy channels

Motivation Impact of FEC on Scalable Video Adaptive FEC Control Conclusion

Thank you!

Any questions?

S. Kang and D. Loguinov Impact of FEC Overhead on Scalable Video Streaming

30/30

-2

◆□ → ◆□ → ◆三 → ◆三 →