IMR-Pathload: Robust Available Bandwidth Estimation under End-Host Interrupt Delay

Seong Kang

Joint work with Dmitri Loguinov

Internet Research Lab Department of Computer Science Texas A&M University, College Station, TX 77843

April 30, 2008

- Introduction
- Interrupt moderation
- Analysis of Pathload
 - Impact of interrupt delays
 - Trend detection problem
- IMR-Pathload
- Performance evaluation
- Wrap-up

Introduction

- Bandwidth estimation is an important area of Internet research
 - Plays an important role in characterizing network paths
 - Potentially can help various Internet applications
- The vast majority of tools focuses on end-to-end measurements
 - The ultimate goal is to measure diverse Internet paths under various traffic and network conditions
 - Fast estimation and high accuracy are desired

Introduction (2)

- All existing methods heavily rely on high-precision delay measurement at end-hosts
 - However, delay measurements are not perfect in practice
 - Interrupt delays at NIC cause timing irregularity
- State of the art tools attempt to reduce the effect of interrupt delays
 - Pathchirp and Pathload aim to "weed out" packets affected by interrupt delays

Introduction (3)

- Pathchirp
 - Sends substantially more packets by setting an option manually
 - Not desirable since it prolongs measurement duration
- Pathload
 - Filters out affected packets without increasing the number of probing packets
 - Has limited effect when interrupt delays are non-trivial
- Goal
 - To develop a tool that is robust to timing irregularity caused by NIC's interrupt moderation
 - Mainly focus on improving Pathload

- Introduction
- Interrupt moderation
- Analysis of Pathload
 - Impact of interrupt delays
 - Trend detection problem
- IMR-Pathload
- Performance evaluation
- Wrap-up

Interrupt Moderation

- Packet arrival/departure events at a network interface card (NIC) is handled by the CPU through interrupts
- Generating interrupts for every packet event creates significant per-packet overhead
 - For a Gigabit Ethernet NIC, an interrupt could be generated every $12~\mu s$ with packets of size 1500 bytes
 - Substantial overhead for interrupt handling
- Solution to this is using interrupt moderation
 - Delays generation of a new interrupt
 - Stores packets at NIC until the next interrupt

Interrupt Moderation (2)

- It has become a common practice with Gigabit NICs
- At a single interrupt, NIC delivers multiple packets to the kernel

Interrupt Moderation (3)

Impact on inter-packet dispersions

Interrupt Moderation (4)

- Impact on one-way delays (OWD) of probing packets
 - Difference between the sending time and arrival time

- Introduction
- Interrupt moderation
- Analysis of Pathload
 - Impact of interrupt delays
 - Trend detection problem
- IMR-Pathload
- Performance evaluation
- Wrap-up

Observation

- Many paths in PlanetLab cannot be measured by Pathload
 - We suspect that timing irregularity due to interrupt moderation is the major reason
- Thus, we investigate how interrupt delays affect Pathload's estimation
 - Conduct experiments in Emulab for different interrupt delays at the receiver
- We start by describing a topology for Emulab experiments

Experimentation Topology

- The speed of all access links is 100 Mb/s (delay 10 ms)
- The remaining links between two routers have capacities C_i and propagation delay $40~{\rm ms}$
- TCP cross-traffic is generated by Iperf traffic generator
 - Run 100 threads in each cross-traffic source S_i

Experimentation Setup

Experimentation	Ι	Different link bandwidths (Mb/s)									
scenarios	C_1	A_1	C_2	A_2	C_3	A_3	C_4	A_4			
Case-I	75	31.84	90	51.69	90	42.05	[60]	40.77			
Case-II	75	41.32	90	70.76	90	46.77	[60]	26.39			
Case-III	[60]	35.88	90	70.76	[90]	23.39	75	18.10			
Case-IV	[60]	21.60	90	65.99	90	42.07	75	36.72			
Case-V	[60]	50.25	90	61.17	90	41.99	75	50.86			
Case-VI	75	28.97	90	37.8	90	13.86	[60]	31.22			

- Shaded values in each row represent the capacity and available bandwidth of the tight-link for each case
 - Tight link is the link with the smallest available bandwidth
- Values in square brackets represent the capacity of the narrow link for each case
 - Narrow link represents the link with the lowest speed

Experimentation Setup (2)

• Define e_A to be relative estimation error:

$$e_A = |\widehat{A} - \langle \widetilde{A} \rangle / A$$

true available bandwidth of a path

estimate of A

Estimation Reliability

- Next examine estimation behavior of Pathload with various interrupt delays
 - \rightarrow With small interrupt delay, estimation accuracy is over 80%

Interrupt	Evaluation scenario								
delay δ	Case-I	Case-II	Case-III	Case-IV	Case-V	Case-VI			
$0 \ \mu s$	9.45%	8.00%	7.57%	6.48%	16.58%	15.01%			
$100 \ \mu s$	1.44%	8.52%	14.9%	5.74%	3.6%	20.74%			
$125 \ \mu s$			15.01%			34.65%			
$> 125 \ \mu s$									

When the delay becomes larger, Pathload is unable to produce reliable estimates

Estimation Algorithm

- Recall that Pathload sends a sequence of packet-trains with a rate ${\cal R}$
 - Each train includes N back-to-back packets
- Receiver examines OWDs in each train and returns their trend information to the sender
- Sender adjusts its probe rate *R* in a binary search fashion based on the trend information
 - Increase the probe rate R if no trend is detected
 - Decrease R if an increasing trend is detected

Estimation Algorithm (2)

• Search for an appropriate probe rate R

- Introduction
- Interrupt moderation
- Analysis of Pathload
 - Impact of interrupt delays
 - Trend detection problem
- IMR-Pathload
- Performance evaluation
- Wrap-up

Trend Detection

- PCT and PDT metrics are used for trend detection
- PCT (Pairwise Comparison Test)

$$PCT = \frac{1}{n} \sum_{j=2}^{n} I(X_j > X_{j-1}) \quad \begin{array}{c} \text{OWD of a packet } j-1 \text{ in} \\ \text{a set of size } n \end{array}$$

I(Y) is one if Y holds, zero otherwise

- Represents the fraction of consecutive OWD pairs that are increasing
- PDT (Pariwise Difference Test)

$$PDT = (X_n - X_1) / \sum_{j=2}^n |X_j - X_{j-1}|$$

 Quantifies how strong the difference between the first and last OWDs in the data set is

Trend Detection (2)

- To assess Pathload's trend detection mechanism, we conduct experiments for Case I (A = 31 Mb/s)
 - Collect OWD data by running Pathload with a fixed rate $R{=}38$ Mb/s and interrupt delay $\delta=250~\mu s$

one-way delays subtracted by their minimum value

- OWDs exhibit increasing trend overall

Trend Detection (3)

• Before applying PCT and PDT tests, Pathload eliminates coalesced (back-to-back) packets

• However, it is unable to detect an increasing trend in the OWDs as it obtains PCT = 0.5, PDT = 0.11

— "increasing" if PCT > 0.66, "non-increasing" if PCT < 0.54

— "increasing" if PDT > 0.55, "non-increasing" if PDT < 0.45

- Introduction
- Interrupt moderation
- Analysis of Pathload
 - Impact of interrupt delays
 - Trend detection problem
- IMR-Pathload
- Performance evaluation
- Wrap-up

IMR-Pathload

- Characterizing delay trend in measured noisy OWD data is a difficult problem
 - Pathload's trend detection algorithm is not much effective in dealing with this
- To overcome this, we introduce two noisefiltering techniques in bandwidth measurement
 - -Wavelet-based signal processing
 - -Window-based averaging
- IMR-Pathload
 - -Interrupt Moderation Resilient Pathload

IMR-Pathload (2)

- OWD process can be decomposed into two components using wavelet decomposition
 - Scale coefficients represent deterministic "trend"
 - Wavelet coefficients represent stochastic "noise"

IMR-Pathload (3)

- Decomposition can be iterated
 - Successive scale coefficients are decomposed in turn

 $-cA_j$: scale coefficients in level j $-cD_j$: wavelet coefficients in level j

IMR-Pathload (4)

- OWD data are processed using wavelet decomposition or k-packet window-based averaging — For experiments, we use Daubechies length-4 wavelets
- Scale coefficients are given by:

$$h_0 = \frac{1 + \sqrt{3}}{4\sqrt{2}}, \ h_1 = \frac{3 + \sqrt{3}}{4\sqrt{2}}, \ h_2 = \frac{3 - \sqrt{3}}{4\sqrt{2}}, \ h_3 = \frac{1 - \sqrt{3}}{4\sqrt{2}}$$

Wavelet coefficients are:

$$g_0 = h_3, \ g_1 = -h_2, \ g_2 = h_1, \ g_3 = -h_0$$

IMR-Pathload (5)

- Assume that a sequence s₀, s₁, ..., s_{n-1} is an input to the *j*-th stage filters
- Then, $cA_{j,k}$ and $cD_{j,k}$ are given by: $cA_{j,k} = h_0s_{2k} + h_1s_{2k+1} + h_2s_{2k+2} + h_3s_{2k+3}$ $cD_{j,k} = g_0s_{2k} + g_1s_{2k+1} + g_2s_{2k+2} + g_3s_{2k+3}$

IMR-Pathload (6)

• Effect of de-noising on trend detection

- Introduction
- Interrupt moderation
- Analysis of Pathload
 - Impact of interrupt delays
 - Trend detection problem
- IMR-Pathload
- Performance evaluation
- Wrap-up

Performance Evaluation

- Emulab experiments
 - Investigate estimation accuracy of IMR-Pathload under a wide range of interrupt delays
 - Main metric is the relative estimation error e_A
- Internet experiments
 - Measure Internet paths between several sites in US
 - Show how reliably IMR-Pathload measures Internet paths compared to the original Pathload

Emulab Experiment

Estimation	Interrupt	Evaluation scenario								
method	delay δ	Case-I	Case-II	Case-III	$\operatorname{Case-IV}$	Case-V	$\operatorname{Case-VI}$			
IMR-Pathload (wavelet)	$0 \ \mu s$	2.46%	1.23%	3.47%	2.69%	3.71%	6.52%			
	$100 \ \mu s$	6.47%	4.5%	3.02%	4.42%	5.98%	12.17%			
	$125 \ \mu s$	7.21%	2.64%	3.88%	1.32%	6.1%	10.77%			
	$500 \ \mu s$	5.12%	2.17%	6.78%	3.24%	7.23%	5.56%			
IMR-Pathload (average)	$0 \ \mu s$	2.07%	2.24%	2.1%	2.18%	9.67%	5.05%			
	$100 \ \mu s$	0.19%	0.71%	11.69%	1.32%	4.19%	6.82%			
	$125 \ \mu s$	1.44%	1.82%	12.58%	1.59%	2.64%	7.89%			
	$500 \ \mu s$	4.43%	4.59%	9.27%	2.55%	8.95%	6.48%			

- IMR-Pathload produces available bandwidth estimates for all cases with 88-99% accuracy
- Even with a large interrupt delay $\delta = 500 \ \mu s$, it measures the paths within $e_A = 10\%$ error
 - Recall that the original Pathload can measure none of the paths when $\delta > 125 \; \mu s$

Internet Experiment

- Measure each path during 5 different periods of time in a day
 - Run both tools 3 times for each time period over a particular path
- If a tool can measure a path in all 3 times for a period, we report their average as its bandwidth estimate
- If a tool fails to measure a path at lest once in 3 trials, we consider that the tool cannot reliably measure that particular path during that period

Internet Experiment (2)

Internet	Method		Available bandwidth estimates (Mb/s)							
paths		9 -	– 10 am	12-1 pm	3-4 pm	7-8 pm	11 - 12 pm			
$\mathrm{HP} \rightarrow \mathrm{Wustl}$	IMR-Pathload		12.2	11.9	13	12.8	13.1	L		
	Pathload									
$\rm UMD \rightarrow \rm HP$	IMR-Pathload		93	92.8	92.3	93.2	94.7			
	Pathload		95.1	91.7	91.2	93.2	92.6			
$UMD \rightarrow TAMU$	IMR-Pathload		100	98.1	98.3	99.4	98.4	L		
	Pathload									
$HP \rightarrow UMD$	IMR-Pathload		12.9	11.8	13.3	12.3	12.6			
	Pathload		20		16.9					

Pathload cannot reliably measure these paths -

- Computer Science, Texas A&M University
- Pathload exhibits estimation instability under nonnegligible interrupt delays
 - Instability stems from the fact that its delay-trend detection mechanism is unreliable
- IMR-Pathload provides robust trend detection under a wide range of interrupt delays
 - Signal de-noising facilitates accurate trend-detection
- IMR-Pathload significantly improves measurement stability of the original Pathload under various network settings